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Zonotopic Constrained Kalman Filter based on a Dual Formulation

Dory Merhy, Teodoro Alamo, Cristina Stoica Maniu, Eduardo F. Camacho

Abstract— This paper presents a new zonotopic constrained
approach for the Kalman filter that takes advantage of the
particular structure of the original optimization problem. This
technique consists in projecting the state estimation by solving
an optimization problem, to ensure that the estimated state
belongs to a zonotope. Based on a classical gradient algorithm
method, i.e. the iterative shrinkage-thresholding algorithm
(ISTA), this paper proposes a reduced complexity approach
suitable for the state estimation of systems subject to a large
number of state constraints. The algorithm’s speed is improved
via a faster ISTA approach, called FISTA.

Index Terms— constrained Kalman filter, primal-dual form.

I. INTRODUCTION

In the state estimation theory, the Kalman filter [1] is well
known to be suitable for the state estimation of linear systems
assuming the knowledge of the characteristics (covariance,
average, etc.) of perturbations and noises governing the
state and measurements. Moreover, many extensions of the
Kalman filter have been developed through time to deal
with real time systems (e.g. Extended Kalman filter [2],
unscented Kalman filter [3], and Kalman-Bucy filter [4]).
Due to its accuracy and easy implementation, the Kalman
filter is widely used in industrial fields like radar ima-
ging [5], finance [6], and many more. As an alternative,
the deterministic approach, particularly the set-membership
state estimation became subject of research interest since it
considers bounded perturbations and measurement noises.
Additionally, the estimated state belongs to a geometrical
set [7] such as ellipsoid, zonotope, polytope etc. Among
these sets, zonotopes are used for state estimation purposes
due to their reduced complexity, their accuracy and their
facility in mathematical operations computation [8], [9]. With
the intention of mixing the advantages of both approaches,
in [10], the classic Kalman filter and the zonotopic state
estimation are combined in a zonotopic Kalman filter (ZKF)
based on the introduction of a new notion of covariation
connecting the two approaches. Even though the Kalman
filter is a powerful tool in state estimation, some of the known
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information about the system state can not be integrated. For
example, distances and speeds are always positive, and these
information should be treated as state constraints on during
the state estimation.

There has been a wide use of systems with state constraints
in state estimation applications that include but are not
limited to biomedical systems [11], camera tracking [12] and
others. When the system is subject to equality constraints,
different approaches can be applied to incorporate them.
One approach focuses, for instance, on the system model
reduction [13], decreasing the number of computations of
the Kalman filter even though it might lead to the loss of the
physical meaning of the state variables. Another technique is
to consider the constraints as perfect measurements with zero
measurement noise [14], but this will give a new augmented
measurement equation leading to a singular measurement
noise covariance. In addition, increasing the dimension of
the problem leads to larger computational complexity of the
Kalman gain. A third approach is to project the unconstrained
estimation onto the constraint surface at each time iteration
[15]. These three different approaches result in the same
final optimal state estimation as proven in [16], in which
a comparison of Kalman filters results in case of equality
and inequality constraints, for the different methods, has
been made. The advantage of the third approach lies in its
capacity to be extended to inequality constraints. Another
method to use for inequality constraints is the probability
density function (PDF) truncation in which the constrained
state estimate equals the mean of the truncated PDF [17],
[18]. In parallel, the same problem has been treated diffe-
rently in [19]: a set-based state estimation problem has been
considered using constrained zonotopes to take into account
linear equality constraints on the unit hypercube within its
generators representation. Nevertheless, if the problem of
state estimation is addressed using zonotopes, the complexity
grows considerably due to set operations (e.g. intersection).

In this work, a new approach for a constrained Kalman
filter is proposed guaranteeing that the estimated state, at
each time instant, belongs to a given zonotope, which is
the envelope of the constraints applied on the system state.
Indeed, the unconstrained Kalman estimation is projected
onto the zonotope, i.e. an optimization problem is solved
at each time iteration such that the state belongs to this
zonotope. Unlike the common deterministic approaches deal-
ing with zonotopes, this technique requires no intersection
between two geometrical sets. The main contribution of the
paper is the development of a new approach for a zonotopic
constrained Kalman filter (ZCKF) for systems subject to a
potentially large number of linear inequality constraints on



the state, with reduced complexity due to the use of an
efficient optimization strategy. Indeed, the novelty of this
paper is the design of a dual algorithm taking advantage of
the particular structure of the problem. The complexity of
the optimization problem will no longer be affected by the
potentially large number of constraints defining the zonotope.
Within the algorithm, a particularization of the iterative
shrinkage-thresholding algorithm (ISTA) is presented to take
advantage of its simplicity. Then, an improvement of the con-
vergence rate is considered by using the fast ISTA algorithm,
known as FISTA [20], [21].

