Lagrangian-Antidiffusive Remap schemes for non-local multi-class traffic flow models - Archive ouverte HAL
Article Dans Une Revue Computational & Applied Mathematics Année : 2019

Lagrangian-Antidiffusive Remap schemes for non-local multi-class traffic flow models

Résumé

This paper focuses on the numerical approximation of the solutions of a class of non-local systems in one space dimension, arising in traffic modeling. We propose alternative simple schemes by splitting the non-local conservation laws into two different equations, namely, the Lagrangian and the remap steps. We provide some properties and estimates recovered by approximating the problem with the L-AR scheme, and we prove the convergence to weak solutions in the scalar case. Finally, we show some numerical simulations illustrating the efficiency of the L-AR schemes in comparison with classical first and second order numerical schemes.
Fichier principal
Vignette du fichier
nonlocal_schemes.pdf (1.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01952378 , version 1 (12-12-2018)
hal-01952378 , version 2 (02-12-2019)

Identifiants

  • HAL Id : hal-01952378 , version 1

Citer

Felisia Angela Chiarello, Paola Goatin, Luis Miguel Villada. Lagrangian-Antidiffusive Remap schemes for non-local multi-class traffic flow models. Computational & Applied Mathematics, In press. ⟨hal-01952378v1⟩
342 Consultations
239 Téléchargements

Partager

More