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THE PLURIPOTENTIAL CAUCHY-DIRICHLET PROBLEM

FOR COMPLEX MONGE-AMPÈRE FLOWS

VINCENT GUEDJ, CHINH H. LU, AND AHMED ZERIAHI

Abstract. We develop the first steps of a parabolic pluripotential the-
ory in bounded strongly pseudo-convex domains of Cn. We study cer-
tain degenerate parabolic complex Monge-Ampère equations, modelled
on the Kähler-Ricci flow evolving on complex algebraic varieties with
Kawamata log-terminal singularities.

Under natural assumptions on the Cauchy-Dirichlet boundary data,
we show that the envelope of pluripotential subsolutions is semi-concave
in time and continuous in space, and provides the unique pluripotential
solution with such regularity.
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Introduction

The Ricci flow, first introduced by Hamilton [Ham82] is the equation

∂

∂t
gij = −2Rij ,

evolving a Riemannian metric by its Ricci curvature. If the Ricci flow starts
from a Kähler metric, the evolving metrics remain Kähler and the resulting
PDE is called the Kähler-Ricci flow.
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It is expected that the Kähler-Ricci flow can be used to give a geomet-
ric classification of complex algebraic and Kähler manifolds, and produce
canonical metrics at the same time. Solving the Kähler-Ricci flow boils
down to solving a parabolic scalar equation modeled on

det

(

∂2ut
∂zj∂z̄k

(t, z)

)

= e∂tut(z)+H(t,z)+λut(z)

where t 7→ ut(z) = u(t, z) is a smooth family of strictly plurisubharmonic
functions in Cn, λ ∈ R and g = eH is a smooth and positive density.

It is important for geometric applications to study degenerate versions of
these complex Monge-Ampère flows, where the functions ut are no longer
smooth nor strictly plurisubharmonic, and the densities may vanish or blow
up (see [SW13, CT15, ST17, EGZ18] and the references therein).

A viscosity approach has been developed recently in [EGZ15], following
its elliptic counterpart [EGZ11, HL11, HL13]. While the viscosity theory is
very robust, it requires the data to be continuous hence has a limited scope
of applications. Several geometric situations encountered in the Minimal
Model program (MMP) necessitate one to deal with Kawamata log-terminal
(klt) singularities. The viscosity approach breaks down in these cases and a
more flexible method is necessary.

There is a well established pluripotential theory of weak solutions to de-
generate elliptic complex Monge-Ampère equations, following the pioneering
work of Bedford-Taylor [BT76, BT82]. This theory allows to deal with Lp-
densities as established in a corner stone result of Ko lodziej [Ko l98], which
provides a great generalization of [Yau78].

No similar theory has ever been developed on the parabolic side. The
purpose of this article, the first of a series on this subject, is to develop
a pluripotential theory for degenerate complex Monge-Ampère flows. This
article settles the foundational material for this theory and focuses on solving
the Cauchy-Dirichlet problem in domains of Cn.

We consider the following family of Monge-Ampère flows

(CMAF) dt ∧ (ddcu)n = e∂tu+F (t,z,u)g(z)dt ∧ dV,

in ΩT :=]0, T [×Ω, where dV is the euclidean volume form on Cn and

• T > 0 and Ω ⋐ Cn is a bounded strictly pseudoconvex domain;
• F (t, z, r) is continuous in [0, T [×Ω × R, increasing in r, bounded in

[0, T [×Ω × J , for each J ⋐ R;
• (t, r) 7→ F (t, ·, r) is uniformly Lipschitz and semi-convex in (t, r);
• g ∈ Lp(Ω), p > 1, and g > 0 almost everywhere ;
• u : [0, T [×Ω → R is the unknown function.

Here d = ∂ + ∂ and dc = i(∂ − ∂)/2 so that ddc = i∂∂ and (ddcu)n

represents the determinant of the complex Hessian of u in space (the complex
Monge-Ampère operator) whenever u is C2-smooth.



PLURIPOTENTIAL COMPLEX MONGE-AMPÈRE FLOWS 3

For less regular functions u, the equation (CMAF) should be understood
in the weak sense of pluripotential theory as we explain in Section 2.