Notation. The following notation is further used ‖x‖2Q =

x>Qx, with a vector x and a symmetric positive definite
matrix Q = Q> � 0. A random variable x normally
distributed with mean of x̄ and covariance matrix G is
represented by x ∼ N (x̄, G). Here, E[·] is the expectation
operator. The notation 〈a, b〉 is the scalar product between
the two vectors a and b. The Minkowski sum of the two sets
A and B is denoted by A ⊕ B = {a + b : a ∈ A, b ∈ B}.
The set Z = (p;H) = p ⊕ HBm represents a zonotope of
center p ∈ Rn and matrix of generators H ∈ Rn×m, with m
the order of the zonotope and Bm a unitary box in Rn.

II. CONSTRAINED KALMAN FILTER

Let us consider the following discrete-time Linear Time
Invariant (LTI) system{

xk+1 = Axk +Buk + wk
yk = Cxk + vk

(1)

where xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny are respectively
the state of the system, the input vector, and the measured
output vector at sample time k. The matrices A, B and
C, with appropriate dimensions, are respectively the system,
control and output matrices. Here, wk ∈ Rnx and vk ∈ Rny

are random, independent white Gaussian noises with zero
mean and covariances Gw and Gv respectively. Notice that
the state is a random Gaussian vector and the initial state
is denoted by x0 ∼ N(x0|−1, G0|−1). In this context, given
an estimation for xk subject to known linear constraints, the
objective of this paper is to provide a zonotopic constrained
estimation for xk+1. In other terms, the envelope of the
constraints is a zonotope of the form Z = (p;H).

The Kalman filter is a recursive estimator, conceptualized
in two phases: prediction and correction. The first phase
uses the estimation from a previous time instant x̂k−1|k−1

to produce a new estimate of the state at the current instant
x̂k|k−1. In the second phase, the prediction is combined with
the measurement information yk to refine the estimation x̂k|k.
The Kalman filter equations are:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (2)

Gk|k−1 = AGk−1|k−1A
> +Gw (3)

Sk = CGk|k−1C
> +Gv (4)

Kk = Gk|k−1C
>S−1

k (5)
x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1) (6)
Gk|k = (I −KkC)Gk|k−1 (7)

with Kk the Kalman gain and Sk the innovation covariance
at the sample time k. It should be noticed that Gk|k is the
covariance of the estimation error xk − x̂k|k.

Unavailable in the classical filter, constrained filtering con-
sists on correcting the estimation by considering constraints
on the state vector [16]. Suppose that the system verifies the
inequality constraints K̃xk ≤ c̃ with the matrix K̃ and the
vector c̃ of appropriate dimensions. The constrained estimate
is obtained solving the following optimization problem

min
xk

‖xk − x̂k|k‖2W

s.t. K̃xk ≤ c̃
(8)

where W is a symmetric positive-definite weighting matrix
W = W> � 0. If W = G−1

k|k, the maximum probability
estimate of the state w.r.t. constraints is obtained [15].
The constrained estimate is the solution of a quadratic
programming problem. For general quadratic optimization
problems, various methods are commonly used. For example,
the interior point method [22] solves inequality constrained
convex problems in polynomial time, whereas the active set
method [23] proceeds by solving equality subproblems and
verifying if the original constraints are satisfied.

The algorithm in this paper is based on a dual formulation
of the (primal) problem of obtaining the minimum weighted
distance of the unconstrained Kalman estimation to a zono-
topic constraint. The designed algorithm belongs to the class
of accelerated gradient methods [24], [21]. It allows us to
address zonotopic constraints, in the context of the Kalman
filter, with a simple implementation that is well suited for
real time applications. The presented algorithm inherits the
convergence properties of accelerated methods.

III. ZONOTOPIC CONSTRAINED KALMAN FILTER

Motivated by the above discussion, the main result of our
paper is detailed in this section.

