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MARTIN BOUNDARY OF RANDOM WALKS IN CONVEX CONES

KILIAN RASCHEL AND PIERRE TARRAGO

Abstract. We determine the asymptotic behavior of the Green function for zero-
drift random walks confined to multidimensional convex cones. As a consequence,
we prove that (up to a multiplicative constant) there is a unique positive discrete
harmonic function for these processes, in other words the Martin boundary is reduced
to a singleton.

1. Introduction and main results

The main purpose of the present paper is to determine the asymptotic behavior of
the Green functions for zero drift random walks confined to multidimensional convex
cones. We deduce that there is a unique (up to a multiplicative constant) positive
discrete harmonic function for these processes; in other words the Martin boundary is
reduced to a singleton.

Context. Random walks conditioned to stay in multidimensional cones are a very
popular topic in probability. Indeed, they appear naturally in various situations:
nonintersecting paths [44, 22, 15], which can be seen as random walks in Weyl
chambers, random walks in the quarter plane [24, 40], queueing theory [12], branching
processes and random walks in random environment [1], finance [13], modeling of some
populations in biology [7], etc. As these random walk models are in bijection with
many other discrete models (maps, permutations, trees, Young tableaux, partitions),
they are also intensively studied in combinatorics [11, 9, 18].

Let us now briefly review the literature regarding asymptotics of Green functions and
Martin boundary for killed random walks in cones (see [43] for a general introduction
to Martin boundary theory). In the one-dimensional case, Doney [17] describes the
harmonic functions and the Martin boundary of a random walk {S(n)} on Z killed
on the negative half-line (obviously there is essentially a unique cone in dimension 1,
namely N = {0, 1, 2, . . .}). Alili and Doney [2] extend this result to the corresponding
space-time random walk {(S(n), n)}.

In the higher dimensional case, let us start by quoting the famous Ney and Spitzer
result [38] on the Green function asymptotics and the Martin boundary of drifted,
unconstrained random walks in Zd. The Martin boundary is homeomorphic to the unit
sphere Sd−1. By large deviation techniques and Harnack inequalities, Ignatiouk-Robert
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[28, 29], then Ignatiouk-Robert and Loree [31], find the Martin boundary of random
walks in half-spaces N × Zd−1 and orthants Nd, with non-zero drift and killed at the
boundary; they also derive the asymptotics of ratios of Green functions. For small step
walks in the quarter plane, Lecouvey and Raschel [34] show that generating functions
of harmonic functions are strongly related to certain conformal mappings.

The results are rarer for zero-drift random walks, and typically require a strong
underlying structure: the random walks are Cartesian products in [39]; they are
associated with Lie algebras in [4, 5]; certain reflection groups are supposed to be
finite in [6]. Varopoulos [46, 47] derives upper and lower bounds for the tail probability
under an additional assumption that the increments of the random walk are bounded.
He also proves various statements on the growth or harmonic functions. Raschel [40, 41]
obtains the asymptotics of the Green function and the Martin boundary in the case
of small step quadrant random walks related to finite reflection groups. Bouaziz,
Mustapha and Sifi [8] prove the existence and uniqueness of the positive harmonic
function for random walks satisfying finite range, centering and ellipticity conditions,
killed at the boundary of the orthant Nd. Interestingly the results of [8] can be applied
to (weakly) inhomogeneous random walks. Ignatiouk-Robert [30] shows the uniqueness
of the harmonic function in a convex cone, under the assumption that the first exit
time has infinite expectation.

Notations and assumptions on cones and random walks. We now present our
hypotheses, which are of three types: some of them only concern the random walk
(namely (H1), (H2) and (H3)), the assumption (H4) is a restriction on the cone,
while the last ones ((H5) and (H6)) concern the behavior of the random walk in the
cone.

Consider a random walk {S(n)}n>1 on Rd, d > 1, where

S(n) = X(1) + · · ·+X(n)

and {X(n)}n>1 is a family of independent and identically distributed (i.i.d) copies of a
random variable X = (X1, . . . , Xd). The increments are supposed to be lattice and

(H1) E(Xi) = 0,
(H2) cov(Xi, Xj) = δi,j ,
(H3) the random walk is aperiodic.

Notice that (H2) is not a restriction: we may always perform a linear transform so as
to decorrelate the random walk (obviously this linear transform changes the cone in
which the walk is defined).

Denote by Sd−1 the unit sphere of Rd and by Σ an open, connected subset of Sd−1.
Let K be the cone generated by the rays emanating from the origin and passing through
Σ, i.e., Σ = K ∩ Sd−1; see Figure 1 for two examples. By standard analytic results
(see, e.g., [27, Sec. 6.3]), there exists up to a scalar multiplication a unique function u
harmonic on K, i.e., ∆u = 0, such that u∂K = 0, ∂K denoting the boundary of K. The
function u is called the réduite of K, it is homogeneous (or radial) in the sense that
there exists p > 0 such that u(tx) = tpu(x) for all t > 0 and x ∈ K. The homogeneity
exponent p is called the exponent of the cone K.

In this paper, we suppose the following:

(H4) the cone K is convex.
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Figure 1. In dimension 2, Σ is an arc of circle and the cone K is a
wedge of opening β. In dimension 3, any section Σ ⊂ S2 can be taken.
The picture on the right gives the example of a spherical triangle on
the sphere S2, corresponding to the orthant K = N3 (after possible
decorrelation of the coordinates, see (H2))

We shall also assume a moment condition on the increments:

(H5) E(|X|r(p)) <∞ for some r(p) > 2p+ d− 2 + 2(1− p/2)+ and E(|X|2+δ) <∞,
for some δ > 0;

Our final hypothesis deals with the behavior of the random walk in the cone K.
First, we require a form of irreducibility for the random walk, which is an adaptation
to unbounded random walks of the concept of reachability condition from infinity
introduced in [10]. From now on, we fix an origin x0 ∈ Rd and denote by Λ the
lattice generated by the random walk starting at x0.

(H6) There exists a constant R > 0 such that for any z ∈ K ∩ Λ, |z| > R, there
exists a path with positive probability in K ∩ B(z,R) which starts in z + K
and ends at z.

There are several simple situations where the latter condition is satisfied. In particular,
this is the case when P(X ∈ −K) > 0, or when K is additionally C2 (see [49]).

We do not require in this paper the existence of a bigger cone K ′ with ∂K \ {0} ⊂
int(K ′) and such that the réduite u can be extended to a harmonic function on K ′. This
condition, which was necessary in [16], is removed in Appendix B under the moment
assumption (H5).

Exit time, Green functions, harmonic functions and reverse random walk.
Let τx be the exit time from the cone K of the random walk with starting point x ∈ K,
i.e.,

τx = inf{n > 1 : x+ S(n) /∈ K}. (1)

By definition, the Green function is

GK(x, y) = G(x, y) =

∞∑
n=0

P(x+ S(n) = y, τx > n). (2)
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A function h : K −→ R is said to be (discrete) harmonic with respect to K and {S(n)}
if for every x ∈ K and n > 1,

h(x) = E(h(x+ S(n)), τx > n).

Remark that the above identity for n = 1 implies all the other relations for n > 2. In
the sequel a harmonic function with respect to K and {S(n)} will be simply called a
harmonic function.

Denisov and Wachtel proved [16, Thm 1] the existence of a positive harmonic function
V : K −→ R+ defined by

V (x) = lim
n→∞

E(u(x+ S(n)), τx > n). (3)

This harmonic function is of central importance in the present paper, since it will
ultimately be identified with the Martin boundary of the random walk in K.

We denote by {S′(n)}n>1 the reverse random walk, which is the sum of the increments
{X ′(n)}n>1, i.i.d, independent from {X(n)}n>1 and such that X ′(n) is distributed as
−X. In the sequel, every quantity involving S′ will be denoted similarly as the same
quantity involving S, with a prime added at the right.

Structure and sketch of the results. Our paper is organized as follows:

• Section 2: Gaussian estimates for the heat kernel in a cone and coupling
approach of [16]. Some proofs are postponed to Appendix A
• Section 3: Theorem 1 and Corollary 2 giving uniform extensions of the local

limit theorem [16, Thm 6]
• Section 4: Theorem 3 on the Green function asymptotics along any direction

of the cone; Theorem 4 on the Martin boundary reduced to one point
• Appendix B: proof that the hypothesis (H∗) done in [16] may be removed

In the remaining part of the introduction we present all these results in more details.

Local limit theorem at the fluctuation scale. The first result of the paper is a
uniform extension of the local limit theorem [16, Thm 6]. This extension can be made
more or less explicit depending on the proximity with the boundary of the cone with
respect to the fluctuation scale. Let ε > 0 be a small parameter. Following [16] we set

Kn,ε = {x ∈ K : d(x, ∂K) > n1/2−ε}. (4)

Since the typical fluctuations of the random walk at time n are expected to be of order√
n, Kn,ε represents the set of points of the cone whose distance to the boundary at

time n is more than n−ε times the typical fluctuations.
For x ∈ K and n > 1, set tx,ε(n) = inf{m > 0 : x+ S(m) ∈ Kn,ε}. Then tx,ε(n) is a

stopping time with respect to {S(m)}, which gives the first time at which the random
walk started at x is far from the boundary compared to the order of fluctuation

√
n;

we denote then by xε(n) the position x+ S(tx,ε(n)). Define similarly t′x,ε(n) and x′ε(n)
for the reverse random walk.
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Theorem 1. Assume (H1)–(H6). For A > 0 let KA
n,ε denote the set Kn,ε∩B(0, A

√
n).

Then there exists a constant κ which depends only on K such that for any fixed x ∈ K,

P(x+ S(n) = y, τx > n) ∼
n→∞

κV (x)n−p/2−d/2E(u(y′ε/
√
n), τ ′y,ε(n) 6 τ ′y) exp(−|y|2/(2n)),

uniformly on y ∈ K such that |y| 6 A
√
n.

Remark that this result implies the local limit theorem of [16], since for a fixed value
of y, [16, Thm 1] yields

np/2E(u(y′ε(n)/
√
n), τ ′y,ε(n) 6 τ ′y) exp(−|y|2/(2n)) −−−→

n→∞
V ′(y).

Theorem 1 is sharp in the sense that E(u(y′ε(n)/
√
n), τ ′y,ε(n) 6 τ ′y) changes a lot with

n. However, there is a nice simplification when endpoints are located in the domain
Kn,ε.

Corollary 2. Assume (H1)–(H6). Then for fixed A > 0 and x ∈ K,

P(x+ S(n) = y, τx > n) ∼
n→∞

κ0V (x)n−p/2−d/2u(y/
√
n) exp(−|y|2/(2n)),

uniformly on y ∈ Kn,ε with |y| 6 A
√
n.

The proof of Theorem 1 follows the same pattern as the proof of [16, Thm 6]: all
intermediate steps of our proof are improved versions of the corresponding intermediate
steps in the proof of [16, Thm 6]. In [16], these steps mainly consist in a coupling of the
random walk with a standard Brownian motion, and then of estimates of the survival
probability of the random walk started at a given x ∈ K, or of the transition probability
between two fixed points x, y ∈ K, when n goes to infinity. The main novelty in the
proof of Theorem 1 is to allow x and y to change with n. To that purpose we use
Gaussian estimates on the heat kernel on K. We will mainly use the results of [27,
Sec. 5 and Sec. 6.3]. See also [46] for a complementary approach on the subject.

Green function asymptotics along the boundary and Martin boundary. Set

Kε = {y ∈ K : d(y, ∂K) > 2|y|1−2ε},

and for y ∈ K, introduce the stopping time θy = inf{n > 1 : y + S′(n) ∈ Kε}. We
denote also by yε the random element y + S′(θy).

We prove that G(x, y) factorizes asymptotically as a product of two quantities, one
depending only on x and the other one only on y.

Theorem 3. Assume (H1)–(H6). There exists a bounded function F : Kε −→ R+

such that as |y| goes to infinity,

G(x, y) ∼
|y|→∞

V (x)E(F (yε), τ
′
y > θy).

The latter result easily implies the identification of the Martin boundary of S killed
when exiting K.
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Theorem 4. Assume (H1)–(H6). The Martin kernel of S killed on the boundary of K
is reduced to one point, which corresponds to the function V in (3). In particular, there
is up to a scaling constant a unique positive harmonic function killed at the boundary
of K.

The proof of Theorem 3 consists in the splitting of the sum G(x, y) in (2) in two
terms Σ1 + Σ2. The first (resp. second) term is given by the contribution in the large
deviation (resp. asymptotic) regime. The difficulty is to prove that the first term is
dominated by the second one: in order to achieve this, we use a coupling of the random
walk with a Brownian motion, with stronger bounds than the ones initially used in [16].
The drawback is the need of stronger moment assumptions on the increments, which
is the main reason why the assumption (H5) is used instead of the classical moment

condition of [16], namely E(|X|r(p)) < ∞ with r(p) = p if p > 2 and r(p) = 2 + δ for
some δ > 0 if p 6 2.

Applications of our results and construction of harmonic functions. As we
recalled in the introduction, walks in cones are of central importance in enumerative
combinatorics. Given a cone (typically, the orthant Nd) and a set of steps, the question
is to compute (in a exact or asymptotic way) the number of excursions, i.e., the number
of paths of length n going from x to y and confined to the cone. See [11, 9, 18] for
modern contributions

All our results concerning the local probability P(x + S(n) = y, τx > n) (especially
Theorem 1 and Corollary 2) can very easily be turned into combinatorial results, giving
the asymptotic behavior of the number of excursions. This discussion (in particular, the
precise combinatorial traduction of the probabilistic results) is detailed in [16, Sec. 1.5],
so we refer to [16] for any further information.

Our second possible application is a Ney and Spitzer theorem for walks in cones.
More precisely, Ney and Spitzer consider in [38] random walks with non-zero drift in
Zd and prove that the Martin boundary is homeomorphic to the unit sphere Sd−1. In
[31, 29], Ignatiouk-Robert and Loree prove that for random walks in Nd with a drift
whose all entries are non-zero, the Martin boundary is homeomorphic to Sd−1 ∩ Rd+.
However, the question of a general non-zero drift (i.e., with zero entries allowed) is left
opened in [31, 29]. Our results should allow to complete the picture; this will be the
topic of future research.

Theorem 4 shows that there is a unique positive harmonic function, namely the
function V defined in (3). The formula (3) uses the réduite of the cone and the exit
time of the cone, and is thus in some sense explicit. However, the question of finding
an algebraic expression of V in terms of the variable x remains.

Let us mention a few cases where the construction (or better, an explicit expression)
of V is known. For walks with small steps in the quarter plane, generating functions
of harmonic functions are expressed in terms of conformal mappings in [41, 34]. For
multidimensional Weyl chambers, harmonic functions usually admit an expression as
modified Vandermonde determinants [22, 15]. In the half-space and orthant there
is in [31, 29, 19] a construction of harmonic functions à la Ney and Spitzer (with a
correction if the random walk is allowed to jump over the boundary). To conclude,
let us mention product form harmonic functions, which we can compute using less
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dimensional harmonic functions. This is typically the case for Cartesian product of
Markov chains [39]. There is also in [9] an interesting concept of Hadamard walks,
which generalizes the Cartesian product, but for which the harmonic function should
still admit a product form.

Acknowledgments. KR and PT warmly thank Vitali Wachtel for many interesting
discussions, which in particular led us to improve our moment conditions. KR would
like to thank Rodolphe Garbit and Irina Kurkova for various discussions concerning
Martin boundary and the uniqueness problem of harmonic functions.

2. Preliminary results

We give in this section a brief review on the Gaussian estimates for the heat kernel
in a cone and on the coupling approach of [16].

2.1. Heat kernel in a cone and Gaussian estimates. For t > 0, let us denote by
Kt : K ×K −→ R+ the heat kernel on K with Dirichlet boundary conditions at time
t. Namely, Kt is the solution of the equation

∂tKt(x, ·) + ∆Kt(x, ·) = 0, x ∈ K,
lim
t→0

Kt(x, y) = δx, x ∈ K,
Kt(x, y) = 0, x ∈ K, y ∈ ∂K,

where the limit on the second line is understood in the distributional sense. The kernel
Kt is symmetric in x and y.

We denote by kt : K −→ R+ the survival probability of a standard Brownian motion
at time t. If τ bmx denotes the survival time of a standard Brownian motion starting at
x, i.e., τbm

x =∈ {t > 0 : x+Bt 6∈ C}, then

kt(x) = P(τbm
x > t).

It satisfies the formula (see [27, Eq. (5.7)])

kt(x) =

∫
K
Kt(x, y)dy.

The functions Kt and kt are homogeneous in time, in the sense that

kt(x) = k(x/
√
t) and Kt(x, y) = t−d/2K(x/

√
t, y/
√
t)

for x, y ∈ K, t > 0. We simply write K for K1 and k for k1.
We review here some inequalities concerning the heat kernel in a cone and deduce

some useful estimates. Let u denote the réduite of the convex cone K, whose formula
is given by

u(x) = |x|pm
(
x

|x|

)
,

with p > 1 and m : Σ −→ R is a function which is C2 in the interior of Σ and such that
m∂Σ = 0. Note that the gradient of u is locally bounded (see Lemma 26).

The first important Gaussian estimates give upper and lower bounds of kt in terms
of the réduite u of K. For x ∈ K and t > 0, let xt denote an arbitrary point of K such
that |xt − x| 6 t and d(xt, ∂K) > c0t for some constant c0 independent of x and t (we
take the same notation as in [27, Eq. (4.29)]). In all the results involving elements of
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type xt for some x ∈ K and t > 0, the constants given do not depend on the particular
choice of xt. Moreover, since d(xt, ∂K) > c0t by definition, [16, Lem. 19] yields that

u(xt) > ct
p (5)

from some constant c > 0.

Theorem 5 (Thm 5.14 of [27]). There exist positive constants c1 and C1 such that for
all (x, t) ∈ K × R>0,

c1
u(x)

u(x√t)
6 kt(x) 6 C1

u(x)

u(x√t)
.

We will also use an equivalent version of the latter theorem, which relies on the
properties of the harmonic function u. Indeed, by [27, 4.20] there exist constants c, C
such that

cu(xt)
2 6

∫
B(x,t)∩K u(s)2ds

V (x, t)
6 Cu(xt)

2,

where V (x, t) denotes the volume of B(x, t) ∩K. This yields the alternative estimate

c′1

√
V (x,

√
t)∫

B(x,
√
t)∩K u(s)2ds

u(x) 6 kt(x) 6 C ′1

√
V (x,

√
t)∫

B(x,
√
t)∩K u(s)2ds

u(x). (6)

The second estimates concern the heat kernel itself.

