Deep neural networks algorithms for stochastic control problems on finite horizon, part I: convergence analysis - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Deep neural networks algorithms for stochastic control problems on finite horizon, part I: convergence analysis

Résumé

This paper develops algorithms for high-dimensional stochastic control problems based on deep learning and dynamic programming (DP). Differently from the classical approximate DP approach, we first approximate the optimal policy by means of neural networks in the spirit of deep reinforcement learning, and then the value function by Monte Carlo regression. This is achieved in the DP recursion by performance or hybrid iteration, and regress now or later/quantization methods from numerical probabilities. We provide a theoretical justification of these algorithms. Consistency and rate of convergence for the control and value function estimates are analyzed and expressed in terms of the universal approximation error of the neural networks. Numerical results on various applications are presented in a companion paper [2] and illustrate the performance of our algorithms.
Fichier principal
Vignette du fichier
Deepconsto-partieIconv.pdf (512.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01949213 , version 1 (09-12-2018)
hal-01949213 , version 2 (02-12-2020)

Identifiants

Citer

Côme Huré, Huyên Pham, Achref Bachouch, Nicolas Langrené. Deep neural networks algorithms for stochastic control problems on finite horizon, part I: convergence analysis. 2018. ⟨hal-01949213v1⟩

Collections

UNIV-PARIS7 USPC
292 Consultations
543 Téléchargements

Altmetric

Partager

More