THE PLURIPOTENTIAL CAUCHY-DIRICHLET PROBLEM FOR COMPLEX MONGE-AMPERE FLOWS
Résumé
We develop the first steps of a parabolic pluripotential theory in bounded strongly pseudo-convex domains of Cn. We study certain degenerate parabolic complex Monge-Ampère equations, modelled on the Kähler-Ricci flow evolving on complex algebraic varieties with Kawamata log-terminal singularities. Under natural assumptions on the Cauchy-Dirichlet boundary data, we show that the envelope of pluripotential subsolutions is semi-concave in time and continuous in space, and provides the unique pluripotential solution with such regularity.
Origine | Fichiers produits par l'(les) auteur(s) |
---|