We let P(ΩT ) denote the set of parabolic potentials, i.e. those functions
u : ΩT → [−∞,+∞[ defined in ΩT =]0, T [×Ω and satisfying the following
conditions:

• for any t ∈]0, T [, u(t, ·) is plurisubharmonic in Ω;
• the family {u(·, z) ; z ∈ Ω} is locally uniformly Lipschitz in ]0, T [.

We study in Section 1 basic properties of parabolic potentials. We show
in Lemma 1.3 that if u ∈ P(ΩT ) and is bounded from above in ΩT then it
can be uniquely extended as an upper-semicontinuous function in [0, T [×Ω
such that u(0, ·) is plurisubharmonic in Ω. We show that parabolic potentials
satisfy approximate submean value inequalities (Lemma 1.6) and enjoy good
compactness properties (Proposition 1.14).

We show in Section 2 that parabolic complex Monge-Ampère operators
are well defined on P(ΩT ) ∩ L∞

loc(ΩT ) and enjoy nice continuity properties,
allowing to make sense of pluripotential sub/super/solutions to (CMAF) (see
Definition 3.1). A crucial convergence property is obtained in Proposition
2.9, under a semi-concavity assumption on the family of parabolic potentials.

A Cauchy-Dirichlet boundary data is a function h defined on the parabolic
boundary of ΩT denoted by

∂0ΩT := ([0, T [×∂Ω) ∪ ({0} × Ω),

such that

• the restriction of h on [0, T [×∂Ω is continuous;
• the family {h(·, z) ; z ∈ ∂Ω} is locally uniformly Lipschitz in ]0, T [ ;
• h satisfies the following compatibility condition : ∀ζ ∈ ∂Ω,

(0.1) h0 := h(0, ·) ∈ PSH(Ω) ∩ L∞(Ω) and lim
Ω∋z→ζ

h(0, z) = h(0, ζ).

The Cauchy-Dirichlet problem for the parabolic equation (CMAF) with
Cauchy-Dirichlet boundary data h consists in finding u ∈ P(ΩT ) ∩L∞(ΩT )
such that (CMAF) holds in the pluripotential sense in ΩT and the following
Cauchy-Dirichlet boundary conditions are satisfied :

(0.2) ∀(τ, ζ) ∈ [0, T [×∂Ω, lim
ΩT∋(t,z)→(τ,ζ)

u(t, z) = h(τ, ζ).

(0.3) lim
t→0+

ut = h0 in L1(Ω).

In this case we say that u is a solution to the Cauchy-Dirichlet problem for
the equation (CMAF) with boundary values h.

Observe that a solution u to the equation (CMAF) has plurisubharmonic
slices in Ω and the Cauchy condition (0.3) implies by a classical result in
pluripotential theory that (lim supt→0 ut)

∗ = h∗0 ∈ PSH(Ω), hence h0 =
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h∗0 ∈ PSH(Ω). This observation shows that the Cauchy data h0 must be
plurisubharmonic as it is required in the compatibility condition (0.1).

For a solution to the Cauchy-Dirichlet problem for the equation (CMAF),
the Cauchy condition (0.3) implies that

∀z ∈ Ω, lim
t→0+

ut(z) = h0(z).

It is possible to consider less regular initial Cauchy data h(0, ·) (see [Do17,
Do16]), but we will not pursue this here.

We try and construct a solution to the Cauchy-Dirichlet problem by the
Perron method, considering the upper envelope U of pluripotential subsolu-
tions.

The technical core of the paper lies in Section 3 and Section 4. In Sec-
tion 3 we construct subbarriers and controls from above to ensure that U
has the right boundary values (see Theorem 3.12). In Section 4 we prove
that the Perron envelope of subsolutions is locally uniformly Lipschitz and
semiconcave in time.

Theorem A. Assume h is a Cauchy-Dirichlet boundary data in ΩT such
that for all 0 < S < T , and for all (t, z) ∈]0, S] × ∂Ω,

(†) t|∂th(t, z)| ≤ C(S) and t2∂2t h(t, z) ≤ C(S),

Then the envelope U = Uh,g,F is locally uniformly Lipschitz and locally
uniformly semi-concave in t ∈]0, T [. Moreover, U satisfies the Cauchy-
Dirichlet boundary conditions (0.2), (0.3).

