Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2021

Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis

Résumé

This paper develops algorithms for high-dimensional stochastic control problems based on deep learning and dynamic programming. Unlike classical approximate dynamic programming approaches, we first approximate the optimal policy by means of neural networks in the spirit of deep reinforcement learning, and then the value function by Monte Carlo regression. This is achieved in the dynamic programming recursion by performance or hybrid iteration and regress-now methods from numerical probabilities. We provide a theoretical justification of these algorithms. Consistency and rate of convergence for the control and value function estimates are analyzed and expressed in terms of the universal approximation error of the neural networks, and of the statistical error when estimating network function, leaving aside the optimization error. Numerical results on various applications are presented in a companion paper [Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications, Methodol. Comput. Appl. Probab., 24(1) 143-178 2022] and illustrate the performance of the proposed algorithms.
Fichier principal
Vignette du fichier
deepconsto_sinum_final.pdf (454.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01949213 , version 1 (09-12-2018)
hal-01949213 , version 2 (02-12-2020)

Identifiants

Citer

Côme Huré, Huyên Pham, Achref Bachouch, Nicolas Langrené. Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis. SIAM Journal on Numerical Analysis, 2021, 59 (1), pp.525-557. ⟨10.1137/20M1316640⟩. ⟨hal-01949213v2⟩
292 Consultations
543 Téléchargements

Altmetric

Partager

More