Theorem 6 (Thm 5.11 and Thm 5.15 in [27]). There exist c2, c3, C2, C3, C4 positive
constants and 0 < α < 1 such that

c2
kt(x)kt(y)√

V (x,
√
t)V (y,

√
t)

exp(−|x−y|2/(C3t)) 6 Kt(x, y) 6 C2
kt(x)kt(y)√

V (x,
√
t)V (y,

√
t)

exp(−|x−y|2/(c3t))

for all y, y′ ∈ K, and∣∣∣∣Kt(x, y)

u(y)
− Kt(x, y

′)

u(y′)

∣∣∣∣ 6 C4

(
|y − y′|√

t

)α K2t(x, y)

u(y)
,

for all y, y′ ∈ K such that |y − y′| 6
√
t.

Moreover, there exists β,C5 > 0 such that

|∂tKt(x, y)| 6 C5
kt(x)kt(y)

t
√
V (x,

√
t)V (y,

√
t)

(1 + |x− y|2/t)β+1 exp(−|x− y|2/(4t)),

for all t > 0 and x, y ∈ K.

The above result is actually much more general, since it holds for every inner uniform
domain (see [27]). The above estimates can actually be simplified by the following
inequality

inf
z∈K

V (z,
√
t) > ctd/2, (7)

for some constant c independent of t > 0 (see Lemma 28 for a proof of this inequality).
We can deduce from the Gaussian estimates several other estimates on the heat

kernel which are needed to prove Theorem 1 and Theorem 3. All results concerning
these heat kernel estimates are proven in Appendix A.
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2.2. The coupling approach of Denisov and Wachtel. All the results of this
subsection are borrowed from [16], and the interested reader should refer to [16] for the
proofs. The local limit theorems obtained by Denisov and Wachtel in [16, Thm 5 and
Thm 6] rely on a coupling of the random walk with a Brownian motion [16, Lem. 17],
based on an important work of Götze and Zaitsev [26, Thm 4]. Namely, suppose that
E(|X|2+δ) <∞ for some 0 < δ < 1. Then, one can define a random walk with the same
probability distribution as S(n) and a Brownian motion B(t) on the same probability
space such that, for any γ satisfying 0 < γ < δ

2(2+δ) ,

P(sup
u6n
|B(u)− S(buc)| > n1/2−γ) 6 Cn2γ+γδ−δ/2 (8)

for some constant C > 0. This coupling is particularly useful in the case of random
walks in cones because the distribution of the Brownian motion has an explicit
expression in this situation [14, 3].

For example, the value of the kernel Kt(x, ·) satisfies the uniform asymptotic formula
[16, Lem. 18]

Kt(x, y) ∼
|x|6θt

√
t,

|y|6
√
t/θt

χ0t
−d/2−pu(x)u(y)e−|y|

2/(2t), (9)

where θt is any function of t converging to zero as t goes to infinity, and χ0 is a positive
constant. Likewise, the survival probability of the Brownian motion in K satisfies the
uniform asymptotic formula

kt(x) ∼
|x|6θt

√
t
χt−p/2u(x), (10)

with the same θt as before and a positive constant χ.
Thanks to the coupling (8), the above asymptotic results can be transferred [16,

Lem. 20] to the random walk {S(n)} when the random walk starts far enough from the
boundary, compared to the typical scale that we are considering. For example, for ε
small enough and with Kn,ε defined in (4),

P(τx > n) ∼
x∈Kn,ε
|x|6θn

√
n

χu(x)n−p/2. (11)

Let us review how this technique yields exact asymptotics for P(τx > n), independently
of the initial position of x. The matter is then to find the asymptotic formula when x
is to close to the boundary. In order to deal with these issues, Denisov and Wachtel
introduce the stopping time tx,ε(n) = inf{m > 1 : x+S(m) ∈ Kn,ε}. Then, they prove
[16, Lem. 14] that tεx(n) is small on the event that τx > n1−ε. Namely, there exists a
constant C > 0 such that

P(tx,ε > n
1−ε, τx > n

1−ε) 6 exp(−Cnε). (12)

Therefore, on an exit time of order n, the random walk spends most of its time in a
regime which can be controlled by the coupling (8), and one can thus show that

P(τx > n) ∼
t→∞

χn−p/2E(u(xn,ε), tx,ε(n) 6 τx, tx,ε(n) 6 n1−ε),
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where xn,ε = x+ S(tx,ε(n)). The last step of their method is to adapt the definition of
V (x) in (3) to the stopping time tx,ε(n), which yields [16, Lem. 21]

lim
n→∞

E(u(xε), tx,ε(n) 6 τx, tx,ε(n) 6 n1−ε) = V (x), (13)

and the exact asymptotic formula given in [16, Thm 1]:

P(τx > n) ∼
t→∞

χn−p/2V (x). (14)

The local limit theorems are then obtained from the previous results; we do not review
their proof here, since the pattern is roughly the same as the one of the proof of
Theorem 1 in the following section. Let us stress however that these proofs rely on
some important estimates on the local probability of a non-constrained random walk.
Namely [16, Lem. 29], there exist positive constants a and C such that for all u > 0,

lim sup
n→∞

nd/2 sup
|z−x|>u

√
n

P(x+ S(n) = z) 6 C exp(−au2). (15)

In particular [16, Lem. 27], using (15) at u = 0 together with (14) yields the existence
of a positive constant C(x) for each x ∈ K such that

sup
y∈K

P(x+ S(n) = y, τx > n) 6 C(x)n−p/2−d/2. (16)

3. Local limit theorems at the fluctuations scale

This section is dedicated to the proof of Theorem 1, which gives the uniform
asymptotics of the local probability P(x + S(n) = y, τx > n) as n goes to infinity
and y 6 A

√
n (throughout the section, A > 0 is a fixed parameter which is expected

to be large).

Uniform convergence of the exit time and the conditioned distribution far
from the boundary. In this subsection we give asymptotics of the distribution of
(y + S(n), τy > n) uniformly for all

y ∈ KA
n,ε = {z ∈ K : |z| 6 A

√
n, d(z,K) > n1/2−ε}.

Proposition 7. Let B > 0, 0 < s < 1 and D ⊂ Rd a bounded convex domain containing
0 in its interior. Then there exists ε > 0 such that

P(τy > n) ∼
n→∞

kn(y)

and

P(y + S(n) ∈
√
n(x+ tD), τy > n) ∼

n→∞

∫
x+tD

K(y/
√
n, z)dz,

uniformly for all y ∈ KA
n,ε, x ∈ K ∩B(0, B) and s 6 t 6 1.

Let us start by giving an upper bound for u(y1), which will be useful for the proof
of Proposition 7.

Lemma 8. There exists a constant C > 0 such that for all y ∈ K, we can choose y1

with u(y1) 6 u(y) ∨ C(|y| ∨ 1)p−1.
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Proof. Recall that y1 is an arbitrary point such that d(y, y1) 6 1 and d(y1, ∂K) > c0.
Hence, when d(y, ∂K) > c0, we can choose y1 = y, and thus u(y1) = u(y).

Suppose now that d(y, ∂K) 6 c0. If d(y, ∂K) 6 c0, then any choice of y1 must satisfy
d(y1,K) > c0, which yields in particular |y1| > c0. Since y1 ∈ B(y, 1), we have also
d(y1, ∂K) 6 c0 + 1, and thus (52) gives

u(y1) 6 Cd(y1, ∂K)
∣∣y1|p−1 6 C(|y| ∨ c0)p−1

for some constant C. Thus, in any case we can choose y1 such that

u(y1) 6 u(y) ∨ C(|y| ∨ 1)p−1. �

Proof of Proposition 7. The proof follows closely the one of [16, Lem. 20]; since we have
to take care of the extra condition of uniformity, we choose to rewrite it completely.

Fix 0 < γ 6 δ
2(2+δ) and choose x0 ∈ Rd and R0 > 0 such that |x0| = 1, x0 +K ⊂ K

and d(R0x0 +K, ∂K) > 1. Let y ∈ KA
n,ε, and set y± := y ±R0x0n

1/2−γ . Set

An =

{
sup
u6n
|B(u)− S(buc)| 6 n1/2−γ

}
,

where B is the Brownian motion coupled to S in Section 2.2. By (8), P(Acn) 6 n−r,
where r = δ/2− 2γ − γδ. Moreover (cf the proof of [16, Lem. 20]), for n large enough

{τy > n} ∩An ⊂ {τbm
y+ > n} and {τbm

y− > n} ∩An ⊂ {τy > n},

which yields

kn(y−) +O(n−r) 6 P(τy > n) 6 kn(y+) +O(n−r). (17)

In order to conclude the first part of the proposition, we have to show that, uniformly
on y ∈ KA

n,ε, kn(y−) ∼ kn(y+) and n−r = o(kn(y)) as n goes to infinity. On the one
hand, by homogeneity of k and by Proposition 30,

|kn(y)−kn(y±)| = |k(y/
√
n)−k(y±/

√
n)| 6 Cα(1+|y/

√
n|p−1)|y−y±|α/nα/2 6 CAp−1n−γα

for some constant C > 0. On the other hand, by the estimates of Theorem 5 and
Lemma 8, there exists a constant c such that

k(y) > c
u(y)

u1(y)
> c

(
1 ∧ u(y)

(|y| ∨ 1)p−1

)
for y ∈ K. If the cone K is C2, by [16, Lem. 19] there exists a constant C such that
u(y) > C|y|p−1d(y, ∂K). Thus, for y ∈ KA

n,ε and n large enough,

k(y/
√
n) > c

n−ε|y/
√
n|p−1

(|y/
√
n| ∨ 1)p−1

> c′n−ε
(
n−(p−1)ε ∧ 1

)
> c′′n−pε (18)

for some c′′ > 0. If K is convex, by [16, Lem. 19] there exists a constant C such that
u(y) > Cd(y, ∂K)p. Thus, for y ∈ KA

n,ε and n large enough,

k(y/
√
n) > cC

n−pε

C(|y/
√
n| ∨ 1)p−1

> c′n−pε
(

1 ∧
( 1

A

)p−1
)
> c′′n−pε (19)
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for some c′′ > 0. Suppose that ε is such that (γα ∧ r) > pε. Then n−γα = o(kn(y))
and n−r = o(kn(y)), which proves that kn(y) ∼ kn(y±) and n−r = o(kn(y)). Therefore,
(17) yields that uniformly in y ∈ KA

n,ε,

P(τy > n) ∼
n→∞

kn(y).

We now turn to the second asymptotics in Proposition 7. Likewise, for y ∈ KA
n,ε,

x ∈ K ∩B(0, B), s 6 t 6 1 and D ⊂ K, we have by [16, Eq. (46)]∫
√
nD−x,t

Kn(y−, z)dz+O(n−r) 6 P(y+S(n) ∈
√
nDx,t, τy > n) 6

∫
√
nD+

x,t

Kn(y+, z)dz+O(n−r),

(20)
where 

Dx,t = x+ tD,
D+
x,t = {z ∈ K : d(z,Dx,t) 6 2n−γ},

D−x,t = {z ∈ Dx,t : d(z, ∂Dx,t) > 2n−γ}.
By homogeneity, ∫

√
nD±x,t

Kn(y±, z)dz =

∫
D±x,t

K(y±/
√
n, z)dz,

and by Proposition 30,∣∣K(y±/
√
n, z)−K(y/

√
n, z)

∣∣ 6 Cn−γα(1 + |y/
√
n|)p−1 exp(−|y/

√
n− z|2/(2c3)),

which implies∣∣∣∣ ∫
D±x,t

K(y±/
√
n, z)dz−

∫
Dx,t

K(y/
√
n, z)dz

∣∣∣∣
6C(1 +A)p−1n−γα

∫
D+
x,t

exp(−|y/
√
n− z|2/(2c3))dz + 2 Vol(D+

x,t \D
−
x,t).

The definition of D−x,t and D+
x,t yields

Vol(D+
x \D−x ) = Vol({z ∈ K : d(z, ∂Dx,t) < 2n−γ}) 6 Vol({z ∈ Rd : d(z, t∂D) < 2n−γ}).

Hence, applying Steiner formula (Theorem 46 in [36, Chap. 16]) to the convex tD gives

Vol(D+
x,t \D

−
x,t) ∼n→∞ 2n−γtd−1λ(D)

uniformly on all x ∈ K ∩ B(0, B) and s 6 t 6 1, where λ(D) denotes the surface area
of D. Thus, since α 6 1, there exists a constant C ′′ independent of t such that∣∣∣∣∣

∫
D±x,t

K(y±/
√
n, z)dz −

∫
Dx,t

K(y/
√
n, z)dz

∣∣∣∣∣ 6 C ′′n−γα.
Therefore, (20) yields∫

Dx,t

K(y/
√
n, z)dz +O(n−r) +O(n−αγ) 6 P(y + S(n) ∈

√
nDx,t, τy > n)

6
∫
Dx,t

K(y/
√
n, z)dz +O(n−r) +O(n−αγ).
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It remains to shows that as n goes to infinity, n−(r∧αγ) = o(
∫
Dx,t

K(y/
√
n, z)dz). By

Theorem 6 and Lemma 7, we have

K(y/
√
n, z) >c2

k(y/
√
n)k(z)√

V (y/
√
n, 1)V (z, 1)

exp(−|y/
√
n− z|2/C3)

>ck(y/
√
n)k(z) exp(−|y/

√
n− z|2/C3)

for y, z ∈ K, s 6 t 6 1 and some constant c > 0. Hence, if we setM := sup{|z| : z ∈ D},
then Dx,t ⊂ B(0, B + tM) and thus∫

Dx,t

K(y/
√
n, z)dz > Ck(y/

√
n) exp(−(B + tM)2/C3)

∫
Dx,t

k(z)dz.

Recalling from (18) and (19) that k(z/
√
n) > c′′n−pε for z ∈ Kn,ε, we get∫

Dx,t

K(y/
√
n, z)dz > c′n−2pε Vol

(
Dx,t ∩

1√
n
Kn,ε

)
(21)

for some constant c′ > 0. Since 0 is in the interior of D, there exists u > 0 such that
B(0, u) ⊂ D. Hence, by Lemma 7,

Vol(Dx,t ∩K) > V (x, tu) > c(tu)d > c(su)d

for some constant c independent of x ∈ B(0, B) ∩K. Since

Vol
(

(K ∩B(0, B +M)) \ 1√
n
Kn,ε

)
goes to 0 as n goes to infinity, there exists δ > 0 such that

Vol
(
Dx,t ∩

1√
n
Kn,ε

)
> Vol(Dx,t ∩K)−Vol

(
(K ∩B(0, B +M)) \ 1√

n
Kn,ε

)
> δ

for all x ∈ B(0, B) ∩K, s 6 t 6 1 and n large enough. The latter inequality together
with (21) gives ∫

Dx,t

K(y/
√
n, z)dz > c′δn−2pε

for n large enough, y ∈ KA
n,ε, x ∈ B(0, B)∩K and s 6 t 6 1. Choosing ε < (r∧αγ)/(2p)

thus yields that n−(r∧αγ) = o(
∫
Dx,t

K(y/
√
n, z)dz). For these values of ε, we have

P(y + S(n) ∈
√
nDx,t, τy > n) ∼

∫
Dx,t

K(y/
√
n, z)dz

uniformly on y, x and t satisfying the conditions of the statement. �

The latter proposition can be turned into a uniform version of the convergence in
distribution.
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Corollary 9. Let B, η > 0. Then

sup
x∈KA

n,ε

y∈B(0,B)∩K

sup
f∈Lip(B(y,r))
η6r6d(y,∂K)

1

‖f‖∞

∣∣∣∣∣E (f((x+ S(n))/
√
n
)
|τx > n

)

− 1

k(x/
√
n)

∫
B(y,r)

K(x/
√
n, z)f(z)dz

∣∣∣∣∣ −−−→n→∞
0,

where Lip(B(y, r)) denotes the set of all Lipschitz functions on B(y, r) with Lipschitz
constant equal to 1.

Proof. For p > 1 and D ⊂ K ∩ B(0, 2B), denote by Fp(D) the set of functions with
support in D which are constant on each set

Rp~k
:=

{
x ∈ Rd :

ki
p
6 xi <

ki + 1

p

}
for ~k ∈ Zd. Note that if f ∈ Fp(D), f|R~k can be non zero only if Rp~k

⊂ D.

For D ⊂ K and f ∈ Lip(D), define for each p > 1 the function

fp :=
∑

~k∈Zd,Rp
~k
⊂D

f((1/2, . . . , 1/2) + ~k)1Rp
~k

and the set D(p) =
⋃

~k∈Zd
Rp
~k
⊂D

Rp~k
. Then, fp ∈ Fp(D) and by the Lipschitz continuity of f ,

‖fp − f|D(p)‖∞ 6
√
d

2p
.