Here C(S) is a positive constant depending on S which may blow up as
S → T . The proof of Theorem A, which shows in particular that U satisfies
(†), is given in Theorem 4.2, Theorem 4.6 and Theorem 4.7. The Lipschitz
and semi-concave constants of U depend explicitly on C(S).

We prove in Theorem 5.1 that the envelope U is moreover (Lipschitz)
continuous in space if so are the data (h0, log g, F ).

Focusing for a while on the case of the unit ball with regular boundary
data, we obtain the following parabolic analogue of Bedford and Taylor’s
celebrated result [BT76] :

Theorem B. Assume Ω = B is the unit ball in Cn and

• G := log g is C1,1 in B̄;
• h is uniformly Lipschitz in t ∈ [0, T [, satisfies ∂2t h(t, z) ≤ C/t2,
z ∈ ∂B, and h is uniformly C1,1 in z ∈ B̄;

• F is Lipschitz and semi-convex in [0, T [×B̄ × J , for each J ⋐ R.

Then the upper envelope U := Uh,g,F is locally uniformly C1,1 in z and
locally uniformly Lipschitz in t ∈]0, T [. For almost any (t, z) ∈ BT , we have

det
(

∂j ∂̄kU(t, z)
)

= e∂tU(t,z)+F (t,z,U(t,z))g(z).

In particular U is a pluripotential solution to the Cauchy-Dirichlet prob-
lem for the parabolic equation (CMAF) with boundary values h.
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This result is obtained as a combination of Theorem 5.3 and Theorem
6.1. Using an approximation and balayage process we then treat the case
of more general domains Ω with less regular boundary data, obtaining the
following solution to our original problem :

Theorem C. Assume h is a Cauchy-Dirichlet boundary data in ΩT such
that for all 0 < S < T , and for all (t, z) ∈]0, S] × ∂Ω,

(†) t|∂th(t, z)| ≤ C(S) and t2∂2t h(t, z) ≤ C(S),

The envelope of all subsolutions to (CMAF) with Cauchy-Dirichlet bound-
ary data h is a pluripotential solution to this Cauchy-Dirichlet problem.

The proof of this fundamental result is given in Theorem 6.4. We even-
tually establish a comparison principle, which shows that Uh,g,F is unique:

Theorem D. Same assumptions as in Theorem A. Let Φ be a bounded
pluripotential subsolution to (CMAF) with boundary values hΦ. Let Ψ be a
bounded pluripotential supersolution with boundary values hΨ, such that Ψ
is locally uniformly semi-concave in t ∈]0, T [ and hΦ satisfies (†). Then

hΨ ≥ hΦ on ∂0ΩT =⇒ Φ ≤ Ψ in ΩT .

In particular, there is a unique pluripotential solution to the Cauchy-
Dirichlet problem for (CMAF) with boundary data h, which is locally uni-
formly semi-concave in t.

The proof of Theorem D is given in Section 6.3; it uses some ideas from
[GLZ18, DL17]. When all the data (h, F, g, u) are continuous, one can
show that the solution U coincides with the viscosity solution constructed
in [EGZ15]. We refer the reader to [GLZ3] for a detailed comparison of
viscosity and pluripotential concepts.

Notations and assumptions on the data

We finish this introduction by fixing some notations that will be used
throughout the paper.

The domain. In the whole article we let dV denote the euclidean volume
form in Cn and Ω ⋐ Cn be a strictly pseudoconvex domain : there exists a
smooth function ρ in a neighborhood V of Ω̄ such that

Ω = {z ∈ V ; ρ(z) < 0},
where ∂zρ 6= 0 on ∂Ω and ρ is strictly plurisubharmonic in V . We set
ΩT :=]0, T [×Ω with T > 0. Most of the time we will assume that T < +∞.

Recall that if a function u : Ω → [−∞,+∞[ is plurisubharmonic, then
ddcu ≥ 0 is a positive current on Ω. Here d = ∂ + ∂ and dc = (i/2)(∂ − ∂)
are both real operators so that ddc = i∂∂.