A. Prerequisites on zonotopes

A polytope can be defined as a bounded intersection of a
finite number of half-spaces

P = {x ∈ Rnx : Kx ≤ c}, (9)

where K ∈ Rm×nx and c ∈ Rm. A zonotope is the linear
projection of a unitary m-dimensional hypercube

Z = (p;H) = p⊕HBm. (10)

The vector p ∈ Rnx denotes its center and H =[
h1 h2 . . . hm

]
∈ Rnx×m is called the matrix of

generators. A zonotope is a symmetric convex polytope that
can also be represented by the half-space representation.
The conversion between the two representations is studied
in [25], [26]. Notice that solving a convex optimization
problem, constrained by a zonotope, is equivalent to solving
an optimization problem with linear inequalities. Obtaining
the optimal solution using classical optimization strategies,
specially when the zonotope has a large number of gene-
rators, can be quite time consuming and not well suited



for online implementations. The following subsections show
how to implement a dual formulation of the original problem
that takes into consideration the specific structure of the
zonotopic constraint. In the dual formulation the number of
decision variables grows with the dimension of the state-
space and not with the number of generators required to
define the zonotopic constraint.

B. Preliminary work

In the context of the duality principle, optimization prob-
lems can be seen from two perspectives: the primal and
the dual problem. In a convex problem, the primal and
dual optimal objective values are equal under rather general
assumptions [27]. In this work, we address an optimization
problem of the form

J∗ =min
u∈U

Ju(u)

s.t. Ru− p = 0.
(11)

It is assumed that U ⊆ R is a smooth strictly convex func-
tion. Following the dual approach proposed in Nesterov’s
work [28], a formal definition of the dual cost is provided.

Definition 1: Given the matrix R ∈ Rn×m, the vector p ∈
Rn, and the primal function Ju: U → R from (11), let us
define the smooth function called dual function

f(α) = max
u∈U

〈α,Ru− p〉 − Ju(u) (12)

and
u(α) = arg max

u∈U
〈α,Ru− p〉 − Ju(u). (13)

Following the results in [28], given that

−J∗ ≤ max
u∈U

〈α,Ru− p〉 − Ju(u) (14)

with J∗ defined by (11), the solution of the original problem
is obtained by minimizing f(α) with respect to α, with an
inner maximization problem to find the optimal value of
u(α). For this formulation, the following property holds.

Property 1: [28] Suppose that Ju(·) is a strictly convex
function with the hessian ∂2Ju

∂u2 (u) � S � 0 and that U is a
convex set. Then, with ∆α = α− ᾱ, denoting

ū = u(ᾱ) = arg max
u∈U

〈ᾱ, Ru− p〉 − Ju(u), (15)

we have

f(α) ≤ f(ᾱ) + 〈Rū− p,∆α〉+ 1

2
∆α>RS−1R>∆α, (16)

This property states that in order to compute an increment
∆α leading to an improvement of the dual function (i.e.
f(α+ ∆α) ≤ f(α)) it suffices to obtain ∆α in such a way
that

〈Rū− p,∆α〉+
1

2
∆α>RS−1R>∆α (17)

is minimized. The optimal value for ∆α has an explicit
solution because the function to be minimized is a quadratic
convex function of ∆α (as detailed in Subsection III-D).

C. Algorithmic solution for ZCKF

The state estimation of the system (1) at each time instant
k is subject to a system of inequality constraints that can
be rewritten as a zonotopic constraint of the form xk ∈ p⊕
HBm. This constraint is equivalent to the existence of w ∈
Rm such that ‖w‖∞ ≤ 1 and xk = p + Hw, with p ∈
Rnx the center and H =

[
h1 h2 . . . hm

]
∈ Rnx×m the

generators matrix of the zonotope. Hence, we are faced to
the problem of computing the minimum distance from the
unconstrained Kalman estimate x̂k|k to the zonotope. This
distance is zero if x̂k|k is included in the zonotope. The
constrained Kalman filter optimization problem is

min
z,w

Jz,w(z, w)

s.t. z = p+Hw

‖w‖∞ ≤ 1

(18)

where the cost function is defined such as

Jz,w(z, w) = Jz(z) +
ε

2
w>w =

=
1

2
‖z − x̂k|k‖2G−1

k|k
+
ε

2
w>w.

(19)

In this setting, the scalar ε > 0 is an arbitrarily small
regularization parameter that guarantees that the quadratic
function Jz,w(z, w) meets the strict convexity assumption
of the Property 1. From the inspection of the quadratic
function Jz,w(z, w) we have that the hessian is given by
S = diag(G−1

k|k, εIm). Notice that z = p+Hw is equivalent

to
[
I −H

] [
z> w>

]>
= p. This allows us to rewrite the

problem (18) in the form of (11), with u =
[
z> w>

]>
,

R =
[
I −H

]
and Ju(u) = Ju(

[
z
w

]
) = Jz,w(z, w).