Let 0 < δ < η and let p0 be such that
√
d

2p0
6 δ and Vol(B(0, r) \ B(0, r −

√
d

2p0
)) 6 δ

for all η 6 r 6 B. Since each set Rp0~k
is a translation of the convex set Rp0(0,...,0) and

there are finitely many Rp0~k
included in K, Proposition 7 yields that

1

‖f‖∞
E
(
f
(
(x+ S(n))/

√
n
)
|τx > n

)
∼

n→∞

1

‖f‖∞k(x/
√
n)

∫
K
K(x/

√
n, z)f(z)dz

uniformly on all x ∈ KA
n,ε and f ∈ Fp0(D), with D ⊂ K ∩B(0, 2B). Hence, there exists

n0 > 1 such that for n > n0,

1

‖f‖∞

∣∣∣∣E (f((x+ S(n))/
√
n
)
|τx > n

)
− 1

k(x/
√
n)

∫
K
K(x/

√
n, z)f(z)dz

∣∣∣∣ 6 δ (22)

for all x ∈ KA
n,ε and f ∈ Fp0(D), with D ⊂ K ∩ B(0, 2B). Set s = η/B, and by

Proposition 7 let n1 > 1 be such that for n > n1,

1− δ
k(x/

√
n)

∫
y+tB(0,B)

K(x/
√
n, z)dz 6 P(x+ S(n) ∈

√
n(y + tB(0, B))|τx > n)

6
1 + δ

k(x/
√
n)

∫
y+tB(0,B)

K(x/
√
n, z)dz, (23)

for all x ∈ Kn,ε, y ∈ K ∩B(0, B) and s 6 t 6 1.
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Suppose from now that n > (n0∨n1), x ∈ KA
n,ε, y ∈ K∩B(0, B) and f ∈ Lip(B(y, r)),

with η 6 r 6 d(y, ∂K). Suppose without loss of generality that ‖f‖∞ = 1. Then,∣∣∣∣E(f((x+ S(n))/
√
n
)
|τx > n

)
− E

(
fp0
(
(x+ S(n))/

√
n
)
|τx > n

) ∣∣∣∣
6‖f|B(y,r)(p0) − fp0‖∞P(x+ S(n) ∈ B(y, r)(p0)|τx > n)

+ ‖f‖∞P(x+ S(n) ∈ B(y, r) \B(y, r)(p0)|τx > n)

6δ + P(x+ S(n) ∈ B(y, r) \B(y, r)(p0)|τx > n),

where we have used on the last inequality that ‖f|B(y,r)(p0) − fp0‖∞ 6 δ by the choice

of p0, P(x+ S(n) ∈ B(y, r)(p)|τx > n) 6 1 and ‖f‖∞ = 1. By the choice of n > n1 and

the fact that B(y, r) \B(y, r)(p0) ⊂ B(y, r) \B(y, r − δ), (23) yields

P(x+ S(n) ∈B(y, r) \B(y, r)(p0)|τx > n)

6
1 + δ

k(x/
√
n)

∫
B(y,r)

K(x/
√
n, z)dz − 1− δ

k(x/
√
n)

∫
B(y,r−δ)

K(x/
√
n, z)dz

6
2δ

k(x/
√
n)

∫
B(y,r−δ)

K(x/
√
n, z)dz +

1 + δ

k(x/
√
n)

∫
B(y,r)\B(y,r−δ)

K(x/
√
n, z)dz

62δ + (1 + δ)C Vol(B(y, r) \B(y, r − δ)),

for some constant C independent of x coming from Theorem 6. Since there exists K > 0
such that Vol(B(y, r) \ B(y, r − δ)) 6 Kδ for r 6 B, there exists C ′ > 0 independent
of x, y, r, f and n such that∣∣∣∣E(f((x+ S(n))/

√
n
)
|τx > n

)
− E

(
fp0
(
(x+ S(n))/

√
n
)
|τx > n

) ∣∣∣∣ 6 C ′δ. (24)

Since n > n0 and fp0 ∈ Fp0(B(y, r)), (22) together with (24) imply that∣∣∣∣E(f((x+ S(n))/
√
n
)
|τx > n

)
− 1

k(x/
√
n)

∫
K
K(x/

√
n, z)fp0(z)dz

∣∣∣∣ 6 (C ′ + 1)δ. (25)

Finally, for the same reasons as in the proof of (24),∣∣∣∣ 1

k(x/
√
n)

∫
K
K(x/

√
n, z)fp0(z)dz− 1

k(x/
√
n)

∫
K
K(x/

√
n, z)f(z)dz

∣∣∣∣
6‖f|B(y,r)(p) − fp‖∞ + C Vol(B(y, r) \B(y, r − δ))
6C ′δ. (26)

Combining (25) and (26) yields that for n > n0 ∨ n1,

sup
x∈KA

n,ε

y∈B(0,B)∩K

sup
f∈Lip(B(y,r))
η6r6d(y,∂K)

1

‖f‖∞

∣∣∣∣∣E (f((x+ S(n))/
√
n
)
|τx > n

)

− 1

k(x/
√
n)

∫
B(y,r)

K(x/
√
n, z)f(z)dz

∣∣∣∣∣ 6 (1 + 2C ′)δ. �
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As another consequence of Proposition 7, we can give an estimate on the scaling of
exit times.

Corollary 10. Let 0 < s < 1.There exists a constant C > 0 such that

lim sup
n→∞

sup
x∈KA

n,ε
m>sn

P(τx > m)

P(τx > n)
6 C.

Proof. Let 0 < η > 1. By Proposition 7 there exists n0 > 1 such that for n > n0 and
x ∈ KA

n,ε,

(1− η)k(x/
√
n) 6 P(τx > n) 6 (1 + η)k(x/

√
n).

Then, for n > n0/s and m > sn, we have

P(τx > m)

P(τx > n)
6

1 + η

1− η
k(x/

√
m)

k(x/
√
n)
.

Since
√
m√
n
>
√
s, Lemma 29 gives a constant C > 0 independent of m > sn such that

k(x/
√
m)

k(x/
√
n)
6 C for all x ∈ K. Therefore,

lim sup
n→∞

sup
x∈KA

n,ε
m>sn

P(τx > m)

P(τx > n)
6

1 + η

1− η
C. �

Local limit theorems far from the boundary. The goal of this subsection is to
improve the local limit theorem [16, Thm 6] in order to get a more uniform result, which
will correspond to Theorem 1 restricted to x ∈ KA

n,ε. As in the previous subsection,
the pattern follows closely the one of [16, Thm 6] and is divided into two steps:

• The first step, given by the following proposition, is a more general local limit
theorem analogue to [16, Thm 5]:

Proposition 11. Uniformly on x ∈ KA
n,ε,

sup
y∈K

∣∣∣∣nd/2P(x+ S(n) = y|τx > n)− K(x/
√
n, y/

√
n)

k(x/
√
n)

∣∣∣∣→ 0.

• The second step is a derivation of the more specific local limit theorem analogue
to [16, Thm 6]:

Proposition 12. Let x ∈ K. Then there exists κ > 0 such that uniformly on y ∈ KA
n,ε,

P(x+ S(n) = y, τx > n) ∼ κV (x)n−d/2−pu(y) exp

(
−|y|

2

2n

)
.

Let us thus first begin with the general local limit theorem given in Proposition 11. The
proof follows the one of [16, Thm 5], adding simultaneously the heat kernel estimates;
since the proof of [16, Thm 5] is already quite technical, we choose to divide the proof
of Proposition 11 into three lemmas. As in [16], let us divide K in three regions which
depend on the choice of x ∈ KA

n,ε and two positive parameters M,η > 0 (the dependence
does not appear in the notations):

• K(1) := {y ∈ K, |y − x| > M
√
n},



MARTIN BOUNDARY OF RANDOM WALKS IN CONVEX CONES 17

• K(2) := {y ∈ K, |y − x| 6M
√
n, d(y, ∂K) 6 2η

√
n}, and

• K(3) := {y ∈ K, |y − x| 6M
√
n, d(y, ∂K) > 2η

√
n}.

We estimate then the probability P(x + S(n) = y|τx > n) for y belonging to each one
of these three regions.

Lemma 13. One has

lim
M→∞

lim sup
n→∞

sup
x∈KA

n,ε, y∈K(1)

nd/2P(x+ S(n) = y|τx > n) = 0.

Lemma 14. For each M > 0,

lim
η→0

lim sup
n→∞

sup
x∈KA

n,ε, y∈K(2)

nd/2P(x+ S(n) = y|τx > n) = 0.

Lemma 15. For each M > 0,

lim
η→0

lim sup
n→∞

sup
x∈KA

n,ε, y∈K(3)

∣∣∣∣nd/2P(x+ S(n) = y|τx > n)− K(x/
√
n, y/

√
n)

k(x/
√
n)

∣∣∣∣ = 0.

The rest of the subsection is devoted to the proofs of Propositions 11 and 12, as well
as of Lemmas 13, 14 and 15.

Proof of Lemma 13. Set m = bn/2c. Then, for x ∈ K,

P(x+ S(n) = y|τx > n) =
P
(
x+ S(n) = y, τx > n, |S(m)| > (M/2)

√
n
)

P(τx > n)

+
P
(
x+ S(n) = y, τx > n, |S(m)| 6 (M/2)

√
n
)

P(τx > n)
. (27)

Considering the position of the random walk at time m yields that

P
(
x+ S(n) = y, τx > n, |S(m)| > (M/2)

√
n
)

=
∑

|z−x|>(M/2)
√
n

P(x+ S(m) = z, τx > m)P(z + S(n−m) = y, τz > n−m).

Hence, the first term in the right hand-side of (27) is bounded by

P(x+ S(m) ∈ B(x, (M/2)
√
n)c, τx > m)

P(τx > n)
sup

|z−x|>(M/2)
√
n

P(z + S(n−m) = y)

6 Cn−d/2
P(x+ S(m) ∈ B(x, (M/2)

√
n)c, τx > m)

P(τx > n)
(28)

for some constant C > 0, where we have used (15) with the parameter u = 0 in the
second line. By Proposition 7,

P(x+ S(m) ∈ B(x, (M/2)
√
n)c, τx > m)

P(τx > n)
∼

∫
|z−x/

√
m|>M/

√
2K(x/

√
m, z)dz

k(x/
√
n)
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as n goes to infinity, uniformly on x ∈ KA
n,ε. By Theorem 6 and Lemma 7, there exists

a constant C ′ > 0 such that∫
|z−x/

√
n|>M/

√
2K(x/

√
m, z)dz

k(x/
√
n)

6
C ′k(x/

√
m)

k(x/
√
n)

∫
|z−x/

√
m|>M/

√
2

exp(−|z−x/
√
m|2/c3)dz.

By Lemma 29, there exists a constant C√
2
−1 such that k(

√
2x/
√
n)

k(x/
√
n)
6 C−1√

2
−1 for x ∈ K,

which yields

sup
x∈KA

n,ε, y∈K(1)

P(x+ S(m) ∈ B(x, (M/2)
√
n)c, τx > m)

P(τx > n)
6 C ′′P(|Bc3/2| > M/

√
2)

for some constant C ′′ > 0, where B is a d-dimensional Brownian motion starting at 0.
Hence, combining the latter inequality with (28) gives

lim sup
n→+∞

sup
x∈KA

n,ε, y∈K(1)

nd/2
P(x+ S(n) = y, τx > n, |S(m)| > (M/2)

√
n)

P(τx > n)

6 CP(|Bc3/2| > M/
√

2),

which yields

lim
M→∞

lim sup
n→+∞

sup
x∈KA

n,ε, y∈K(1)

nd/2
P(x+ S(n) = y, τx > n, |S(m)| > (M/2)

√
n)

P(τx > n)
= 0.

(29)
Likewise, we have

P(x+ S(n) = y, τx > n, |S(m)| 6 (M/2)
√
n)

P(τx > n)
6

P(τx > m)

P(τx > n)
sup

|z−y|>(M/2)
√
n

P(z+S(n−m) = y).

By Corollary 10, lim supn→∞ supx∈KA
n,ε

P(τx>m)
P(τx>n) 6 C for some constant C > 0, and by

(15), there exist positive constants C ′ and a such that

sup
|z−y|>(M/2)

√
n

md/2P(z + S(m) = y) 6 C ′ exp(−aM2/2).

Therefore, since n/m ∼ 2 as n goes to infinity,

lim sup
n→∞

sup
x∈KA

n,ε, y∈K(1)

nd/2
P(x+ Sn = y, τx > n, |S(m)| 6 (M/2)

√
n)

P(τx > n)
6 C2d/2C ′ exp(−aM2/2),

which yields

lim
M→∞

lim sup
n→∞

sup
x∈KA

n,ε, y∈K(1)

nd/2
P(x+ Sn = y, τx > n, |S(m)| 6 (M/2)

√
n)

P(τx > n)
= 0. (30)

Combining (29) and (30) yields the statement of the lemma. �
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Proof of Lemma 14. Let y ∈ K(2) and set m = bn/4c. We recall that S′ denote the
reverse random walk −S, and τ ′ the corresponding survival time. Then for x, y ∈ K,

P(x+S(n) = y|τx > n)

=
1

P(τx > n)

∑
z∈K

P(x+ S(2m) = z, τx > 2m)P(z + S(n− 2m) = y, τz > n− 2m)

=
∑

z1,z2∈K

1

P(τx > n)
P(x+ S(m) = z1, τx > m)×

P(z1 + S(m) = z2, τz1 > m)P(y + S′(n− 2m) = z2, τ
′
y > n− 2m).

By (15) with u = 0, there exists a constant C independent of z2 such that

P(z1 + S(m) = z2, τz1 > m) 6 P(z1 + S(m) = z2) 6 Cm−d/2 6 C(n/4)−d/2.

Hence, setting C ′ = C/(2−d) yields

P(x+ S(n) = y|τx > n)

6 C ′n−d/2
∑
z1∈K

1

P(τx > n)
P(x+ S(m) = z1, τx > m)

∑
z2∈K

P(y + S′(n− 2m) = z2, τ
′
y > n− 2m)

6 C ′n−d/2
P(τx > m)

P(τx > n)
P(τ ′y > n− 2m).

By Corollary 10, lim supn>0 supx∈KA
n,ε

P(τx>m)
P(τx>n) 6 C

′′ for some constant C ′′, and by [16,

Eq. (78)], there exists a function g : R>0 → R>0 converging to zero at zero such that

lim sup
n→∞

sup
y∈K(2)

P(τ ′y > n−m) 6 g(η).

Hence,

lim
η→0

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(2)

P(τx > m)

P(τx > n)
P(τ ′y > n−m) = 0,

which implies that

lim
η→0

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(2)

nd/2P(x+ S(n) = y|τx > n) = 0. �

Proof of Lemma 15. Set m = bη3nc and for y ∈ K(3), set

K1(y) = {z ∈ K : |z − y| < η
√
n}.
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Then, we can write

nd/2P(x+ S(n) = y, τx > n)

=
nd/2

P(τx > n)

( ∑
z∈K\K1(y)

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz > m)

+
∑

z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y)

−
∑

z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz 6 m)

)

:=
nd/2

P(τx > n)
(Σ1 + Σ2 − Σ3).

By (15) with u = η−1/2, there exist constants C, a independent of y such that for

z 6∈ K1(y) (i.e., for z ∈ Rd such that |z − y| > η
√
n > η−1/2√m),

P(z + S(m) = y, τz > m) 6 P(z + S(m) = y) 6 Cm−d/2 exp(−a/η).

Thus
nd/2Σ1

P(τx > n)
6 C

P(τx > n−m)

P(τx > n)
η−3d/2 exp(−a/η).

By Corollary 10, lim supn→∞ supx∈KA
n,ε

P(τx>n−m)
P(τx>n) 6 C ′ for some constant C ′ > 0, which

implies

lim
η→0

lim sup
n→∞

sup
x∈KA

n,ε

C
P(τx > n−m)

P(τx > n)
η−3d/2 exp(−a/η) 6 C ′C lim

η→0
η−3d/2 exp(−a/η) = 0.

Hence,

lim
η→0

lim sup
n→∞

sup
y∈K(3), x∈KA

n,ε

nd/2

P(τx > n)
Σ1 = 0. (31)

Likewise, by [16, Eq. (76)], there exist constants a,C such that for y ∈ K(3) and
z ∈ K1(y)

P(x+ S(m) = y, τz 6 m) 6 Cm−d/2 exp(−a/η).

Therefore,
nd/2

P(τx > n)
Σ2 6 C

P(τx > n−m)

P(τx > n)
η−3d/2 exp(−a/η).

Applying the same method as for Σ1 yields

lim
η→0

lim sup
n→∞

sup
y∈K(3), x∈KA

n,ε

nd/2

P(τx > n)
Σ3 = 0. (32)

We now estimate the term Σ2, which will eventually give the main contribution to
the probability nd/2P(x + S(n) = y, τx > n). By the regular local limit theorem [42,
Prop. 7.9],

sup
z∈K

∣∣∣(2πm)d/2P(z + S(m) = y)− exp(−|y − z|2/(2m))
∣∣∣ −−−−→
m→∞

0.
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Hence,

1

P(τx > n)

∑
z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y)

=
1

P(τx > n)

∑
z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)(2πm)−d/2 exp
(
− |y − z|2/(2m)

)
+

P(τx > n−m)

P(τx > n)
o(m−d/2), (33)

where o(m−d/2) is uniform on all x ∈ KA
n,ε and y ∈ K(3). On the one hand, using

Corollary 10 yields

lim sup
n→∞

sup
x∈KA

n,ε, y∈K(3)

nd/2o(m−d/2)
P(τx > n−m)

P(τx > n)
= 0. (34)

For n large enough,

η 6 η

√
n√

n−m
6

η√
1− η3/2

,

and the function

fn := u 7→
( n

2πm

)d/2
exp

(
−(n−m)|u|2

2m

)
is uniformly bounded by (2πη3)−d/2 and Lipschitz with uniform Lipschitz constant

(2πη3)−d/2η−3. Applying Corollary 9 to the set of function (fn)n>1 and the set of disks

of radius
(
η
√
n√

n−m

)
n>1

yields

sup
x∈KA

n,ε

y∈K(3)

∣∣∣∣∣E(1B(y/
√
n−m,η n

n−m)fn
(
(x+ S(n−m))/

√
n−m

)
|τx > n−m

)

− 1

k(x/
√
n−m)

∫
B
(
y/
√
n−m,η

√
n√

n−m

)K(x/
√
n−m, z)fn(z)dz

∣∣∣∣∣ −−−→n→∞
0.

Hence, expanding the expectation in the latter equation, doing the change of variable

u↔
√
n−m√
n
u and using the scaling property of Kt give

sup
x∈KA

n,ε

y∈K(3)

∣∣∣∣∣ nd/2

P(τx > n)

∑
z∈K1(y)

P(x+ S(n−m) = z, τx > n−m)(2πm)−d/2 exp
(
− |y − z|2/(2m)

)

− nd

k(x/
√
n−m)(2π(n−m)m)d/2

∫
|u|6η

Kn−m
n

(
x√
n
,
y√
n

+ u

)
exp

(
−n|u|

2

2m

)
du

∣∣∣∣∣ −−−→n→∞
0.

(35)
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As n goes to infinity, n2

m(n−m) converges to 1
η3(1−η3)

and n−m
n to 1−η3. Lemma 32 yields

that

1

k(x/
√
n−m)

Kn−m
n

(
x√
n
,
y√
n

+ u

)
exp

(
−n|u|

2

2m

)
∼

n→∞

1

k1−η3(x/
√
n)
K1−η3

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
uniformly on x ∈ KA

n,ε, y ∈ K(3) and u ∈ B(0, η). Hence, using (34) with (35) in (33)
yields

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(3)

∣∣∣∣∣ nd/2

P(τx > n)
Σ2

− (2πη3)−d/2

(1− η3)d/2k1−η3(x/
√
n)

∫
|u|6η

K1−η3

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
du

∣∣∣∣∣ = 0.