We let B denote the euclidean unit ball in Cn and λB denote the normal-
ized Lebesgue measure on B.
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The function F . We assume that F : [0, T [×Ω × R → R is continuous and

• bounded in [0, T [×Ω × J for each 0 < S < T , J ⋐ R;
• increasing in r: r 7→ F (t, x, r) is increasing for all (t, x) ∈ ΩT fixed;
• locally uniformly Lipschitz in (t, r) : for each compact J ⋐ R and

each 0 < S < T there exists a constant κ = κ(S, J) > 0 such that
for all t, τ ∈ [0, S], z ∈ Ω, r, r′ ∈ J ,

(0.4) |F (t, z, r) − F (τ, z, r′)| ≤ κ(|t− τ | + |r − r′|);
• locally uniformly semi-convex in (t, r) : for each compact subset

[0, S] × J ⋐ [0, T [×R there exists a constant C = C(S, J) > 0 such
that, for any z ∈ Ω, the function

(0.5) (t, r) 7→ F (t, z, r) + C(t2 + r2) is convex in [0, S] × J.

The density g. We assume that

• 0 ≤ g ∈ Lp(Ω) for some p > 1 that is fixed thoughout the paper ;
• the set {z ∈ Ω ; g(z) = 0} has Lebesgue measure zero.

Boundary data h. We assume throughout the article that

• h : ∂0ΩT → R is bounded, upper semi-continuous on ∂0ΩT ;
• the restriction of h on [0, T [×∂Ω is continuous;
• t 7→ h(t, z) is locally uniformly Lipschitz in ]0, T [: for all 0 < S < T

there is C(S) > 0 such that for all (t, z) ∈]0, S] × ∂Ω,

t|∂th(t, z)| ≤ C(S);

• h(0, ·) is bounded, plurisubharmonic in Ω, and satisfies

lim
Ω∋z→ζ

h(0, z) = h(0, ζ), ∀ζ ∈ ∂Ω.

We eventually also assume that t 7→ h(t, z) is locally uniformly semi-
concave in ]0, T [ : for all 0 < S < T there is C(S) > 0 such that

t2∂2t h(t, z) ≤ C(S), ∀(t, z) ∈ [0, S] × ∂Ω.

The constants. We fix once and for all various uniform constants:

(0.6) Mh := sup
∂0ΩT

|h| , MF := sup
ΩT

F (·, ·,Mh).

We fix a plurisubharmonic function ρ in Ω, continuous in Ω̄ so that

(0.7) (ddcρ)n = gdV, ρ = 0 in ∂Ω,

in the weak sense in Ω. Such a function exists by [Ko l95, Ko l98] and there
is moreover a uniform a priori bound on ρ,

‖ρ‖L∞(Ω) ≤ cn‖f‖1/nLp(Ω),

where cn > 0 is a uniform constant depending on n,Ω.
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1. Families of plurisubharmonic functions

Parabolic potentials form the basic objects of our study. They can be
seen as weakly regular family of plurisubharmonic functions. In this section
we define them and establish their first properties.

1.1. Basic properties.

1.1.1. Parabolic potentials. We start with some basic definitions which will
be used throughout all the paper.

Definition 1.1. Let u : ΩT :=]0, T [×Ω −→ [−∞,+∞[ be a given function.
We say that the family {u(·, z) ; z ∈ Ω} is locally uniformly Lipschitz in

]0, T [ if for any subinterval J ⋐]0, T [ there exists a constant κ := κJ(u) > 0
such that

(1.1) u(t, z) ≤ u(s, z) + κ|t− s|, for all s, t ∈ J and z ∈ Ω.

Definition 1.2. The set of parabolic potentials P(ΩT ) is the set of functions
u : ΩT :=]0, T [×Ω −→ [−∞,+∞[ such that

• for all t ∈]0, T [, the slice ut : z 7→ u(t, z) is plurisubharmonic in Ω;
• the family {u(·, z) ; z ∈ Ω} is locally uniformly Lipschitz in ]0, T [.

