Lagrangian-Antidiffusive Remap schemes for non-local multi-class traffic flow models - Archive ouverte HAL
Article Dans Une Revue Computational & Applied Mathematics Année : 2020

Lagrangian-Antidiffusive Remap schemes for non-local multi-class traffic flow models

Résumé

This paper focuses on the numerical approximation of the solutions of a class of non-local systems in one space dimension, arising in traffic modeling. We propose alternative simple schemes by splitting the non-local conservation laws into two different equations, namely, the Lagrangian and the remap steps. We provide some properties and estimates recovered by approximating the problem with the L-AR scheme, and we prove the convergence to weak solutions in the scalar case. Finally, we show some numerical simulations illustrating the efficiency of the L-AR schemes in comparison with classical first and second order numerical schemes.
Fichier principal
Vignette du fichier
main.pdf (1.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01952378 , version 1 (12-12-2018)
hal-01952378 , version 2 (02-12-2019)

Identifiants

Citer

Felisia Angela Chiarello, Paola Goatin, Luis Miguel Villada. Lagrangian-Antidiffusive Remap schemes for non-local multi-class traffic flow models. Computational & Applied Mathematics, 2020, 39 (60), ⟨10.1007/s40314-020-1097-9⟩. ⟨hal-01952378v2⟩
342 Consultations
239 Téléchargements

Altmetric

Partager

More