The function u(α), as defined in Property 1, is given by
u(α) = arg max

‖w‖∞≤1,z∈Rnx
〈α, z−p−Hw〉−Jz(z)− ε

2w
>w.

We notice that the previous optimization problem can be
decomposed in two independent ones as shown in (20)

u(α) =

[
z(α)
w(α)

]
=

 arg max
z∈Rnz

〈α, z〉 − Jz(z)
arg max
‖w‖∞≤1

−〈α,Hw〉 − ε
2w
>w

 .
(20)

As noticed, the variable z, constrained by the linear inequal-
ities forming the zonotope in the primal mode, belongs to
the set of real numbers in the dual mode. In other terms, the
number of decision variables in the optimization problem
no longer depends on the number of linear constraints, but
on the dimension of the state-space. As it is detailed in
subsection III-D, given αj , both z(αj) = zj and w(αj) =

wj =
[
wj(1) wj(2) . . . wj(m)

]>
can be obtained

from the following closed explicit expressions

zj = Gk|kαj + x̂k|k. (21)

wj(i) =


− 1
εα
>
j hi, if | 1εα

>
j hi| ≤ 1

1, if − 1
εα
>
j hi>1

−1, if − 1
εα
>
j hi < −1

, i = 1, . . . ,m.

(22)



In view of Property 1 we have that the gradient of the
dual cost for a given αj is given by Ruj − p = zj − p −
Hwj . Moreover, Property 1 also states that an optimal local
improvement with respect to the value obtained for αj is
given by αj + ∆αj , where ∆αj minimizes

〈Ru(αj)− p,∆αj〉+
1

2
∆α>j RS

−1R>∆αj .

As it is also detailed in subsection III-D, given zj and wj ,
the optimal increment ∆αj is given by

∆αj = (RS−1R>)−1(p+Hwj − zj). (23)

Notice that this last expression provides an exit condition for
an algorithm based on the gradient information. If the norm
of p+Hwj−1−zj−1 is small, the pair wj−1 and zj−1 is close
to optimality because the gradient at αj−1 is close to zero.
Therefore, the norm of ‖p+Hwj−1 − zj−1‖ could be used
as exiting condition for a numerical algorithm computing the
solution of the zonotopic constrained Kalman estimation.

We present in what follows (see Algorithm 1) the partic-
ularization of the iterative shrinkage-thresholding algorithm
(ISTA) to the specific dual formulation adopted in this paper.

Algorithm 1 ISTA applied to (18)
Input: x̂k|k, H, p.
Output: p+Hwj−1.

1: Initialization: j = 1, α1 = 0, z0 = x̂k|k, w0 = 0.
2: while ‖zj−1 − p−Hwj−1‖ > µ do
3: Compute zj and wj using (21) and (22) respectively.
4: Compute ∆αj from (23).
5: αj+1 = αj + ∆αj .
6: j = j + 1.
7: return p+Hwj−1.

The variable µ denotes the desired tolerance for which the
solution is finally reached. Notice that the output p+Hwj−1

belongs, by construction, to the zonotope p⊕HBm. More-
over, p + Hwj−1 provides, up to a numeric accuracy con-
trolled by the exit parameter µ, the closest point, according
to the weighted norm ‖ · ‖G−1

k|k
, to the original unconstrained

Kalman estimation x̂k|k. We conclude that the output of the
algorithm provides the numerical solution to the zonotopic
Kalman filter estimation problem.

The convex optimization problem (18) could be solved via
classical methods. However, with high order zonotopes, the
problem can involve a large number of constraints, which
motivates the use of our approach. The advantage of the
algorithm above is its simplicity. However, the ISTA algo-
rithm is recognized as a slow method [24], [21]. In fact, it is
guaranteed to converge with a convergence rate of O( 1

j ). A
faster algorithm, called fast iterative shrinkage-thresholding
algorithm (FISTA) provides a better convergence rate: the
difference with the optimal solution decreases with O( 1

j2 ),
see [24], [21]. The speed of convergence and simplicity of
both algorithms make them well suited for online applica-
tions [29]. In what follows, we present how to adapt the

FISTA algorithm to the optimization problem considered in
this paper (see Algorithm 2). The main difference between
the two algorithms relies in the fact that in FISTA, the gradi-
ent of the dual function is evaluated as a linear combination
of the last two values of an auxiliary variable ηj [21]. This
means that αj+1 is obtained by interpolation between the
two previous points of the auxiliary variable (ηj and ηj−1).
The computational time per iteration for FISTA is basically
the same as for ISTA. However, as commented before, the
convergence rate of FISTA is much better. The convergence
analysis of both algorithms is extensively detailed in [21].

