Streaming kernel regression with provably adaptive mean, variance, and regularization - Archive ouverte HAL
Article Dans Une Revue Journal of Machine Learning Research Année : 2018

Streaming kernel regression with provably adaptive mean, variance, and regularization

Résumé

We consider the problem of streaming kernel regression, when the observations arrive sequentially and the goal is to recover the underlying mean function, assumed to belong to an RKHS. The variance of the noise is not assumed to be known. In this context, we tackle the problem of tuning the regularization parameter adaptively at each time step, while maintaining tight confidence bounds estimates on the value of the mean function at each point. To this end, we first generalize existing results for finite-dimensional linear regression with fixed regularization and known variance to the kernel setup with a regularization parameter allowed to be a measurable function of past observations. Then, using appropriate self-normalized inequalities we build upper and lower bound estimates for the variance, leading to Bersntein-like concentration bounds. The later is used in order to define the adaptive regularization. The bounds resulting from our technique are valid uniformly over all observation points and all time steps, and are compared against the literature with numerical experiments. Finally, the potential of these tools is illustrated by an application to kernelized bandits, where we revisit the Kernel UCB and Kernel Thompson Sampling procedures, and show the benefits of the novel adaptive kernel tuning strategy.
Fichier principal
Vignette du fichier
1708.00768.pdf (886.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01927007 , version 1 (19-11-2018)

Identifiants

Citer

Audrey Durand, Odalric-Ambrym Maillard, Joelle Pineau. Streaming kernel regression with provably adaptive mean, variance, and regularization. Journal of Machine Learning Research, 2018, 1, pp.1 - 48. ⟨hal-01927007⟩
112 Consultations
148 Téléchargements

Altmetric

Partager

More