Let us show an asymptotic formula for the second term of the latter equation as η goes
to zero. Let θ > 0. By Lemma 32, there exists η0 > 0 such that for η 6 η0,

(1− θ)
k(x/

√
n)
K

(
x√
n
,
y√
n

+ u

)
6

1

k1−η3(x/
√
n)
K1−η3

(
x√
n
,
y√
n

+ u

)
6

(1 + θ)

k(x/
√
n)
K

(
x√
n
,
y√
n

+ u

)
for all x ∈ KA

n,ε, y ∈ K(3), u ∈ B(0, η) and n > 1. Moreover, it comes from Remark 31

that 1
k(x)K(x, ·) is Hölder continuous on K ∩ B(0,M + η) with exponent α and some

constant C independent of x ∈ K∩B(0, A), and thus uniformly continuous with uniform
continuous bound independent of x ∈ K ∩ B(0, A). Hence, since the measure with
density

1|u|6η(2πη
3)−d/2 exp

(
−|u|2

2η3

)
du

converges weakly to a Dirac at 0 as η goes to 0, we have

(1− η3)(2πη3)−d/2

k(x/
√
n)

∫
|u|6η

K

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
du ∼

η→0

1

k(x/
√
n)
K

(
x√
n
,
y√
n

)
uniformly on all n > 1, x ∈ KA

n,ε and y ∈ K(3). Hence, there exists 0 < η1 < η0 such
that for η < η1,

(2πη3)−d/2

(1− η3)k1−η3(x/
√
n)

∫
|u|6η

K1−η3

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
du

6(1 + θ)
(2πη3)−d/2

k(x/
√
n)

∫
|u|6η

K

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
du

6(1 + θ)2 1

k(x/
√
n)
K

(
x√
n
,
y√
n

)
,
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and similarly,

(2πη3)−d/2

(1− η3)k1−η3(x/
√
n)

∫
|u|6η

K1−η3

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
du >

(1− θ)2

k(x/
√
n)
K

(
x√
n
,
y√
n

)
for all n > 1, x ∈ KA

n,ε and y ∈ K(3). Thus,

lim
η→0

sup
n>1, x∈KA

n,ε

y∈K(3)

∣∣∣∣∣ (2πη3)−d/2

(1− η3)k1−η3(x/
√
n)

∫
|u|6η

K1−η3

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
du

− 1

k(x/
√
n)
K

(
x√
n
,
y√
n

) ∣∣∣∣∣ = 0.

This yields finally

lim
η→0

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(3)

∣∣∣∣∣ nd/2

P(τx > n)
Σ2 −

1

k(x/
√
n)
K

(
x√
n
,
y√
n

)∣∣∣∣∣
6 lim
η→0

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(3)

∣∣∣∣∣ nd/2

P(τx > n)
Σ2

− (2πη3)−d/2

(1− η3)d/2k1−η3(x/
√
n)

∫
|u|6η

K1−η3

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
du

∣∣∣∣∣
+ lim
η→0

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(3)

∣∣∣∣∣ (2πη3)−d/2

(1− η3)d/2k1−η3(x/
√
n)

∫
|u|6η

K1−η3

(
x√
n
,
y√
n

+ u

)
exp

(
−|u|

2

2η3

)
du

− 1

k(x/
√
n)
K

(
x√
n
,
y√
n

) ∣∣∣∣∣ = 0.

Combining the latter equation with (31) and (32), we get

lim
η→0

lim sup
n→∞

sup
y∈K(3), x∈KA

n,ε

∣∣∣∣nd/2P(x+ S(n) = y|τx > n)− K (x/
√
n, y/

√
n)

k(x/
√
n)

∣∣∣∣ = 0. �

With the help of Lemmas 13, 14 and 15, we can achieve the proof of Proposition 11.

Proof of Proposition 11. Note first that by Theorem 6, we have

sup
y∈K

|y−x|>M

K(x, y)

k(x)
−−−−→
M→∞

0. (36)

By Theorem 5, k(y) 6 C1
u(y)
u(y1) for y ∈ K, and by (5) there exists a constant c > 0 such

u(y1) > c for y ∈ K. Thus, there exists a constant C such that k(y) 6 Cu(y) for all
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y ∈ K. Hence, by (52), there exists a constant C ′ such that

k(y) 6 C ′d(y, ∂K)|y|p−1,

which yields that for each M > 0

sup
y∈K, |y|6A+M
d(y,∂K)<η

k(y) −−−→
η→0

0.

Therefore, Theorem 6 implies that for each M > 0,

sup
y∈K, |x−y|6M
d(y,∂K)<η

K(x, y)

k(x)
−−−→
η→0

0, (37)

uniformly in x ∈ K, |x| 6 A. Let δ > 0. By Lemma 13 and (36), there exists M > 0
such that

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(1)

nd/2P(x+ S(n) = y|τx > n) 6 δ

and

sup
x∈KA

n,ε

y∈K(1)

K(x/
√
n, y/

√
n)

k(x/
√
n)

6 δ,

where we recall that K(1) = {y ∈ K : |y − x| > M
√
n}. Hence, for this value of M ,

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(1)

∣∣∣∣nd/2P(x+ S(n) = y|τx > n)− K(x/
√
n, y/

√
n)

k(x/
√
n)

∣∣∣∣ 6 2δ.

Then, by Lemma 14, (37) and Lemma 15, there exists η > 0 such that defining K(2)

and K(3) with this value of η and the value of M chosen above gives

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(2)

nd/2P(x+ S(n) = y|τx > n) 6 δ, sup
x∈KA

n,ε

y∈K(2)

K(x/
√
n, y/

√
n)

k(x/
√
n)

6 δ,

and

lim sup
n→∞

sup
x∈KA

n,ε

y∈K(3)

∣∣∣∣nd/2P(x+ S(n) = y|τx > n)− K(x/
√
n, y/

√
n)

k(x/
√
n)

∣∣∣∣ 6 δ.
Hence, for these values of M and η, there exists n0 such that for n > n0∣∣∣∣nd/2P(x+ S(n) = y|τx > n)− K(x/

√
n, y/

√
n)

k(x/
√
n)

∣∣∣∣ 6 3δ

for all x ∈ KA
n,ε and y ∈ K(1) ∪K(2) ∪K(3) = K. �

We now turn to the proof of Proposition 12, which gives the exact asymptotics of
the probability P(x + S(n) = y, τx > n), for y varying with n. Proposition 12 is an
extension of [16, Thm 6].

We notice that the hypothesis of Proposition 12 stating that y has to remain in KA
n,ε

will be removed in the next subsection, where the boundary case will be considered.
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Proof of Proposition 12. Set m = bn/2c. Classically,

P(x+S(n) = y, τx > n) =
∑
z∈K

P(x+S(n−m) = z, τx > n−m)P(y+S′(m) = z, τ ′y > m).

Let B > 0. On the one hand, by (16) and Proposition 7, there exists a constant C(x)
such that

Σ1(B,n) :=
∑

z∈K, |z|>(A+B)
√
n

P(x+ S(n−m) = z, τx > n−m)P(y + S′(m) = z, τ ′y > m)

6C(x)2p/2+d/2n−p/2−d/2P(y + S′(m) > (B +A)
√
n, τ ′y > m)

6C
∫
|w|>A+B/

√
2
K(
√

2y/
√
n,w)dw

for some constant C > 0. Hence, by Theorem 6,

lim
B→∞

lim
n→∞

sup
y∈KA

n,ε

np/2+d/2

k(y/
√
n)

Σ1(B,n) = 0. (38)

On the other hand, by applying Proposition 11 to S′(m) and then [16, Thm 5] to
S(n−m), we obtain that∑

z∈K, |z|6(A+B)
√
n

P(x+ S(n−m) = z, τx > n−m)P(y + S′(m) = z, τ ′y > m)

=κ2p+d/2V (x)n−p/2−d
∑

z∈K, |z|6(A+B)
√
n

u(
√

2z/
√
n)K(

√
2y/
√
n,
√

2z/
√
n) exp

(
−|z|

2

n

)
+ o(Rn)

:=Σ2(B,n) + o(Rn),

with κ being a constant coming from [16, Thm 5] and

Rn = P(τx > n−m)n−d/2k(y/
√
m) + (n−m)−p/2−d/2k(y/

√
m).

Using (14), we get

o(Rn) = o(n−p/2−d/2k(y/
√
m)). (39)

Moreover, as n goes to infinity, by the Hölder continuity of K(z, ·) on K ∩B(0, A+B),
we have the uniform convergence of the Riemann integral

sup
y∈KA

n,ε

∣∣∣∣∣n−d/2 ∑
z∈K, |z|6(A+B)

√
n

u(
√

2z/
√
n)K(

√
2y/
√
n,
√

2z/
√
n) exp

(
−|z|

2

n

)
−

2p/2
∫
|w|6A+B

u(w)K(
√

2y/
√
n,
√

2w)e−|w|
2
dw

∣∣∣∣∣ −−−→n→∞
0,

which yields

Σ2(B,n) ∼n→∞ κ2p+dV (x)n−p/2−d/2
∫
|w|6A+B

u(w)K(
√

2y/
√
n,
√

2w)e−|w|
2
dw (40)

uniformly on y ∈ KA
n,ε. In particular, by Theorem 6, there exist C > 0 and n0 > 1 such

that
Σ2(B,n) > Cn−p/2−d/2k(

√
2y/
√
n)
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for n > n0 and y ∈ KA
n,ε. Thus, combining (38), (39) and (40) yields

P(x+S(n) = y, τx > n) ∼n→∞ κ2p+d/2V (x)n−p/2−d/2
∫
w∈K

u(w)K(
√

2y/
√
n,
√

2w)e−|w|
2
dw.

It remains to compute the above integral. Note first that by homogeneity of K,

K(
√

2y/
√
n,
√

2w) = K1/2(y/
√
n,w).

Moreover, by [16, Lem. 18],

Kt(x,w) ∼
x→0

|w|6|x|−1/2

κ′u(x)u(w) exp

(
−|w|

2

2t

)
t−p−d/2 (41)

for some constant κ′. Hence,∫
w∈K

u(w)K1/2(y/
√
n,w)e−|w|

2
dw = lim

x→0

1

κ′u(x)2p+d/2

∫
w∈K

K1/2(x,w)K1/2(y/
√
n,w)dw.

Since K is symmetric and is a Markov kernel,∫
w∈K

u(w)K1/2(y/
√
n,w)e−|w|

2
dw = lim

x→0

1

κ′u(x)2p+d/2
K(x, y/

√
n).

Finally, using (41) again in the latter equality yields∫
w∈K

u(w)K1/2(y/
√
n,w)e−|w|

2
dw = u(y/

√
n)2−p−d/2 exp

(
−|y|

2

2n

)
and

P(x+ S(n) = y, τx > n) ∼
n→∞

κV (x)n−p/2−d/2u(y/
√
n) exp

(
−|y|

2

2n

)
. �

Local limit theorem close to the boundary. We generalize the previous results
to the case of an arbitrary element of K. We first give a useful generalization of [16,
Lem. 24] under stronger moment conditions on the increments.

Lemma 16. Let 0 6 r 6 p and A > 0, and suppose that the increments X admit
moments of order q > r + 2. Set

S(x, n)+ = sup
16`6n1−ε

{|S(`)| : τx > `}.

Then, for each s < (q − r)/2, s′ < (q − 2)/2 and β ∈ ((p/2 − 1) ∧ 0, p/2), there exists
C > 0 such that

E
(

(S(x, n)+)r, S(x, n)+ > n1/2−ε/8
)
6 Cn−sn(1−(p/2−β))(1 + |x|)p−2β

for all x ∈ K. In particular, uniformly on x ∈ K, |x| 6 A
√
n,

E
(

(S(x, n)+)r, S(x, n)+ > n1/2−ε/8
)
6 Cn−s+1.

The proof of this lemma follows closely the one of [16, Lem. 24], and we invite the
reader to refer to this reference for the proof of several facts used in the following
argument.
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Proof. Let `n 6 n1−ε be the time where S(x, n)+ is reached by the random walk. As

in the proof of [16, Lem. 24], we set µn = min{j > 1 : |Xj | > n1/2−ε/4} and write

E
(

(S(x, n)+)r, S(x, n)+ > n1/2−ε/8
)

=E
(

(S(x, n)+)r, S(x, n)+ > n1/2−ε/8, µn > `n

)
+
n1−ε∑
j=1

E
(

(S(x, n)+)r, S(x, n)+ > n1/2−ε/8, j 6 `n, µn = j
)

=E1 + E2.

Using Fuk-Nagaev inequalities [25] as in [16, Lem. 24], the term E1 is bounded by

exp(−Cnε′) for some positive constants C and ε′ independent of x ∈ K. Then, we
bound the second term as

E2 6 C
n1−ε∑
j=1

E(|S(`n)−X(j)|r, τx > j, `n > j, µn = j)

+ E(|X(j)|r, τx > j − 1, µn = j) + CE(|S(j − 1)|r, τx > j, µn = j).

Using Doob and Rosenthal inequalities as in [16, Lem. 24], we get

n1−ε∑
j=1

E(|S(`n)−X(j)|r, τx > j, `n > j), µn = j)

6Cnr(1−ε)/2
n1−ε∑
j=1

P(τx > j)P(|X(j)| > n1/2−ε/4)

6Cnr(1−ε)/2n−q(1/2−ε/4)
n1−ε∑
j=1

P(τx > j).

Then, by Markov’s inequality,

n1−ε∑
j=1

E(|X(j)|r, τx > j − 1, µn = j) 6E(|X|r, |X| > n1/2−ε/4)

n1−ε∑
j=1

P(τx > j − 1)

6Cn−(q−r)(1/2−ε/4)
n1−ε∑
j=1

P(τx > j − 1).

Using again Fuk-Nagaev inequalities as in [16, Lemma 24] gives

E(|x+ S(j − 1)|r, τx > j, µn = j) 6 Cn−(q−r)(1/2−ε/8)
n1−ε∑
j=1

P(τx > j − 1).

Hence, we have

E2 6 Cn
−(q−r)/2+g(ε)

n1−ε∑
j=1

P(τx > j − 1),
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with g : R→ R linear. Then, we have

E2 6Cn
−(q−r)/2+g(ε)+(p/2−β)(1−ε)

n1−ε∑
j=1

P(τx > j − 1)

6Cn−(q−r)/2+g(ε)+(1−(p/2−β))
n1−ε∑
j=1

j−1+(p/2−β)P(τx > j − 1)

6Cn−(q−r)/2+g(ε)+(1−(p/2−β))E(τp/2−βx ) 6 Cn−(q−r)/2+g(ε)+(1−(p/2−β))(1 + |x|)p−2β,

where we have used [35, Thm 3.1] in the last inequality. This yields the first part of the
lemma for ε small enough. Moreover, for any s < (q − r − 2)/2 we have by choosing ε

E2 6 Cn
−s+1,

for all x ∈ K, |x| 6 A
√
n. �

We now prove an estimate on the survival probability for the reverse random walk
S′; recall that τ ′z denotes the exit time of S′.

Lemma 17. There exists c > 0 such that for all z ∈ K large enough all n > 1,

P(τ ′z > n) > cn−p/2.

Proof. Let H be a hyperplane such that H ∩K ⊂ ∂K; such an H exists thanks to the
convexity assumption on K. Let v be the unit vector orthogonal to H and pointing
toward K. For z ∈ K, let us denote by dv(z) the vertical distance from z to ∂K parallel
to v: namely,

dv(z) = sup{λ > 0 : z − λv ∈ K}.
Since z ∈ K one has dv(z) > 0 and for t > 0, dv(tv) = t. Moreover, if y ∈ z +K, then
y − dv(z)v ∈ z − dv(z)v +K ⊂ K, which yields

dv(y) > dv(z) + sup{λ > 0 : y − λv ∈ z +K}. (42)

Since the random walk satisfies (H6), there exists R > 0 such that for z ∈ Λ ∩ K
with |z| > R, there exists a path in B(z,R) ∩K with positive probability with respect
to S′ which starts at z and ends in z + K. Let t > R be such that tv ∈ z0 + K for
some z0 ∈ K ∩ Λ, |z0| > R. Let Γ′ be a path in B(z0, R) ∩K from z0 to an endpoint
z0 + x ∈ z0 + K with P(Γ′) > 0 with respect to S′. By convexity of K and the fact
that tv ∈ z0 +K, the translation of Γ′ by tv − z0 yields a path Γ in B(tv, R)∩K from
tv to an endpoint tv + x ∈ tv +K with P(Γ) > 0 with respect to S′. Concatenating n
times Γ gives a path in K from tv to tv + nx with positive probability with respect to
S′. Let us set

γ :=
d(x, ∂K)

|x|+ |tv|
.

Then for everyM > 0 there exists n > 1 such that P(|tv+S(n)| >M,d(tv+S(n), ∂K) >
γ|tv + S(n)|. Hence by [16, Thm 1], V ′(tv) > 0 and there exists c > 0 such that

P
(
τ ′tv > n

)
> cn−p/2 (43)

for all n > 1.



MARTIN BOUNDARY OF RANDOM WALKS IN CONVEX CONES 29

When C is a cone distinct from K containing x, denote by τ ′x,C the exit time for

the random walk x + S′ in C. Suppose that z ∈ K is such that dv(z) > t. Since K is
convex, z − tv ∈ K and thus z − tv +K ⊂ K. Then (43) yields

P(τ ′z > n) > P
(
τ ′z,z−tv+K > n

)
> cn−p/2 (44)

for all n > 1, since by translation P(τ ′z,z−tv+K > n) = P(τ ′tv,K > n).

Let us show that there exists ρ > 0 such that for all z ∈ K ∩ Λ with |z| > R there
exists n > 1 with P(dv(z + S(n)) > t, τz > n) > ρ. Let z ∈ K ∩Λ with |z| > R, and let
Γ1 be a path in B(z,R) ∩K from z to z + K with positive probability for S′, whose
existence is given by (H6). Let n0 be the maximum number of points of the lattice
inside B(z, 2R) for z ∈ Rd and set

η := min
γ⊂B(0,2R), l(γ)6n0

P(γ)>0

P(γ),

l(γ) denoting the length of γ, where the probability is understood with respect to S′.
Moreover, set

δ := min{dv(z) : z ∈ Λ ∩K, |z| 6 2R}.
Since there are at most n0 points of the lattice in B(z,R) we may assume l(Γ1) 6 n0,
which yields P(Γ1) > η. Let z1 be the endpoint of Γ1. Since z1 ∈ z+K ∩Λ and z ∈ Λ,
then

sup{λ > 0 : z1 − λv ∈ z +K} > δ.
Hence, (42) yields

dv(z1) > dv(z) + δ.

Repeating the operation for z1, z2, . . . at most b tδ c times yields ultimately a path Γ in

K from z to z′ ∈ K of length m such that dv(z
′) > t and P(Γ) > ηb

t
δ
c. Then, the

Markov property and (44) yield

P(τz > n) > ηb
t
δ
cP(τz′ > n−m) > ηb

t
δ
cc(n−m)−p/2 > c′n−p/2,

for some constant c′ independent of z. �

We are now able to prove Theorem 1. Recall that t′y,ε(n) := inf{m > 0 : y+ S(m) ∈
Kn,ε} denotes the first time that y + S(n) reaches Kn,ε, and y′ε(n) := y + S(t′y,ε(n)).

Proof of Theorem 1. Let y ∈ K. Then, since P(x+ S(n) = y, τx > n) = P(y + S′(n) =
x, τ ′y > n),

P(x+ S(n) = y, τx > n) = P(y + S′(n) = x, t′y,ε(n) < n1−ε, τ ′y > n)

+P(y + S′(n) = x, t′y,ε(n) < n1−ε, |S′(t′y,ε(n))| > n1/2−ε/8, τ ′y > n)

+P(y + S′(n) = x, t′y,ε(n) > n1−ε, |S′(t′y,ε(n))| 6 n1/2−ε/8, τ ′y > n).