Algorithm 2 FISTA applied to (18)
Input: x̂k|k, H, p.
Output: p+Hwj−1.

1: Initialization: j = 1, α1 = 0, z0 = x̂k|k, w0 = 0, η0 =
0, tj = 1.

2: while ‖zj−1 − p−Hwj−1‖ > µ do
3: Compute zj and wj using (21) and (22) respectively.
4: Compute ∆αj from (23).
5: ηj = αj + ∆αj .
6: tj+1 = 0.5(1 +

√
1 + 4t2j ).

7: αj+1 = ηj +
tj − 1

tj+1
(ηj − ηj−1).

8: j = j + 1.
9: return p+Hwj−1.

D. Computation details

This subsection details how to obtain the explicit expres-
sions for zj , wj and ∆αj , required to implement both ISTA
and FISTA algorithms.

1) Expression for z(αj): Based on expression (20), we
recall here the definition of zj = z(αj)

zj = arg max
z∈Rnz

〈α, z〉 − Jz(z) (24)

where Jz(z) = 1
2‖z− x̂k|k‖

2
G−1

k|k
. Denoting ∆zj = zj− x̂k|k,

equation (24) becomes zj = x̂k|k + ∆zj , where

∆zj = arg max
∆z∈Rnz

α>j ∆z − 1

2
∆z>G−1

k|k∆z. (25)

In order to obtain ∆zj we have to determine the value for
∆z that cancels the gradient, i.e. ∆zj is given by

αk −G−1
k|k∆zj = 0.

Thus, ∆zj = Gk|kαj and then zj is obtained by (21).
2) Expression for w(αj): We recall from (20) that

w(αj) = arg max
‖w‖∞≤1

−〈αj , p+Hw〉 − ε

2
w>w. (26)

Denote wj = w(αj) =
[
wj(1) wj(2) . . . wj(m)

]>
.

We show in what follows that it is possible to obtain each
component of wj from the solution of a one dimensional
optimization problem. Since H =

[
h1 h2 . . . hm

]
,

we have from (26)



wj = arg max
w(i),i=1,...,m

−
m∑
i=1

(α>j hi)w(i) +

m∑
i=1

ε

2
w(i)2

s.t. |w(i)| ≤ 1, i = 1, . . . ,m.

We notice that this is a separable optimization problem in
which each component wj(i) can be obtained from

wj(i) = arg max
w∈R,|w|≤1

−(α>j hi)w +
ε

2
w2, i = 1, . . . ,m.

We remark that the gradient of −(α>j hi)w + ε
2w

2 vanishes
at − 1

εα
>
j hi. This, along with the constraint |w| ≤ 1, gives

the expression (22) for each component wj(i)
3) Expression for ∆αj: The optimal local increment ∆αj

is obtained from the minimization of ∆α>j (Ru(αj) − p) +
1
2∆α>j RS

−1R>∆αj . By deriving w.r.t. to ∆αj and setting
the derivative equal to 0, we obtain that the value of ∆αj at
each iteration given by the expression (23). In this subsection
it has been shown that the computation of each of the
steps for both ISTA and FISTA are given by very simple
expressions. The next section provides numerical examples.

IV. ILLUSTRATIVE EXAMPLES

A. First example

Given a zonotope Z(p1, H1) with normalized random
values p1 = randn(nx, 1) and H1 = 1

mrandn(nx,m), with
nx = 2 and m = 15, the idea is to find the closest point
to the state estimate that belongs to the zonotope. The exact
values of p1 and H1 are p1 =

[
0.0423 −0.0403

]>
and

H1 =
[
Ha Hb Hc

]
, with

Ha =

[
−0.0434 0.0381 −0.1089 0.0431 0.0640
0.0260 −0.0768 0.0338 0.0086 0.0777

]
Hb =

[
−0.1026 0.0081 0.0253 0.0524 0.0248
−0.0480 0.0519 0.0451 −0.0098 −0.0081

]
Hc =

[
−0.0299 −0.1230 −0.0699 0.0499 −0.0972
−0.0708 0.0315 0.0630 0.0703 −0.0277

]
To test the algorithm and the assumption that the FISTA

algorithm has a better convergence rate than the ISTA algo-
rithm [21], we assume the prior knowledge of the optimal
solution z∗ of the problem (18). Therefore, let us consider the
Kalman state estimation to be x̂k|k =

