Zonotopic constrained Kalman filter based on a dual formulation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Zonotopic constrained Kalman filter based on a dual formulation

Résumé

This paper presents a new zonotopic constrained approach for the Kalman filter that takes advantage of the particular structure of the original optimization problem. This technique consists in projecting the state estimation by solving an optimization problem, to ensure that the estimated state belongs to a zonotope. Based on a classical gradient algorithm method, i.e. the iterative shrinkage-thresholding algorithm (ISTA), this paper proposes a reduced complexity approach suitable for the state estimation of systems subject to a large number of state constraints. The algorithm's speed is improved via a faster ISTA approach, called FISTA.
Fichier principal
Vignette du fichier
CDCPaper.pdf (320.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01907119 , version 1 (16-03-2020)

Identifiants

Citer

Dory Merhy, Teodoro Alamo, Cristina Stoica Maniu, Eduardo Camacho. Zonotopic constrained Kalman filter based on a dual formulation. 57th IEEE Conference on Decision and Control (CDC 2018), Dec 2018, Miami Beach, United States. ⟨10.1109/cdc.2018.8619177⟩. ⟨hal-01907119⟩
82 Consultations
174 Téléchargements

Altmetric

Partager

More