By (12),

P(y + S′(n) = x, t′y,ε(n) > n1−ε, τ ′y > n) 6 P(t′y,ε(n) 6 n1−ε, τ ′y > n1−ε) 6 exp(−Cnε)
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for some constant C > 0. Moreover, by Lemma 16 and the moment condition on the
increments, we get

P(t′y,ε(n) 6 n1−ε, |S′(t′y,ε(n))| > n1/2−ε/8, τ ′y > n)

6 P
(

sup
16`6n1−ε

(|S′(`)|, τx > `) > n1/2−ε/8
)
6 Cn−(r−2)/2 (45)

for some r > 2p+ d− 2 + 2(1− p/2)+ > p+ 2. Thus, (16) yields

P(y + S′(n) = x, t′y,ε(n) > n1−ε, |S(t′y,ε(n))| > n1/2−ε/8, τ ′y > n)

6P(t′y,ε(n) 6 n1−ε, |S′(t′y,ε(n))| > n1/2−ε/8, τ ′y > n) sup
z∈K

n−n1−ε6m6n

P(x+ S(m) = z, τx > m)

6C ′n−(r−2)−p/2−d/2

for some constant C ′ > 0. By Proposition 12 and the strong Markov property of S′,

P(y + S′(n) = x, t′y,ε(n) < n1−ε, |S(t′y,ε(n))| 6 n1/2−ε/8, τ ′y > n)

=E(P(x+ S(n− t′y,ε(n)) = y′ε(n), τx > n− t′y,ε(n)),

t′y,ε(n) < n1−ε, |S(t′y,ε(n))| 6 n1/2−ε/8, τ ′y > t′y,ε(n))

∼κV (x)n−p−d/2E(u(y′ε(n)) exp(−|y|2/(2n)), t′y,ε(n) 6 n1−ε,

|S(t′y,ε(n))| 6 n1/2−ε/8, τ ′y > t′y,ε(n))

uniformly on y ∈ K, y 6 A
√
n. Using the definition of tεy(n) and the lower bound

u(z) > cd(z, ∂K)p for some constant c > 0, we get

u(y′ε(n)) exp(−|y|2/(2n)) > cnp(1/2−ε)

on {t′y,ε(n) 6 n1−ε, τ ′y > t′y,ε(n), |S(t′y,ε(n))| 6 n1/2−ε/8}. Hence, there exists c′ such
that for n large enough,

P(y + S′(n) = x, tεy(n) < n1−ε, τ ′y > n)

> c′n−p/2−pε−d/2P(tεy(n) 6 n1−ε, τ ′y > tεy(n), |S(t′y,ε(n))| 6 n1/2−ε/8).

By (12) and (45),

P(tεy 6 n
1−ε, τ ′y > tεy,|S(t′y,ε(n))| 6 n1/2−ε/8)

>P(tεy 6 n
1−ε, τ ′y > n1−ε)− Cn−(r−1)/2

>P(τ ′y > n1−ε)− (exp(−Cnε)− n−(r−1)/2).

Since r > p+ 2 by (H5), Lemma 17 yields that

P(y+S′(n) = x, tεy < n1−ε, τ ′y > n, |S(t′y,ε(n))| 6 n1/2−ε/8) > cn−p(1/2−ε)−d/2−p/2 (46)

for some constant c′′ independent of y ∈ K, |y| 6 A
√
n. Therefore, since r > p+ 2, we

have

p(1/2− ε) + d/2 + p/2 < p/2 + d/2 + (r − 2)/2,
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and thus

P(y + S′(n) = x, t′y,ε(n) 6 n1−ε, |S(t′y,ε(n))| > n1/2−ε/8, τ ′y > n)

= o
(
P(y + S′(n) = x, tεy(n) < n1−ε, τ ′y > n)

)
.

Hence, finally

P(x+ S(n) = y, τx > n) ∼

κV (x)n−p−d/2E(u(y′ε(n)) exp(−|y|2/(2n)), t′y,ε(n) 6 n1−ε, τ ′y > t′y,ε(n), |S(t′y,ε(n))| 6 n1/2−ε/8).

We have again

E(u(y′ε(n)) exp(−|y′ε(n)|2/(2n)), t′y,ε(n) > n1−ε, τ ′y > t′y,ε(n))

6 np/2 sup
y∈K

∣∣u(y) exp(−|y|2/2)
∣∣P(τ εy > n

1−ε, τ ′y > tεy)

6 Cnp/2 exp(−Cnε)

for some constant C > 0, and

E(u(y′ε(n)) exp(−|y′ε(n)|2/(2n)), t′y,ε(n) 6 n1−ε, τ ′y > t′y,ε(n), |S(t′y,ε(n))| > n1/2−ε/8)

6 np/2 sup
y∈K

∣∣u(y) exp(−|y|2/2)
∣∣P(τ εy 6 n

1−ε, τ ′y > tεy, |S(t′y,ε(n))| > n1/2−ε/8)

6 Cn(p+2−r)/2

for some constant C > 0, with r > p+ 2. Hence, by (46),

P(x+ S(n) = y, τx > n) ∼ κV (x)n−p−d/2E(u(y′ε(n)) exp(−|y|2/(2n)), τ ′y > t′y,ε(n)). �

4. Identification of the Martin boundary

In this section, we identify the Martin boundary for K convex and d > 2, with the
Denisov and Wachtel harmonic function (3).

Estimate of the local probability in middle and large range. In this subsection
we give a bound on the probability P(x + S(n) = y, τx > n) when |x − y| is of order

(n log(n))1/2.
We will use the coupling of Zaitsev and Götze (see [26, Thm 4] and [16, Lem. 17])

for random walks having increments satisfying to (H5). Suppose that X has moments
of order r(p) with r(p) > 2p+ d− 2 + 2(1− p/2)+ and r(p) > 2 + δ. By [23, Thm 4],
there exists a constant K such that for γ 6 1/2− 1/r(p),

P
(

sup
06s6n

|S(bkc)−B(k)) > n1/2−γ
)
6 Kn−r, (47)

with r = r(p)(1/2 − γ) − 1. Since we are only considering the case d > 2, we have
r > p/2 for γ small enough (which we assume from now on).

Lemma 18. There exist κ, ε, C > 0 such that for all n large enough and A
√
n 6 t 6

n1/2+κ,

P(|S(n)| > t, τy > n) 6 C
(
u(y/
√
n) exp(−t2/(2c3n)) ∨ n−r

)
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and for y ∈ Kn,ε such that |y| 6 n1/2+κ,

P(τy > n) 6 Cu(y/
√
n).

Proof. Using the same construction as in the proof of Proposition 7 and using the same
notations (see (20)), we get

P(|S(n)| > t, τy > n) 6
∫
|z−y/

√
n|>t/

√
n−2n−γ

K(y+/
√
n, z)dz +O(n−r).

Using the upper bound of Theorem 6 yields∫
|z−y/

√
n|>t/

√
n−2n−γ

K(y+/
√
n, z)dz

6 Ck(y+/
√
n)

∫
|z−y/

√
n|>t/

√
n−2n−γ

C2 exp(−|z − y+/
√
n|2/(2c3))dz. (48)

By the local Hölder continuity of k given by Lemma 30,

k(y+/
√
n) 6 k(y/

√
n) + Cα

(
|y|/
√
n
)p−1

n−αγ 6 u(y/
√
n) + n(p−1)κn−αγ .

Since u(y/
√
n) > d(y/

√
n,K)p > n−pε, choosing κ such that αγ − (p − 1)κ > 0 and ε

such that ε 6 (αγ − (p− 1)κ)/p yields that for some C ′ > 0 and y ∈ Knκ
n,ε,

k(y+/
√
n) 6 C ′u(y/

√
n).

Hence, after integrating in (48) over the angular coordinate, we get that for some C ′′,∫
|z−y/

√
n|>t/

√
n−2n−γ

K(y+/
√
n, z)dz 6 C ′′u(y/

√
n)

∫
z>t/

√
n−(2+R)n−γ

exp(−|z|2/(2c3))dz.

The latter inequality for t = 0 gives the second inequality of the statement. For the first
statement, notice that there exists C > 0 such that

∫∞
x exp(−z2)dz 6 C exp(−x2) and

so that choosing κ < γ yields exp((t/
√
n− (2 + R)n−γ)2/(2c3)) ∼ exp((t/

√
n)2/(2c3))

for t 6 n1/2+κ. Finally we get that for some constant C ′′′ > 0,∫
|z−y/

√
n|>t/

√
n−2n−γ

K(y+/
√
n, z)dz 6 C ′′′u(y/

√
n) exp((t/

√
n)2/(2c3)). �

We can extend the latter result by relaxing the condition y ∈ Kn,ε.

Lemma 19. Let x ∈ K. There exists C > 0 such that

P(|S(n)| > t, τx > n) 6 C
(
V (x)n−p/2 exp(−t2/(2nc3)) ∨ n−r

)
for all t 6 n1/2+κ, where κ is defined in Lemma 18.
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Proof. Let tx,ε(n) be the stopping time inf{n > 1 : x + S(n) ∈ Kn,ε} and xε(n) =
x+ S(tx,ε(n)). Then, applying [16, Section 4] to Lemma 18, we get

P(|S(n)| > t,τx > n) 6 C

(
n−p/2 exp(−t2/(2c3n))

E
(
u(xε(n)), τx > tx,ε(n), tx,ε(n) 6 n1−ε) ∨ n−r)

+ n−p/2O
(
E
(
|xε(n)|p, |xε(n)| > θn

√
n, τx > tx,ε(n), tx,ε(n) 6 n1−ε))

+O(exp(−Cnε′),

where θn = n−ε/8 and ε′ is small enough. Using Lemma 16 with r = p and q = r(p)
gives

n−p/2E
(
|xε(n)|p, |xε(n)| > θn

√
n, τx > tx,ε(n), tx,ε(n) 6 n1−ε) = O(n−(2p+d−4)/2−δ),

since 2p+ d− 2 + 2δ < r(p). Since (2p+ d− 4)/2 > r, Lemma 18 yields

n−p/2E
(
|xε(n)|p, |xε(n)| > θn

√
n, τx > tx,ε(n), tx,ε(n) 6 n1−ε) = o(n−r)

for t 6 n1/2+κ. Since, by [16, Lem. 21],

lim
n→∞

E
(
u(xε(n)), τx > tx,ε(n), tx,ε(n) 6 n1−ε) = V (x),

the result is deduced. �

Lemma 20. There exist C and n0 such that for n > n0, all y ∈ Kn,ε such that

|y| 6 n1/2+κ and all z ∈ K,

P(y + S(n) = z, τy > n) 6 Cn−d/2u(y/
√
n).

Proof. Let m := bn/2c. Then

P(y + S(n) = z, τy > n) =
∑
z′∈K

P(y + S(m) = z′, τy > m)P(z′ + S(n−m) = z, τz′ > n−m)

6 CP(τy > m)m−d/2,

where we have used (15) with u = 0 to bound P(z′+S(m) = z, τz′ > n−m). Thus, by

Lemma 18, there exists n0 such that for n > n0 and y ∈ Kn,ε with |y| 6 n1/2+κ,

P(y + S(n) = z, τy > n) 6 Cn−d/2u(y/
√
n). �

Putting the previous results together yields the following estimate on the local
probability at middle range.

Proposition 21. Let x ∈ K. There exists C such that

P(x+ S(n) = y, τx > n) 6 CV (x)u(y)n−p/2−d/2
(
n−p/2 exp(−|x− y|2/(c3n)) ∨ n−r

)
for all y ∈ Kn,ε such that |y − x| 6 n1/2+κ.



34 K. RASCHEL AND P. TARRAGO

Proof. Let m := bn/2c. Then we have

P(x+ S(n) = y, τx > n)

=
∑

z∈K, |z−x|>|y−x|/2

P(x+ S(m) = z, τx > m)P(y + S′(n−m) = y, τ ′y > n−m)

+
∑

z∈K, |z−x|<|y−x|/2

P(x+ S(m) = z, τx > m)P(y + S′(n−m) = y, τ ′y > n−m)

=M1 +M2.

By Lemma 20 and Lemma 19, the first sum is bounded by

M1 6Cu(y/
√
n)n−d/2P(|S(n)| > |x− y|/2, τx > n)

6CV (x)u(y/
√
n)n−d/2

(
n−p/2 exp(−|y − x|2/(c3n)) ∨ n−r

)
,

where we have used in the last inequality the hypothesis |y− x|/2 6 n1/2+κ in order to
apply Lemma 19. Similarly, by (16) and Lemma 18, the second sum is bounded by

M2 6CV (x)n−d/2−p/2P(|S′(m)| > |x− y|/2, τ ′y > n)

6CV (x)n−d/2−p/2
(
u(y/
√
n) exp(−|y − x|2/(c3n)) ∨ n−r

)
6CV (x)u(y)n−d/2−p/2

(
n−p/2 exp(−|y − x|2/(c3n)) ∨ n−r

)
,

where we have used in the last inequality the hypothesis that |y − x|/2 6 n1/2+κ in
order to apply Lemma 18, as well as the fact that u(y) > 1 for y ∈ Kn,ε and n large
enough. The result is then deduced by summing the bounds on M1 and M2. �

Uniqueness of the harmonic function. The Green function (see (2)) is defined for
x, y ∈ K by

G(x, y) =
∞∑
n=0

P(x+ S(n) = y, τx > n).

We begin this subsection by giving an estimate of the truncated Green function

|y−x|2−ν∑
n=0

P(x+ S(n) = y, τx > n),

for ν > 0.

Proposition 22. For ν > 0, there exist positive constants C, and a such that

|y−x|2−ν∑
n=0

P(x+ S(n) = y, τx > n) 6 C|y − x|−a

with a > 2p+ d− 2 if d > 2 and a > 0 if d = 1.

Proof. We follow the proof of [16, Lem. 24] and introduce the stopping time

µ = inf{i > 1 : |Xi| > |y − x|1−ν/α},
with α large to be chosen later. Let n 6 |y − x|2−ν . Then

P(x+S(n) = y, τx > n) = P(x+S(n) = y, τx > n, µ > n)+P(x+S(n) = y, τx > n, µ 6 n).
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On the one hand, using Fuk-Nagaev inequalities [25] as in [16, Corollary 23] yields

P(x+ S(n) = y, τx > n, µ > n) 6P(|Sn| > |x− y|/2, sup
k6n
|Xk| 6 |y − x|1−ν/α)

6

(
n
√
de

|x− y|2−ν/α/2

)|x−y|ν/α/(2√d)

6

(
|x− y|2−ν

√
de

|x− y|2−ν/α/2

)2|x−y|ν/α/(2
√
d)

6 exp(−C|x− y|ν/α)

for y large enough. On the other hand, recall that since X admits moments of order
r(p) > 2p+ d− 2 + 2(1− p/2)+,

P(x+ S(n) = y, τx > n, µ 6 n)

6
n∑
k=1

P(τx > k − 1, |Xk| > |y − x|1−ν/α, y + S′(n− k) = x+ S(k))

6 CV (x)
E(|X|r(p))

|y − x|(1−ν/α)r(p)

n∑
k=1

k−p/2(n+ 1− k)−d/2,

where we have used the Markov property of the random walk, applied (15) with u = 0
to S′(n− k) and then (16) in the last inequality. Hence, we get

|y−x|2−ν∑
n=0

P(x+ S(n) = y, τx > n) 6 |y − x|2−ν exp(−C|x− y|ν/α)

+CV (x)
E(|X|r(p))

|y − x|(1−ν/α)r(p)

|y−x|2−ν∑
n=1

n∑
k=1

k−p/2(n+ 1− k)−d/2

6 C ′|y − x|−(1−ν/α)r(p)

|y−x|2−ν∑
k=1

k−p/2
|y−x|2−ν∑
k=1

k−d/2.

We now divide the proof according to the value of d. If d = 1, then p = 1 and q = 1
and

|y−x|2−ν∑
k=1

k−p/2
|y−x|2−ν∑
k=1

k−d/2 ∼ |y − x|2−ν ,

which yields, since r(p) > 2 + δ for some δ > 0,

|y−x|2−ν∑
n=0

P(x+S(n) = y, τx > n) 6 C|y−x|−(1−ν/α)(2+δ)|y−x|2−ν 6 C|y−x|2−ν−(2+δ)(1−ν/α).

Choosing α > 2 yields

|y−x|2−ν∑
n=0

P(x+ S(n) = y, τx > n) 6 C|y − x|−δ−(1−2/α)ν .
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If now d > 2, then

|y−x|2−ν∑
k=1

k−p/2
|y−x|2−ν∑
k=1

k−d/2 ∼ C log |y − x|1d=2+1p=2
(
|y − x|2−ν

)(1−p/2)∧0

for some constant C > 0. Hence,

|y−x|2−ν∑
n=0

P(x+S(n) = y, τx > n) 6 C|y−x|−(1−ν/α)r(p)+(2−ν)((1−p/2)∧0) log |y−x|1d=2+1p=2 .

Since r(p) > 2p+ d− 2 + 2(1− p/2)+, for α large enough we have

|y−x|2−ν∑
n=0

P(x+ S(n) = y, τx > n) = o(|y − x|−2p−d+2). �

For N > 1, set

GN (x, y) =
∞∑
n=N

P(x+ S(n) = y, τx > n).

Proposition 23. Set ρ = 1 − 2ε and let x ∈ K. Then there exist R > 0 and ν > 0
such that uniformly on y such that |y| → ∞ and d(y, ∂K) > R|y|ρ, we have for δ < ν

G|y−x|2−δ(x, y) ∼ V (x)F (y),

where F (y) is a function independent of x. Moreover, there exists a constant C such
that

F (y) > Cu(y)y−2p−d+2,

and F is bounded on its domain of definition.

Proof. Let A > 1. Let η > 0 and following Proposition 12 let nη be such that∣∣∣∣ P(x+ S(n) = y, τx > n)

κV (x)n−p/2−d/2u(y/
√
n) exp(−|y|2/(2n))

− 1

∣∣∣∣ 6 η (49)

for n > nη and y ∈ KA
n,ε.

Set R = Aρ and let y ∈ K be such that d(y, ∂K) > R|y|ρ. Then for n 6 A2|y|2 we
have

d(y, ∂K) > R|y|ρ > RA−ρnρ/2 > n1/2−ε,

and thus y ∈ Kn,ε. Let ν > 0 be such that (2−ν)(1/2+κ) > 1 (with κ as in Lemma 18).