[
−1.5639 0.2457

]>
,

the covariance of estimation Gk|k = Inx
at the time instant k,

with ε = 10−4 in (19) and the optimal solution that should
be reached z∗ =

[
−0.8148 −0.0702

]>
. Figure 1 shows

that starting with the unconstrained estimate represened by
the black asterisk (sub-figure 1a), the algorithm offers a new
feasible point (denoted by a red circle) at each iteration,
with a decreased value of the original objective function
(18), which means a closer point to the blue zonotope (see
sub-figures 1b to 1f). This was done by taking one step in
the direction of the gradient of the objective function. By
adopting the estimate projection method, we are computing
the minimum distance from the unconstrained estimate to
the zonotope. At the end of the algorithm, the last red circle
reaches the pre-calculated optimal solution represented by
the green asterisk. The algorithm is expected to find better
and better solution until the convergence criterion is met (see
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Fig. 2. Comparison of errors by the ISTA and FISTA methods

Fig. 1). The stopping criterion is the norm of the deviation
of zj from the closest vertex of the zonotope p+Hwj (black
circle at each iteration) that is ‖zj − p−Hwj‖. This norm
is measured at each iteration, and the algorithm terminates
when it is less or equal to µ = 10−8.
In order to expose the advantages of FISTA over ISTA, the
algorithms were tested on the same example. Figure 2 shows
a comparison of the function value error J(zj) − J(z∗).
Clearly, the results provided by FISTA are much better
than the ones provided by the ISTA algorithm in means
of convergence rate. In fact, it can be seen that after 500
iterations, FISTA reaches an accuracy of 10−4, which is
more precise than ISTA by several orders of magnitude,
and demonstrates its efficiency. Moreover, ISTA needed more
than 3000 iterations to reach the optimal value which was
equivalent to 0.08s that FISTA obtained after less than 1000
iterations (0.02s) with an accuracy of 10−7.

B. Second example

Consider the system (1) with A =

[
1 0.3

−0.225 0.925

]
,

B =
[
1 1

]>
and C =

[
1 0

]
. The system state

is estimated using a classical Kalman filter with x0 ∼
N(x0|−1, G0|−1), uk = 5, wk ∼ N(0, 0.02), vk ∼
N(0, 0.01), x0|−1 =

[
0 2

]>
and G0|−1 = I2. The con-

straints envelope (i.e. Z(p2, H2), with p2 =
[
2 −0.5

]>
and

H2 =

[
−2 1 −0.6
0.8 −0.8 1.6

]
) is chosen randomly, on the basis

of knowledge of the trajectory of the system for illustration
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Fig. 3. Classic Kalman filter and zonotopic constrained Kalman filter

purposes. The chosen constraints are not too loose to prove
the efficiency of the algorithm no matter where the estimate
is located, and not too tight to keep a realistic problem,
allowing variations on the state variables and trajectory. The
regularization parameter is ε = 10−4. Figure 3 shows the plot
of the system trajectory, along with the zonotope representing
the constraints envelope, the unconstrained estimates and the
constrained estimates. The red asterisks obtained by applying
the classical Kalman filter, are the input for the constraints
algorithm. It can be noticed that the unconstrained estimates
remain the same if they already belong to the zonotope
(blue lines). If not, the constrained estimates (black asterisks)
are obtained using the proposed algorithm. The constrained
estimates, then, belong to the zonotope.

V. CONCLUSION

In this paper we have presented a new approach for de-
signing a zonotopic constrained Kalman filter. The proposed
technique is able to guarantee, at every time instant, that
the current system state belongs to a zonotope. The state
estimation design is based on projecting the unconstrained
estimated state on a zonotope, by solving an optimization
problem based on the dual formulation of the original
optimization problem. Due to its simplicity, the iterative
shrinkage-thresholding algorithm (ISTA) is used to find
an optimal solution. An improvement of the convergence
rate of the algorithm has been further presented by using
the fast ISTA algorithm. Two numerical examples have
been provided to illustrate the effectiveness of the proposed
techniques. Current work consists in applying the proposed
zonotopic constrained Kalman approach to a real system.
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