Martin boundary of random walks in convex cones
Résumé
We determine the asymptotic behavior of the Green function for zero-drift random walks confined to multidimensional convex cones. As a consequence, we prove that (up to a multiplicative constant) there is a unique positive discrete harmonic function for these processes, in other words the Martin boundary is reduced to a singleton.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...