Suppose that δ < ν, and set N1 = |y − x|2−δ. Let N2 be the first integer n such that

exp(−|y − x|2/(2c3n)) > n−r+p/2. Recall that r = r(p)(1/2− γ)− 1 and that r > p/2
for d > 2, so that N2 exists. For d > 2 and y large enough, N2 > N1, since

exp

(
−|y − x|2/

(
2c3

|y − x|2

K log |y − x|

))
= |y − x|−K/(2c3) 6

(
|y − x|2

K log |x− y|

)−r+p/2
for K large enough.
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Set P (n) := P(x+ S(n) = y, τx > n). Then, for δ < ν

G|y−x|2−δ(x, y)

=

N2∑
n=N1

P (n) +

A−2b|y−x|2c∑
n=N2+1

P (n) +

A2b|y−x|2c∑
n=A−2b|y−x|2c+1

P (n) +

∞∑
n=A2b|y−x|2c+1

P (n)

= Σ1 + Σ2 + Σ3 + Σ4.

In the above decomposition of G(x, y), Σ1 and Σ2 are expected to be negligible terms,
whereas Σ3 and Σ4 should give the main contributions.

Study of Σ2. First, by the choice of N2 and Proposition 21,

Σ2 6 CV (x)u(y)

A−2b|y−x|2c∑
n=N2+1

n−p−d/2 exp(−|y − x|2/(2c3n)).

Set gk,B(t) = t−k exp(−B/t) with B, k > 0. Then

g′k,B(t) = (Bt−k−2 − kt−k−1) exp(−B/t),

and thus gk,B is increasing on [0, B/k]. Applying the latter property to k = p + d/2
and B = |y − x|2/(2c3) yields that if A2 > 2c3(p + d/2) (which we assume from now
on), then

Σ2 6 C(b|y − x|2/A2c)−p−d/2+1u(y) exp(−A2/(2c3)).

Study of Σ1. By the choice ν and δ < ν, |y − x| 6 n1/2+κ for n > |y − x|2−δ and y
large enough. Applying Proposition 21 to Σ1 yields then

Σ1 6CV (x)u(y)
|x− y|2

A2

(
|y − x|2−ν

)−r−p/2−d/2
6C

V (x)u(y)

A2
|y − x|−(2r+p+d−2)+f(ν),

where f : R → R is linear. Since r > p/2 for d > 2 (see the definition of r in (47)),
choosing ν small enough yields

Σ1 6 C
V (x)u(y)

A2
|y − x|−(2p+d−2+u),

with u = 2r − p > 0, for y large enough.
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Study of Σ3. By (49) we have

Σ3 >(1− η)

bA2|y|2c∑
n=b|y−x|2/A2c+1

κV (x)n−p−d/2u(y) exp(−|y|2/(2n))

>(1− η)

bA2|y|2c∑
n=b|y−x|2c+1

κV (x)n−p−d/2u(y) exp(−|y|2/(2n))

>cu(y) exp(−|y|2/(2|y − x|2))

bA2|y|2c∑
n=b|y−x|2c+1

n−p−d/2

>cu(y) exp(−|y|2/(2|y − x|2))(b|y − x|2c−p−d/2+1 − bA2|y|2 + 1c−p−d/2+1),

for some c > 0 and y large enough. Hence,

Σ1 + Σ2

Σ3
6 C

u(y)|y − x|−2p−d+2−u + (b|y − x|2/A2c)−p−d/2+1u(y) exp(−A2/(2c3))

u(y) exp(−|y|2/(2|y − x|2))(b|y − x|2c−p−d/2+1 − bA2|y|2 + 1c−p−d/2+1)

−−−−→
|y|→∞

C exp(−A2/(2c3))
A2p+d−2

(1− η)(1−A−2p−d+2)
,

where C is independent of A. Since the right-hand side above goes to 0 as A goes to
infinity, we can choose A such that Σ1+Σ2

Σ3
6 η for |y| large enough.

Conclusion. Hence

G(x, y) ∼ Σ3 + Σ4

uniformly on y going to infinity. Set

F (y) = κ
∑

n>b|y−x|2/A2c

n−p−d/2E
(
u
(
y′ε(n)

)
exp(−|y|2/(2n))

)
, t′y,ε < τ ′y).

Then by Theorem 1, for |y| large enough satisfying the hypotheses of the statement,∣∣∣∣ G(x, y)

V (x)F (y)
− 1

∣∣∣∣ 6 η.
Moreover, the bound on Σ3 above proves that for y large enough satisfying the
conditions of the statement,

F (y) > Cu(y)|y|−2p−d+2.

For the upper bound, note that by definition of F (y), we have for d > 2

F (y) 6 κ
∞∑
n=1

n−p/2−d/2 sup
z∈K

u(z) exp(−|z|2/2),

which gives a general upper bound for F . �

We can improve the above asymptotic behavior by removing the condition on the
distance to the boundary of K. Set

Kε := {y ∈ K : d(y, ∂K) > R|y|ρ},
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where ρ and R are given in Proposition 23. For y ∈ K, let θy be the stopping time
inf{n > 0 : y + S(n) ∈ Kε}. Remark that θy = ty,ε(|y|2−2ε). Hence, noting that ty,ε(n)
is increasing in n, we get with [16, Lem. 14]

P(θy > n1−ε, τy > n) 6 P(ty,ε(n) > n1−ε, τy > n) 6 C exp(n−ε) (50)

for n > |y|2−2ε. Applying Lemma 16 to the stopping time θy and the moment condition

E(|X|r(p)) <∞ yields that there exists C > 0 and α > 0 such that

P
(
|S′θy | > |y − x|

1−ε/α, θy 6 |y − x|2−ε, τy > |y − x|2−ε
)
6 C|y − x|−s (51)

with s > (2− 2ε)(2p+ d− 4 + 2(1− p/2)+)/2.

Theorem 24. As |y| goes to infinity,

G(x, y) ∼ V (x)E(F (y + Sθy), τy > θy).

Proof. Split the Green function as

G(x, y) =

|y−x|2−2ε−1∑
n=1

P(y + S′(n) = x, τ ′y > n)

+
∞∑

n=|y−x|2−2ε

P(y + S′(n) = x, τ ′y > n, θy > |y − x|2−2ε)

+

∞∑
n=|y−x|2−2ε

P(y + S′(n) = x, τ ′y > n, θy 6 |y − x|2−3ε, |S′θy | > |y − x|
1−ε/α)

+

∞∑
n=|y−x|2−2ε

P(y + S′(n) = x, τ ′y > n, θy 6 |y − x|2−3ε ∧ τ ′y, |S′θy | 6 |y − x|
1−ε/α)

:=T1 + T2 + T3 + T4,

and we shall study successively the terms T1, T2, T3 and T4.

Study of T1 and T2. By Proposition 21, T1 6 C|y − x|−a for some a > 2p + d − 2.
Next,

T2 =
∑

n>|y−x|2−2ε

P(x+ S(n) = y, τx > n, θy > n
1−ε)

+
∑

n>|y−x|2−2ε

P(x+ S(n) = y, τx > n, |y − x|2−3ε 6 θy 6 n
1−ε).



40 K. RASCHEL AND P. TARRAGO

By (50), the first term is bounded by
∑

n>|y−x|2−2ε C exp(−nε) 6 C exp(−|y− x|ε′) for

some C > 0 and some 0 < ε′ < ε. Moreover, by (16) and (50),∑
n>|y−x|2−2ε

P(x+ S(n) = y, τx > n, |y − x|2−3ε 6 θy 6 n
1−ε)

=
∑

n>|y−x|2−2ε

E(x+ S(n− θy) = y + S′(θy), τx > n− θy, τ ′y > θy, |y − x|2−3ε 6 θy 6 n
1−ε)

6
∑

n>|y−x|2−2ε

C(n− n1−ε)−d/2−p/2P(θy > |y − x|2−3ε, τy > |y − x|2−3ε)

6 C exp(−|y − x|ε(2−3ε)),

so that, finally,

T2 6 C exp(−|y − x|ε′),
for some constant C > 0 and 0 < ε′ < ε.

Study of T3. By (16), we have for n > |x− y|2−2ε and y large enough

P(y + S′(n) = x, τ ′y > n, θy 6 |y − x|2−3ε, |S′θy | > |y − x|
1−ε/α)

6E((n− θy)−p/2−d/2, τ ′y > θy, θy 6 |y − x|2−3ε, |S′θy | > |y − x|
1−ε/α)

6Cn−p/2−d/2P(τ ′y > θy, θy 6 |y − x|2−3ε, |S′θy | > |y − x|
1−ε/α)

6Cn−p/2−d/2|y − x|s.

Hence,

T3 6 C
∞∑

n=|x−y|2−2ε

n−p/2−d/2|y − x|s 6 |y − x|−(2−2ε)(p/2+d/2−1)−s.

By the definition of s given in (51),

(2− 2ε)(p/2 + d/2− 1) + s >(p+ d− 2) + (2p+ d− 4 + 2(1− p/2)+) + f(ε)

=2p+ d− 2 + (p+ d− 4 + 2(1− p/2)+) + g(ε),

with g linear. Since p+ d− 4 + 2(1− p/2)+ > 0 for all p > 1 and d > 2,

T3 = o(|x− y|−b)

with b > 2p+ d− 2 for ε small enough.

Study of T4. By Proposition 23, we have

T4 = E(G|x−y|2−2ε(x, y + S′(θy)), τ
′
y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α)

>CE(u(y + S′(θy))|y + S′(θy)|−2p−d+2, τ ′y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α)

>C|y|−2p−d+2|y|p(1−2ε)P(τ ′y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α),

where we have used the fact that y + S′(θy) ∈ Kε and |S(θy)| 6 |y − x|1−ε/α to give a
lower bound on u(y + S′(θy)). Hence

T4 > |y|−2p−d+2+p(1−2ε)(P(τ ′y > |y − x|2−3ε)− C exp(−|y|ε)−K|y − x|s).
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By Lemma 17, P(τ ′y > |y− x|2−3ε) > C|y− x|−p/2(2−3ε) and s > p/2(2− 3ε) for ε small
enough, which yields

T4 > c|y|−2p−d+2+p(1−2ε)−p/2(2−3ε) > c|y|−2p−d+2+g(ε),

with g linear. Hence, for ε small enough,

T1 + T2 + T3 = o(T4).

Moreover, by Proposition 23,

E(G|y−x|2−2ε(x, y + S′(θy)), τ
′
y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α)

∼ V (x)E(F (x, y + S′(θy)), τ
′
y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α),

as y goes to infinity, which yields

G(x, y) ∼ V (x)E(F (x, y + S′(θy)), τ
′
y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α).

Since we also have

E(F (x, y + S′(θy)), τ
′
y > θy, (θy > |y − x|2−3ε) ∪ (|S(θy)| > |y − x|1−ε/α)) = o(T4)

for the same reasons as before, the result is deduced. �

The uniqueness of the harmonic function is then a straightforward deduction of the
latter theorem.

Corollary 25. The Martin boundary of S killed on the boundary of K is reduced to
a singleton, and there exists a unique harmonic function (up to multiplication by a
constant).

Proof. Let x0, x ∈ K and let (yn) be a sequence in K going to infinity. Then, by
Theorem 24,

G(x, yn)

G(x0, yn)
∼

V (x)E(F (yn + Sθyn ), τ ′yn > θyn)

V (x0)E(F (yn + Sθyn ), τ ′yn > θyn)
=

V (x)

V (x0)
.

The Martin boundary is thus reduced to a singleton. �

Appendix A. Regularity and estimates for the heat kernel in a cone

We prove in this appendix several inequalities concerning the heat kernel in a cone.
We start with the boundedness of the gradient of u.

Lemma 26. There exists C > 0 such that

|∇u(z)| 6 C|z|p−1.

Proof. If S is a sphere and s ∈ S, denotes by n(s) the outward normal vector at s.
Since K is either C2 or convex, by [46, Eq. (0.2.3)] there exists a constant C ′ such that
for all z ∈ K,

u(z) 6 C ′d(z,K)|z|p−1. (52)
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Set r = d(z, ∂K). If v is a unit vector in Rd, ∂vu is harmonic and we have

|∂vu(z)| = 1

Vol(B(z, r))

∣∣∣∣∣
∫
B(z,r)

∂vu(s)ds

∣∣∣∣∣
=

1

Vol(B(z, r))

∣∣∣∣∣
∫
∂B(z,r)

u(s)〈v, n(s)〉ds

∣∣∣∣∣
6

Vol(∂B(z, r))

Vol(B(z, r))
C ′′|z|p−1rds

for some positive constant C ′′, where we have used (52) at the last line. Hence, since
Vol(∂B(z,r))
Vol(B(z,r)) = C ′′′ 1r for some C ′′′, we have

|∂vu(z)| 6 C|z|p−1

for some constant C > 0. �

The latter result yields in the next lemma the Hölder continuity of u. In the following
statement, u is said locally Lipschitz with local Lipschitz constant K(z) at z ∈ K if
u|B(z,1) is Lipschitz with Lipschitz constant K(z).

Lemma 27. If p > 1, then u is locally Lipschitz at z ∈ K with local Lipschitz constant
|z|p−1. If p 6 1, then u is Hölder continuous with exponent p.

Proof. Suppose that p > 1 and let y, y′ ∈ K with |y − y′| 6 1. Then, by Lemma 26,∣∣u(y)− u(y′)
∣∣ =

∣∣∣∣∫ 1

0
〈∇u(y′ + t(y − y′)), y − y′〉dt

∣∣∣∣ 6 |y′ − y|C ∫ 1

0
|y′ + t(y − y′)|p−1dt.

Since p > 1, there exists a constant C ′ such that
∫ 1

0 |y
′+ t(y− y′)|p−1dt 6 C ′|y′|p−1, so

that
|u(y)− u(y′)| 6 C ′′|y′|p−1|y − y′|

for some positive constant C ′′.

Suppose now that p 6 1 and let y, y′ ∈ K with |y′| > |y|. Set y′′ = |y|
|y′|y

′, so that

|y′′| = |y|. Since |y| 6 |y′| and y′′ is proportional to y′, one has

〈y′ − y′′, y′′ − y〉 > 0,

so that |y′ − y′′| 6 |y − y′| and |y′′ − y′| 6 |y − y′|.
On the first hand, joining y to y′′ by a geodesic on the sphere of radius |y| yields

that |u(y′′) − u(y)| 6 C|y|p−1|y − y′′| for some constant C. Since y′′ and y are on the
same sphere, there exists a constant K (independent of the radius of the sphere) such
that |y − y′′| 6 K|y|, and thus |y|p−1 6 K1−p|y − y′′|p−1. Hence

|u(y′′)− u(y)| 6 CK1−p|y − y′′|p 6 C ′|y − y′|p

for some constant C ′ > 0.
On the other hand, if we set M = ‖u|K∩Sd−1‖∞, the scaling property of u yields that

|u(y′)− u(y′′)| 6M(|y′|p − |y′′|p).
Since p 6 1, (|y′|p − |y′′|p) 6 p21−p|y′ − y′′|p, and thus

|u(y′)− u(y′′)| 6 C ′|y′ − y′′|p 6 C ′|y′ − y|p
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for some constant C ′′ > 0. Finally,

|u(y)− u(y′)| 6 |u(y)− u(y′′)|+ |u(y′′)− u(y′)| 6 (C ′ + C ′′)|y − y′|p. �

The following lemma gives the proof of (7).

Lemma 28. There exists c > 0 such that for all t > 0,

inf
z∈K

V (z,
√
t) > ctd/2.

Proof. Write K as the epigraph of a Lipschitz function φ : H −→ R with Lipschitz
constant L, where H is a hyperplane of Rd. Let v be the unit vector normal to H
pointing toward the epigraph of φ; then one has x + z ∈ K for all x ∈ K and z ∈ Rd
such that 〈z, v〉 >

√
1− L−2|z|. Therefore, for some positive constant c, one has

V (x,
√
t) > Vol{|z| 6

√
t, 〈z, v〉 >

√
1− L−2|z|} > ctd/2.

Note that if K is convex, then z +
(
B(0,

√
t) ∩K

)
⊂ K for all z ∈ K, so that we can

simply choose c = V (0, 1). �

From the Gaussian estimates we can deduce the Hölder regularity of k and K. In
order to obtain this regularity, we first need to give a uniform bound for the ratio of kt
and kt′ for t′ 6 t. This is done in the following lemma, using the fundamental volume
doubling property of the réduite u (see [27, Thm 4.19]): there exists a constant D > 0
such that ∫

B(x,2r)∩K
u(z)2dz 6 D

∫
B(x,r)K

u(z)2dz (53)

for all x ∈ K, r > 0.

Lemma 29. For all 0 < t < 1/2, there exists ct6 > 0 such that

ct6 6
k(sx)

k(x)
6 1

for all x ∈ K and s ∈ [t, 1− t].

Proof. Since k(sx) = ks−2(x) = P(τbm
x > s−2), k(sx) is increasing with s and we only

have to prove the bound for s = t. Let n > 1 be such that 0 < 2−n 6 t. Let us prove
the result for r := 2−n, which implies the result for t. By (6), we have

c′

√
V (rx, 1)

V (x, 1)

√√√√ ∫
B(x,1)∩K u(z)2dz∫
B(rx,1)∩K u(z)2dz

u(rx)

u(x)
6
k(rx)

k(x)
6 1

for c′ =
c′1
C′1

. By Lemma 7 and the fact that V (z, 1) 6 Vol(B(0, 1)) for all z ∈ K,√
V (rx, 1)

V (x, 1)
>
√

c

Vol(B(0, 1))
.

Moreover, by the scaling property of u,∫
B(rx,1)∩K

u(z)2dz = rd
∫
B(x,r−1)∩K

u(rz)2dz = rd+2p

∫
B(x,r−1)∩K

u(z)2dz,
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where we have used that r−1 (B(rx, 1) ∩K) = B(x, r−1) ∩ K by the cone property.
Using n times the doubling volume property (53) yields∫

B(x,r−1)∩K
u(z)2dz =

∫
B(x,2n)∩K

u(z)2dz 6 Dn

∫
B(x,1)∩K

u(z)2dz,

independently of x ∈ K. Therefore,∫
B(rx,1)∩K

u(z)2dz 6 rd+2pDn

∫
B(x,1)∩K

u(z)2dz,

and thus √√√√ ∫
B(x,1)∩K u(z)2dz∫
B(rx,1)∩K u(z)2dz

> 2−nd/2−npD−n/2.

Finally, we have

c2−nd/2−npD−n/2

√
c′

Vol(B(0, 1))
6
k(rx)

k(x)
6 1. �

We say that a function f is locally Hölder at z ∈ K with exponent α and constant
C(z) if |f(z′)− f(z)| 6 C(z)|z′ − z|α for z′ such that |z − z′| 6 1. The function is said
globally Hölder on D ⊂ K with exponent α and constant C if |f(z′)−f(z)| 6 C|z′−z|α
for z, z′ ∈ K.

Proposition 30. There exist exponents 0 6 α 6 1 and 0 6 χ, as well as a constant
Cα > 0, such that k and 1

k(x)K(x, ·) for x ∈ K are locally Hölder at each z in K with

exponent α and with respective constants (where α is given by Theorem 6)

Cα(1 + |x′|χ) and Cα(1 + |z|χ) exp(−|z − x|2/(2c3)).

