THE PLURIPOTENTIAL CAUCHY-DIRICHLET PROBLEM FOR COMPLEX MONGE-AMPERE FLOWS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

THE PLURIPOTENTIAL CAUCHY-DIRICHLET PROBLEM FOR COMPLEX MONGE-AMPERE FLOWS

Résumé

We develop the first steps of a parabolic pluripotential theory in bounded strongly pseudo-convex domains of Cn. We study certain degenerate parabolic complex Monge-Ampère equations, modelled on the Kähler-Ricci flow evolving on complex algebraic varieties with Kawamata log-terminal singularities. Under natural assumptions on the Cauchy-Dirichlet boundary data, we show that the envelope of pluripotential subsolutions is semi-concave in time and continuous in space, and provides the unique pluripotential solution with such regularity.
Fichier principal
Vignette du fichier
GLZlocalSept2018.pdf (527.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01887229 , version 1 (03-10-2018)
hal-01887229 , version 2 (19-07-2021)

Identifiants

Citer

Vincent Guedj, Chinh H. Lu, Ahmed Zeriahi. THE PLURIPOTENTIAL CAUCHY-DIRICHLET PROBLEM FOR COMPLEX MONGE-AMPERE FLOWS. 2018. ⟨hal-01887229v1⟩
133 Consultations
199 Téléchargements

Altmetric

Partager

More