By symmetry, K(·, y) is also locally α-Hölder at z ∈ K with Hölder constant

Cα(1 + |z|χ) exp(−|z − y|2/(2c3)).

Proof. We suppose without loss of generality that α 6 p. Let us start by the Hölder
continuity of 1

k(x)K(x, ·). Let x, y, y′ ∈ K be such that |y − y′| 6 1 and |y′| > |y|. By

the second part of Theorem 6, we have∣∣∣∣K(x, y)

u(y)
− K(x, y′)

u(y′)

∣∣∣∣ 6 C4

(
|y − y′|

)α K2(x, y)

u(y)
.

Hence

1

k(x)

∣∣K(x, y)−K(x, y′)
∣∣ 6 C4

1

k(x)
|y − y′|αK2(x, y) +

1

k(x)
K(x, y′)

∣∣∣∣ u(y)

u(y′)
− 1

∣∣∣∣ .
Using the first part of Theorem 6 and then Theorem 5 gives

1

k(x)
K(x, y′) 6 C2

k(y′)√
V (x, 1)V (y′, 1)

exp(−|x− y′|2/c3) 6 C
u(y′)

u(y′1)
exp(−|x− y′|2/c3),



MARTIN BOUNDARY OF RANDOM WALKS IN CONVEX CONES 45

for some constant C, where we have also used in the last inequality that V (z, 1) > c
for some positive constant c independent of z (see the previous proof for a proof of this
fact). Likewise,

1

k(x)
K2(x, y) 6C2

k(x/
√

2)

k(x)

k(y/
√

2)√
V (x, 2)V (y, 2)

exp(−|x− y|2/(2c3))

6C
k(x/

√
2)

k(x)
exp(−|x− y|2/(2c3)) 6 C exp(−|x− y|2/(2c3)),

where we have used Lemma 29 in the last inequality. Thus

1

k(x)

∣∣K(x, y)−K(x, y′)
∣∣

6 C|y − y′|α exp(−|x− y|2/(2c3)) + C
1

u(y′1)
exp(−|x− y′|2/c3)

∣∣u(y)− u(y′)
∣∣ .

Let β = p ∧ 1. By Lemma 27, for y, y′ ∈ K such that |y − y′| 6 1, we have for some
constant C ′ > 0

|u(y)− u(y′)| 6 C|y′|p−β|y − y′|β.
Since d(y′1, ∂K) > c0 by definition, [16, Lem. 19] yields that from some constant c > 0

u(y′1) > ccp0. (54)

Hence, with χ = p− β, there exists C(3) such that

1

u(y′1)

∣∣u(y)− u(y′)
∣∣ 6 C(3)|y′|χ|y − y′|β.

Therefore, there exists C(4) > 0 such that

1

k(x)

∣∣K(x, y)−K(x, y′)
∣∣ 6 C(4)|y − y′|α(1 + |y′|χ) exp(−|x− y|2/(2c3)),

which proves the first part of the lemma. Since k is bounded by 1, K(x, ·) is also
locally α-Hölder with the same constants, and by symmetry the same holds for K(·, y).
Therefore, for x, x′ ∈ K such that |x− x′| 6 1,∣∣k(x)− k(x′)

∣∣ 6∫
K
|K(x, y)−K(x′, y)|dy

6C(4)(1 + |x′|χ)|x− x′|α
∫
K

exp(−|x′ − y|2/(2c3))dy 6 Cα(1 + |x′|χ)|x− x′|α

for some constant Cα > 0. �

Remark 31. Since exp(−|z − y|2/(2c3)) 6 1 for all x, z ∈ K, Proposition 30 implies
1

k(x)K(x, ·) and K(·, x) are globally Hölder on any bounded subset D of K with a Hölder

constant C(D) independent of x ∈ K.

We end this section by a uniform (in time) estimate of the convergence of the heat
kernel.
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Lemma 32. Let t0 > 0 and M > 0. Uniformly in t > t0, and x, y ∈ K with |y−x| 6M ,

Kt+h(x, y) ∼h→0 Kt(x, y)

and uniformly in t0 < t < 2t0 and x ∈ K,

kt+h(x) ∼h→0 k(x).

Proof. For the first convergence, let t > t0 and x, y ∈ K with |y − x| 6 M . Then for
h > 0,

|Kt+h(x, y)−Kt(x, y)| 6
∫ h

0
|∂tKt+r(x, y)|dr.

Hence, by the last part of Theorem 6, for |h| 6 t0/2,

|Kt+h(x, y)−Kt(x, y)|

6 C5

∫ h

0

kt+r(x)kt+r(y)

(t+ r)
√
V (x,

√
t+ r)V (y,

√
t+ r)

(1 + |x− y|2/(t+ r))β+1 exp(−|x− y|2/(4(t+ r)))dr.

Applying now the lower bound in the first part of Theorem 6, we get

|Kt+h(x, y)−Kt(x, y)| 6(C5/c2)

∫ h

0
Kt+r(x, y)

1

t+ r
(1 + |x− y|2/(t+ r))β+1

exp(−|x− y|2/(4(t+ r)) + |x− y|2/(C3(t+ r)))dr

6C
∫ h

0

1

t+ r
Kt+r(x, y)(1 +M2/(t0/2))β+1 exp(M2/(c(t0/2)))dr,

where C and c are positive constants. Since Kt(x, y) is decreasing in t,

|Kt+h(x, y)−Kt(x, y)| 6 CKt+h(x, y)

(
1

t2
− 1

(t+ h)2

)
,

and Kt+h(x, y) ∼ Kt(x, y) uniformly in t > t0, and x, y ∈ K with |y − x| 6 M as h
goes to zero. The case h < 0 is similar.

For the second convergence let δ > 0 and M > 0 be such that∫
|z|>M

exp(−|z|2/(2c3(2t0 + h0))dz 6 δ

and let 0 < h0 < t0 be such that for all t > t0, x, y ∈ K with |y − x| > M , and h ∈ R
such that |h| 6 h0,

(1− δ)Kt(x, y) 6 Kt+h 6 (1 + δ)Kt(x, y).
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Then for such x ∈ K, t, h > 0, we have by the first part of the lemma

kt+h(x) =

∫
|z|6M

Kt+h(x, y)dy +

∫
|z|>M

Kt+h(x, y)dy

6(1 + δ)

∫
|z|6M

Kt(x, y)dy + C2
kt+h(x)

c(t+ h)d

∫
|z|>M

exp(−|z|2/(2c3(2t0 + h0))dz

6(1 + δ)kt(x) + (1 + δ)C2
kt(x)

ctd

∫
|z|>M

exp(−|z|2/(2c3(2t0 + h0))dz

+ C2
kt+h(x)

c(t+ h)d

∫
|z|>M

exp(−|z|2/(2c3(2t0 + h0))dz

6

(
(1 + δ) +

(1 + δ)C2δ

c(t0 − h0)d

)
kt(x) +

C2δ

c(t0 − h0)d
kt+h(x),

where we have used Theorem 6 and Lemma 7 in the second and third lines. Hence,

kt+h(x) 6
(1 + δ) + (1+δ)C2δ

c(t0−h0)d

1− C2δ
c(t0−h0)d

kt(x) 6 (1 + δ′)kt(x)

for all x ∈ K, t0 6 t 6 2t0, where δ′ goes to zero as δ goes to zero. The lower bound is
obtained similarly. �

Appendix B. Extension of the results of [16] to the case of arbitrary
convex cones

In [16], Denisov and Wachtel obtain fundamental results on the long-term behavior
of a random walk in a convex or C2 cone. As we mentioned in Section 2.2, these results
are the main ingredients in the proofs of the present paper. Unfortunately, the results
of [16] are only valid when the cone K satisfies the following condition:

(H∗) There exists a bigger cone K ′ with ∂K \ {0} ⊂ int(K ′), such that the réduite
u can be extended to a harmonic function on K ′.

This condition is a strong limitation on the geometry of the cone, since it implies in
particular that ∂K is piecewise analytic. In this appendix, we prove that the condition
(H∗) is not necessary to get the results of [16] for a convex cone under the moment
conditions (H5).

Define f : K −→ R by

f(x) = E(u(x+X))− u(x),

where we have set u(x) = 0 for x 6∈ K. By [16, Remark 4], the condition (H∗) is only
needed in [16] to prove that

E

(
τx∑
`=0

|f(x+ S(`))|

)
< C(1 + |x|p−r) (55)

for some positive constants C and r and for all x ∈ K. All other results are deductions
of the bound (55) and other arguments which do not involve (H∗). The main result of
Appendix B is thus the extension of (55) to an arbitrary convex cone.
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Proposition 33. Suppose that K is convex. There exist C and r > 0 such that for all
x ∈ K,

E

(
τx−1∑
`=0

|f(x+ S(`))|

)
6 C(1 + |x|)p−r.

Let us first give some new bounds on the higher derivatives of u.

Lemma 34. There exists C > 0 such that for all x ∈ K,

|uxixj (x)| 6 C

d(x, ∂K)
|x|p−1,

|uxixjxj (x)| 6 C

d(x, ∂K)2
|x|p−1.

Proof. The proof follows closely the ones of [16, Lem. 7] and Lemma 26. By Lemma 26
we have

|uxi(x)| 6 C|x|p−1

for some constant C > 0 independent of i and x ∈ K. Hence, by harmonicity of u,

|uxixj (x)| = 1

Vol(B(x, d(x, ∂K))

∣∣∣∣∣
∫
B(x,d(x,∂K))

uxixj

∣∣∣∣∣
=

1

Vol(B(x, d(x, ∂K)))

∣∣∣∣∣
∫
∂B(x,d(x,∂K))

uxjνids

∣∣∣∣∣
6

Vol(∂B(x, d(x, ∂K)))

Vol(B(x, d(x, ∂K)))
max

∂B(x,d(x,∂K))
|uxj |

6
C

d(x, ∂K)
|x|p−1,

for x ∈ K, which proves the first inequality. The second inequality is deduced similarly
by using the harmonicity of uxixjxk on the ball B(x, d(x, ∂K)/2). �

Let K̃ be the set {x ∈ K : d(x, ∂K) > |x|1/2+δ}, with δ > 0.

Lemma 35. There exists C > 0 such that

|f(x)| 6 C(1 + |x|)p−2−δ

for x ∈ K̃, and

|f(x)| 6 C min

(
1,

1

d(x, ∂K)

)
(1 + |x|p−1)

for x ∈ K \ K̃.

Proof. Let x ∈ K̃. Applying Lemma 34 to z ∈ K such that d(z, ∂K) > |z|1/2+δ/2
yields

sup
16i,j6d

|uxixj (x)| 6 C|x|p−3/2−δ and sup
16i,j,k6d

y∈B(x,|x|1/2+δ/2)

|uxixjxk(y)| 6 C|x|p−2−2δ.
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Then, applying Taylor’s theorem to the third order to u at x and using the latter
inequality yield∣∣∣∣∣∣u(x+ y)− u(y)− 〈∇u(x), y〉 − 1

2

d∑
i,j=1

uxixj (x)yiyj

∣∣∣∣∣∣ 6 sup
16i,j,k6d

z∈B(x,|x|1/2+δ/2)

1

6
|uxixjxk(z)||y|3

6C|x|p−2−δ|y|3,

for y ∈ B(x, |x|1/2+δ/2). Since f(x) = E(u(x+X)− u(x), we have therefore as in the
proof of [16, Lem. 8]

|f(x)| 6|E(u(x+X)− u(x), |X| 6 |x|1/2+δ/2)|+ |E(u(x+X)− u(x), |X| > |x|1/2+δ/2)|

6|E(〈∇u(x), X〉+
d∑

i,j=1

uxixj (x)XiXj , |X| 6 |x|1/2+δ/2)|

+ C|x|p−2−δE(|X|3, |X| 6 |x|1/2+δ/2) + CE(|x|p + |x+X|p, |X| > |x|1/2+δ/2)

6|E(〈∇u(x), X〉+

d∑
i,j=1

uxixj (x)XiXj , |X| > |x|1/2+δ/2)|

+ C|x|p−2−δE(|X|3, |X| 6 |x|1/2+δ/2) + CE(|x|p + |x+X|p, |X| > |x|1/2+δ/2),

where we have used the bound on u on the last term of the second inequality, and the
harmonicity of u together with the zero-mean and standard variance hypotheses on X
to get the first term of the last inequality. By Markov’s inequality and the moment
assumption E(|X|4) <∞ (note that r(p) > 2p+ d− 2 + 2(1− p/2)+ > 4 for d > 3 and
p > 1), we get

|E(∇〈u(x), X〉+
d∑

i,j=1

uxixj (x)XiXj , |X| > |x|1/2+δ/2)|

6 CE(|x|p−1|X|+ |x|p−3/2−δ|X|2, |X| > |x|1/2+δ/2)

6 Cxp−2−2δ,

and

E(|x|p + |x+X|p, |X| > |x|1/2+δ/2) 6 C max(|x|p−2−2δ, 1).

Since E(|X|3, |X| 6 |x|1/2+δ/2) 6 E(|X|3), we get for x ∈ K̃

f(x) 6 C(1 + |x|p−2−2δ).

For the second part of the proof, we first decompose f(x) as

f(x) = E(u(x+X)− u(x), x+X 6∈ K)

+E(u(x+X)− u(x), |X| > d(x, ∂K)/2, x+X ∈ K)

+E(u(x+X)− u(x), |X| 6 d(x, ∂K)/2).
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In the first term, u(x+X) = 0 and necessarily |X| > d(x, ∂K), thus

|E(u(x+X)− u(x), x+X 6∈ K)| 6|u(x)|P(|X| > d(x, ∂K))

6Cd(x, ∂K)|x|p−1P(|X| > d(x, ∂K))

6
C

d(x, ∂K)
|x|p−1E(|X|2).

In the second term, we can use Taylor’s expansion at zero order to get

E(u(x+X)− u(x), |X| >d(x, ∂K)/2, x+X ∈ K)

6 E

(
sup

z∈[x,x+X]
‖∇u(z)‖|X|, |X| > d(x, ∂K)/2

)
6 CE(max(|x|p−1, |x+X|p−1), |X| > d(x, ∂K)/2)

6 C|x|p−1P(|X| > d(x, ∂K)/2) + E(|X|p−1 > d(x, ∂K)/2).

Using again Markov’s inequality yields the bound

E(u(x+X)− u(x), |X| > d(x, ∂K)/2, x+X ∈ K) 6
C

d(x, ∂K)
E(|X|p) max(1, |x|p−1).

The last term is handled as in the first part of the proof, with a Taylor’s expansion up
to the second order in the ball B(x, d(x, ∂K/2)).

In order to conclude, we show that f(x) 6 C(1 + d(x, ∂K))(1 + |x|p−1). Using the
bound u(z) 6 Cd(z, ∂K)|z|p−1, we get

|f(x)| 6 Cd(x, ∂K)|x|p−1 + E(|x+X|p−1d(x+X, ∂K)).

The first term on the right-hand side above is bounded by C(1 + d(x, ∂K))(1 + |x|p−1).
The second term is bounded as

E(|x+X|p−1d(x+X, ∂K)) 6 CE((|x|p−1 + |X|p−1)(d(x, ∂K)) + |X|))
6 d(x, ∂K)|x|p−1 + E(|X|p) + d(x, ∂K)E(|X|p−1)

+ |x|p−1E(|X|)
6 (1 + d(x, ∂K))(1 + |x|p−1). �

In order to prove Proposition 33, we write

E

(
τx−1∑
`=0

|f(x+ S(`))|

)
= E

( ∞∑
`=0

1τx>`|f(x+ S(`))|

)
=

∞∑
`=0

E(|f(x+ S(`))|, τx > `).

We will show that E(|f(x + S(`))|, τx > `) 6 C(1 + |x|p−r)`−(1+α) for some C,α > 0
independent of x, by using a coupling of the random walk S with a Brownian motion.
First, let us split the latter expectation as

E(|f(x+ S(`))|, τx > `) =E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) > `1/2−γ)

+ E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ)

=A` + C`
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with γ small enough to be chosen later. Then, we split A` for ε small enough as

A` =E(|f(x+ S(`))|, τx > `, tx,ε(`) > `1−ε, d(x+ S(`), ∂K) > `1/2−γ)

+ E(|f(x+ S(`))|, τx > `, tx,ε(`) 6 `1−ε, |S(tx,ε(`)) > θ`
√
`, d(x+ S(`), ∂K) > `1/2−γ)

+ E(|f(x+ S(`))|, τx > `, tx,ε(`) 6 `1−ε, S(tx,ε(`)) 6 θ`
√
`, d(x+ S(`), ∂K) > `1/2−γ)

:=B
(1)
` +B

(2)
` +B

(3)
` ,

where tx,ε(`) is the usual stopping time inf{n > 1 : x+ S(n) ∈ K`,ε}.
The proof of Proposition 33 is then a straightforward combination of Lemma 36,

Lemma 37 and Equation (56).

Lemma 36. For any γ > 0, there exist C > 0 and η > 0 such that∑
`>0

C` 6 C(1 + |x|)p−η.

Proof. Let us decompose C` as

C` =E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ , |S(`)| 6 `1/2+δ′)

+E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ , |S(`)| > `1/2+δ′),

with δ′ small enough to be adjusted later. We have by Lemma 35

E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ , |S(`)| 6 `1/2+δ′)

6C
∑

y∈K∩Λ
d(y,∂K)6`1/2−γ

|y−x|6`1/2+δ′

|y|p−1

(
1 ∨ 1

d(y, ∂K)

)
P(x+ S(`) = y, τx > `)

6C
∑

y∈K∩Λ
d(y,∂K)6`1/2−γ

|y−x|6`1/2+δ′

|y|p−1

(
1 ∨ 1

d(y, ∂K)

)
`−d/2P(τx > `/3)P(τ ′y > `/3),

where we have used the decomposition

P(x+ S(`) = y, τx > `)

=
∑

z,z′∈K
P(x+ S(b `3c) = z, τx >

`
3)P(z + S(b `3c) = z′, τz >

`
3)P(y + S′(`− 2b `3c) = z′, τ ′y >

`
3)

6C`−d/2P(τx > `/3)P(τ ′y > `/3),

and (15) with u = 0 to bound the middle term in the latter sum. For each y ∈ K, let
y⊥ ∈ ∂K be a boundary point such that |y − y⊥| = d(y, ∂K), let Hy be a hyperplane

tangent to K at y⊥ (which exists because K is convex), and denote by H+ the half-space
delimited by H and containing K. Then,

τ ′y 6 τ
H
y ,

where τHy is the exit time for the random walk y + S′ in the domain H+. It follows
from [49] that

P(τHz > `) 6 Cd(z,H)`−1/2
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uniformly for d(z,H) = o(
√
`), which implies

P(τ ′y > `) 6 Cd(y, ∂K)`−1/2

for y ∈ K such that d(y, ∂K) 6 n1/2−γ . Hence, we finally get

E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ , |S(`)| 6 `1/2+δ′)

6 C
∑

y∈K∩Λ
d(y,∂K)6`1/2−γ

|y−x|6`1/2+δ′

|y|p−1

(
1 ∨ 1

d(y, ∂K)

)
C`−d/2−1/2P(τx > `/3)d(y, ∂K)

6 C
∑

y∈K∩Λ
d(y,∂K)6`1/2−γ

|y−x|6`1/2+δ′

|y|p−1C`−d/2−1/2P(τx > `/3)

6 C`−d/2−1/2(|x|+ `1/2+δ′)p−1P(τx > `/3) Vol{y ∈ B(x, `d/2+δ′), d(y, ∂K) 6 `1/2−γ}.

The volume of the region {y ∈ B(x, `d/2+δ′), d(y, ∂K) 6 `1/2−γ} is asymptotically

bounded by C`d(1/2+δ′)−γ , which yields

E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ , |x+ S(`)| 6 `1/2+δ′)

6C`−1/2−γ+o(δ′)(|x|+ `1/2+δ′)p−1P(τx > `/3)

6C`p/2−1−γ+o(δ′)P(τx > `/3) + C`−1/2−γ+o(δ′)P(τx > `/3).

Hence, for δ′ small enough, we have

E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ , |x+ S(`)| 6 `1/2+δ′)

6 C(`p/2−1−κ + |x|p−1`−1/2−κ)P(τx > `/3),

for some κ > 0. Using [35, Thm 3.1] with the fact that p > 1 yields
∞∑
`=0

E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ , |x+ S(`)| 6 `1/2+δ′)

6C
∞∑
`=0

(`p/2−1−κ + |x|p−1`−1/2−κ)P(τx > `/3)

6C
(
E(τp/2−κx ) + |x|p−1E(τ1/2−κ

x )
)
6 C(1 + |x|)p−2κ

for some C > 0 and κ > 0. For the second term of C`, we have

E(|f(x+ S(`))|, τx > `, d(x+ S(`), ∂K) 6 `1/2−γ , |S(`)| > `1/2+δ′)

6CE(|x+ S(`)|p−1, τx > `, |S(`)| > `1/2+δ′)

6C|x|p−1P(τx > `, |S(`)| > `1/2+δ′) + CE(|S(`)|p−1, τx > `, |S(`)| > `1/2+δ′).

By Lemma 16 with β = p/2− 1/2 + κ, the first term is bounded as

C|x|p−1P(τx > `, |S(`)| > `1/2+δ′) 6C|x|p−1(1 + |x|)p−2(p−1+κ)`−r(p)/2+1−(p/2−p/2+1/2−κ)+o(δ′)

6C(1 + |x|)p−2κ`−r(p)/2+1/2+κ+o(δ′).
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Since r(p) > 2p+ d− 2 + 2(1− p/2)+, taking κ and δ′ small enough yields

C|x|p−1P(τx > `, |S(`)| > `1/2+δ′) 6 C(1 + |x|)p−2κ`1/2−p−d/2 6 C(1 + |x|)p−2κ`−1−η

for some η > 0 and C > 0. Next, by Lemma 16 with β small enough, the second term
is bounded as

E(|S(`)|p−1, τx > `, |S(`)| > `1/2+δ′) 6 C(1+|x|)(p−2β)∧2`−(r(p)−(p−1))/2+(1−p/2+β)++o(δ′).

Likewise, since r(p) > 2p + d − 2 + 2(1 − p/2)+, choosing β and δ′ small enough and
using the fact that d > 3 yields

`−(s−(p−1))/2+(1−p/2+β)++o(δ′) 6 `−1−η

for some η > 0. Hence,

E(|f(x+S(`))|, τx > `, d(x+S(`), ∂K) 6 `1/2−γ , |S(`)| > `1/2+δ′) 6 C(1+ |x|)p−r`−1−η

for some r, η > 0. Therefore,
∞∑
`=0

C` 6 C(1 + |x|)p−r

for some constant C > 0. �

Lemma 37. There exists a constant C > 0 such that for some η small enough,
∞∑
`=0

B
(1)
` +B

(2)
` 6 C(1 + |x|p−η).

Proof. Since f(x) 6 C(1 + |x|p−1) on K, the first term is bounded by

B
(`)
1 6 CE(|x+ S(`)|p−1, τx > `, tx,ε(`) > `1−ε, d(x+ S(`), ∂K) > `1/2−γ).

Using Hölder’s inequality together with [16, Lem. 14] gives

B
(1)
` 6

(
E(|x+ S(`)|p−1/2, τx > `, d(x+ S(`), ∂K) > `1/2−γ)

) p−1
p−1/2 P(τx > `, tx,ε(`) > `

1−ε)
1

2p−1

6 E
(

sup
16`6τx

|x+ S(`)|p−1/2

) p−1
p−1/2

P(τx > `, tx,ε(`) > `
1−ε)

1
2p−1

6 C(1 + |x|)p−1 exp(−C ′`ε′)
for some C,C ′, ε′ > 0, where we have used [35, Thm 3.1] in the last inequality. Hence,

∞∑
`=0

B
(1)
` 6 C(1 + |x|p−1)

for some constant C > 0.
Likewise, we have for η small enough

B
(2)
` 6 E((x+ S(`))p−1, τx > `, tx,ε 6 `

1−ε, |S(tx,ε(`))| > θ`
√
`, d(x+ S(`), ∂K) > `1/2−γ)

6 E
(

sup
16`6τx

|x+ S(`)|p−η
) p−1
p−η

P(τx > `, tx,ε 6 `
1−ε, |S(tx,ε(`))| > θ`

√
`)

1−η
p−η

6 C(1 + |x|)p−1P(τx > `, tx,ε 6 `
1−ε, |S(tx,ε(`))| > θ`

√
`)

1−η
p−η .
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We bound the right-hand side of the last inequality using Lemma 16 with β small
enough to get

P(τx > `, tx,ε 6 `
1−ε, |S(tx,ε(`))| > θ`

√
`) 6 C`−r(p)/2(1 + |x|)(p−2β)∧2`(1−(p/2−β))∧0

for r(p) > 2p + d − 2 + 2(1 − p/2)+. Therefore, choosing η small enough and β small
enough yields

B
(2)
` 6 C(1+ |x|)p−1(1+ |x|)(1−2β/p)∧2/p`−r(p)/2p+(1/p−(1/2−β/p))+ 6 C(1+ |x|)p−r`−1−r′

for some r, r′ > 0. Hence,
∞∑
`=0

B
(2)
` 6 C(1 + |x|)p−r. �

It remains to handle the term B
(3)
` . Since X admits a moment r > 0, we use [23,

Thm 4] to deduce that for 0 < γ′ < 1/2 and r > 3 there exists C and a coupling of S
with a Brownian motion B such that

P( sup
16k6n

|B(k)− S(k)| > n1/2−γ′) 6 Crn
1−r(1/2−γ′)

for all n ∈ N. Hence, with our moment assumptions, we can choose such a coupling
with r = r(p) > 2p+ d− 2 + 2(1− p/2)+. Set

χ` =

{
sup

16k6`
|B(k)− S(k)| 6 `1/2−γ′

}
.

Lemma 38. There exist positive constants C and s such that

E(|f(x+ S(`))|, τx > `, tx,ε(`) 6 `1−ε, xε(`) 6 θ`
√
`, χc`, d(x+ S(`), ∂K) > `1/2−γ)

6 C(1 + |x|p−1)`−1−s.

Proof. By Lemma 35, |f(z)| 6 |z|p−1`−1/2+γ on {z ∈ K : d(z, ∂K) > `1/2−γ}. Hence
we have

E(|f(x+ S(`))|, τx > `, tx,ε(`) 6 `1−ε,xε(`) 6 θ`
√
`, χc`, d(x+ S(`), ∂K) > `1/2−γ)

6 E(|x+ S(`)|p−1χc)`−1/2+γ

6 C|x|p−1P(χc`)`
−1/2+γ + E(|S(`)|p−1χc`)`

−1/2+γ .

Since (r(p)− 2)/2 > 1 (note that p > 1 when K is convex), for γ small enough we have

|x|p−1P(χc`)`
−1/2+γ 6 C`−1−η for some constants C, η > 0. Moreover, since X admits

moments of order r(p), the Hölder inequality for q = r(p)/(p− 1) yields

`−1/2+γE(|S(`)|p−1χc`) 6 `
−1/2+γE(|S(`)|r(p))1/qP(χc`)

1−1/q.

Einmahl’s theorem yields

P(χc`)
1−1/q 6 `(2−r(p)(1−2γ′))/2(1−1/q),

and Rosenthal inequality gives

E(|S(`)|q(p−1))q
−1 ∼ C`(p−1)/2

for some constant C > 0. Hence,

`−1/2+γE(|S(`)|p−1χc`) 6 C`
−r
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with

r = (1− 1/q)(r(p)(1− 2γ′)− 2)/2− (p− 1)/2 + 1/2− γ

=

(
1− p− 1

r(p)

)
(r(p)− 2)/2− (p− 1)/2 + 1/2 + o(γ, γ′)

= r(p)/2− p+ 1/2 +
p− 1

r(p)
+ o(γ).

By the condition r(p) > 2p+ d− 2 + 2(1− p/2)+, we obtain

r > d/2− 1/2 + (1− p/2)+ + (p− 1)/r(p) + o(γ, γ′).

Hence, since d > 3, we get

r > 1 + η

for γ small enough and some η > 0. Hence,

E(|S(`)|pχc`, d(x+ S(`), ∂K) > `1/2−γ) 6 C`−1−η,

so that

E(|f(x+ S(`))|, τx > `, tx,ε(`) 6 `1−ε, xε(`) 6 θ`
√
`, χc`, d(x+ S(`), ∂K) > `1/2−γ)

6 C(1 + |x|p−1)`−1−η,

and a summation concludes the proof. �

We conclude with the main part B
(3)
` , which consists in the part of the random walk

which is close to the coupled Brownian motion:

E(|f(x+ S(`))|, τx > `, tx,ε(`) 6 `1−ε, xε(`) 6 θ`
√
`, χ`, d(x+ S(`), ∂K) > `1/2−γ)

=E
(
E
(
|f(xε(`) + S(`− tε(`)))|, χ`, τx > `− tε(`), , d(x+ S(`), ∂K) > `1/2−γ

)
, τx > tx,ε(`),

tx,ε(`) 6 `
1−ε, xε(`) 6 θ`

√
`
)
.

Lemma 39. There exist positive constants C and r such that

E
(
|f(xε(`)+S(`−tε(`)))|, χ`, τx > `−tε(`), d(x+S(`), ∂K) > `1/2−γ

)
6 C`−1−r|xε(`)|p

uniformly on the event {τx > tx,ε(`), tx,ε(`) 6 `1−ε, xε(`) 6 θ`
√
`}.

Proof. Let us temporarily setm = `−tε(`) and z = xε(`). We divide the proof according
to the value of z+S(m). For the remaining part of the proof we fix 0 < γ < γ′ and we
set

• A1 := {d(z + S(m), ∂K) > 2|z + S(m)|1/2+δ, |z + S(m)| > m1/2−γ},
• A2 := {m1/2−γ < d(z + S(m), ∂K) < 2|z + S(m)|1/2+δ}.

Case A1: For m large enough, on the event χ`, the inequalities

d(z + S(m), ∂K) > 2|z + S(m)|1/2+δ and |z + S(m)| > m1/2−γ

imply that d(z+B(m), ∂K) > |z+B(m)|1/2+δ. Hence, on the set A1 ∩χ`, we have by
Lemma 35

f(z + S(m)) 6 C|z + S(m)|p−2−δ 6 C ′|z +B(m)|p−2−δ,
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where we have used the fact that |z + S(m)| > m1/2−γ′ and |S(m)− B(m)| 6 m1/2−γ

on the last inequality. Recall from Section 3 that for z ∈ K`,ε, z
+ denotes the element

z +R0x0`
1/2−γ′ , so that we have

{τz > `, χ`} ⊂ {τbm
z+ > `, χ`}.

Since |z +B(m)| 6 |z+ +B(m)|, we have

E
(
|f(z + S(m))|, χ`, A1, τz > m

)
6 E

(
|z +B(m)|p−2−δ, χ`, A1, τz > m

)
6 E

(
|z+ +B(m)|p−2−2δ, χ`, A1, τ

bm
z+ > m

)
6 E

(
|z+ +B(m)|p−2−2δ, τbm

z+ > m
)
.

By [16, Lem. 18], we thus have uniformly on z ∈ K, |z| 6 θm
√
m,

E
(
|f(z + S(m))|, χ`, A1, τz > m

)
6 Cm−p−d/2

∫
K
u(z+)u(y)|y|p−2−2δ exp(−y2/(2m))dy

6 Cu(z+)m−1−δ
∫
K
u(y)|y|p−2−2δ exp(−y2/2)dy,

where we have made the change of variables y ↔ y/
√
m in the last inequality. Therefore,

there exists C > 0 such that

E
(
|f(z + S(m))|, χ`, A1, τz > m

)
6 Cu(z+)m−1−δ.

Case A2: On the set A2 ∩ χ`, because γ < γ′ we have for m large enough

1

d(z + S(m), ∂K)
6 C

1

d(z+ +B(m), ∂K)
,

so that, by Lemma 35 and the fact that |z+ +B(m)| > m1/2−γ on A2, we have

f(z + S(m)) 6 C
1

d(z + S(m), ∂K)
|z + S(m)|p−1

6 C
1

d(z+ +B(m), ∂K)

(
|z+ +B(m)|p−1 +m(p−1)(1/2−γ)

)
6 C

|z+ +B(m)|p−1

d(z+ +B(m), ∂K)
.

Then, following the same proof as in the first case gives

E
(
|f(z+S(m))|, χ`, A2, τz > m

)
6 CE

(
|z+ +B(m)|p−1/d(z+ +B(m), ∂K), χ`, A2, τz > m

)
6 CE

(
|z+ +B(m)|p−1/d(z+ +B(m)), ∂K), A2, τ

bm
z+ > m

)
6 Cm−p−d/2

∫
m1/2−γ′<d(y,∂K)

d(y,∂K)62|y|1/2+δ
u(z+)

u(y)

d(y, ∂K)
|y|p−1 exp(−y2/(2m))dy.

Let us introduce the set

∂Km :=
{
y ∈ K : d(y, ∂K) 6 2m−1/4+δ|y|1/2+δ

}
.
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Using the fact that u(y) 6 Cd(y, ∂K)|y|p−1 on K, the change of variable y ↔ y/
√
m

yields

E
(
|f(z + S(m))|, χ`, A2, τz > m

)
6 Cu(z+)m−1

∫
∂Km

|y|2(p−1) exp(−y2/2)dy.

Since |y|1/2+δ 6 |y| for y ∈ K such that |y| > m1/2−γ′ , we have∫
∂Km

|y|2(p−1) exp(−y2/2)dy 6
∫
d(y,∂K)6m−1/4+δ|y|

|y|2(p−1) exp(−y2/2)dy

6Vol(w ∈ Σ, d(w, ∂Σ) 6 m−1/4+δ)

∫
R+

|y|2(p−1) exp(−y2/2)dy

6Cm−1/4+δ,

where we recall that Σ denotes the intersection Σ ∩ Sd−1 and we have used Steiner’s
formula (see Theorem 46 in [36, Ch. 16]) to compute the infinitesimal expansion for
the volume of the tubular region around the boundary of a Riemannian manifold with
convex or C2 boundary. This gives

E
(
|f(z + S(m))|, χ`, A2, τz > m

)
6 u(z+)Cm−1−1/4+δ

for some C > 0. Summing the terms coming from A1 and A2 gives the bound

E
(
|f(z+S(m))|, χ`, τz > m, d(z+S(m), ∂K) > `1/2−γ

)
6 Cu(z+)m−1−r 6 Cm−1−r|z+|p

for some r > 0 and uniformly on z ∈ K`,ε with |z| 6 θm
√
m. Since z ∈ K`,ε, |z| > `1/2−ε,

so that the condition γ > ε yields

|z+| 6 |z|+m1/2−γ 6 2|z|

for ` large enough. Since m ∼ ` as ` goes to infinity on the event {tx,ε(`) 6 `1−ε}, the
result is deduced. �

We can now give a bound on B
(3)
` .

E(|f(x+ S(`))|,τx > `, tx,ε(`) 6 `1−ε, |S(tx,ε(`))| 6 θ`
√
`, χ`, d(z + S(m), ∂K) > `1/2−γ)

6C`−1−rE(|xε(`)|p, τx > tx,ε(`), tx,ε(`) 6 `1−ε, |S(tx,ε(`))| 6 θ`
√
`)

6C`−1−rE(|x+ S(tx,ε(`))|p, τx > tx,ε(`), tx,ε(`) 6 `1−ε, |S(tx,ε(`))| 6 θ`
√
`)

Then, by the condition |S(tx,ε(`))| 6 θ`
√
`,

E(|x+ S(tx,ε(`))|p, τx > tx,ε(`), tx,ε(`) 6 `1−ε, |S(tx,ε(`))| 6 θ`
√
`)

=E(|x+ S(tx,ε(`))|p−r|x+ S(tx,ε(`))|r, τx > tx,ε(`), tx,ε(`) 6 `1−ε, |S(tx,ε(`))| 6 θ`
√
`)

6C
∣∣∣|x|+ θ`

√
`
∣∣∣r E( sup

16n6τx
|x+ S(n)|p−r

)
6 C(|x|r + `r/2)(1 + |x|)p−r,

where we have used the general bound E(sup16n6τx |x+S(n)|β) 6 C(1+ |x|)β for β < p
given by [35, Thm 3.1]. Finally, we have

E(|f(x+ S(`))|, τx > `, tx,ε(`) 6 `1−ε, |S(tx,ε(`))| 6 θ`
√
`, χ`) 6 C(1 + |x|)p`−1−r/2.
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In particular,

∞∑
`=|x|1/2

B
(3)
` 6 C(1 + |x|)p

∞∑
`=|x|1/2

`−1−r/2 6 C(1 + |x|)p−r/4.

for some constant C > 0. By [35, Thm 3.1],

|x|1/2∑
`=0

B
(3)
` 6

|x|1/2∑
`=0

E(|f(x+ S(`))|, τx > `) 6C
|x|1/2∑
`=0

E(|x+ S(`)|p−1, τx>`)

6C|x|1/2E
(

sup
16`6τx

|x+ S(`)|p−1

)
,

6C(1 + |x|)p−1/2.

Therefore, using the latter bounds with Lemma 38 finally yields

∞∑
`=0

B
(3)
` 6 C(1 + |x|)p−r (56)

for some positive constants C and r.
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