PSH(Ω) embeds in P(ΩT ) as the class of time independent potentials. Ba-
sic operations on plurisubharmonic functions extend naturally to parabolic
potentials:

• if u, v ∈ P(ΩT ) then u+ v ∈ P(ΩT ) and max(u, v) ∈ P(ΩT );
• if u ∈ P(ΩT ) and λ ≥ 0 then λu is also a parabolic potential.

It follows from the next Lemma that parabolic potentials extend naturally
as upper semi-continous functions in [0, T [×Ω.

Lemma 1.3. Let u :]0, T [×Ω −→ [−∞,+∞[ be a function bounded from
above and satisfying the following conditions :

(i) for any t ∈]0, T [ the function ut := u(t, ·) is plurisubharmonic in Ω ;
(ii) for all z ∈ Ω the function u(·, z) is upper semicontinuous in ]0, T [.

For z ∈ Ω we set

u0(z) := (lim sup
t→0+

ut)
∗(z) = lim sup

ζ→z

(

lim sup
t→0+

ut(ζ)

)

.

Then u0 is plurisubharmonic in Ω and the extension u : [0, T [×Ω →
[−∞,+∞[ is upper semicontinuous in [0, T [×Ω.

Proof. Since u is bounded from above we can assume that u ≤ 0. Fix
(t0, z0) ∈ ΩT and let r > 0 be such that B(z0, 2r) ⋐ Ω. Fix δ ∈]0, r[.

Since ut ≤ 0, by the submean value inequality for psh functions, we have
for |z − z0| ≤ δ and t ∈]0, T [,

u(t, z) ≤ 1

Vol(B(z, r + δ))

∫

B(z0,r)
u(t, ζ)dV (ζ).
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It thus follows from Fatou’s Lemma and assumption (ii) that

(1.2) lim sup
(t,z)→(t0,z0)

u(t, z) ≤ 1

Vol(B(z0, r + δ))

∫

B(z0,r)
u(t0, ζ)dV (ζ).

Since u(t0, ·) is plurisubharmonic in Ω, letting δ → 0+ and r → 0+ we obtain

lim sup
(t,z)→(t0,z0)

u(t, z) ≤ u(t0, z0),

which proves that u is upper semi-continuous at (t0, z0).
Now if t0 = 0, since {ut ; t ∈]0, T [} is a family of plurisubharmonic

functions in Ω which is uniformly bounded from above, it follows that u0 is
plurisubharmonic in Ω. Then by (1.2),

lim sup
(t,z)→(0,z0)

u(t, z) ≤ 1

Vol(B(z0, r + δ))

∫

B(z0,r)
u0(ζ)dV (ζ).

Letting r → 0+ we obtain, by the plurisubharmonicity of u0,

lim sup
(t,z)→(0,z0)

u(t, z) ≤ u0(z0) =: u(0, z0),

which proves the semi-continuity of the extension at the point (0, z0). �

The next result provides a parabolic analogue of a classical result of Le-
long about negligible sets for plurisubharmonic functions; it will play an
important role in section 3.

Lemma 1.4. Let U ⊂ P(ΩT ) be a family of functions which is locally uni-
formly bounded from above. Assume U := sup{u ; u ∈ U} is locally uni-
formly Lipschitz in t ∈]0, T [. Then

• the upper semicontinuous regularization U∗ (in ΩT ) belongs to P(ΩT );
• for any t ∈]0, T [, U∗(t, ·) = (Ut)

∗ in Ω and the exceptional set

E(U) := {(t, z) ∈ ΩT ; U(t, z) < U∗(t, z)}
has zero (2n+ 1)-dimensional Lebesgue measure in ΩT ⊂ R2n+1.

The smallness of the exceptional set E(U) can be made more precise: all
the t-slices of E(U) have zero 2n-dimensional Lebesgue measure in Ω.

Proof. Our assumption ensures that the function U is locally bounded from
above. The first statement follows immediately from (1.1). Since U is locally
Lipschitz in t, there is no need to regularize in the t variable: it follows from
Lemma 1.5 that for all (t, z) ∈ ΩT ,

U∗(t, z) = (Ut)
∗(z),

where the upper semicontinuous regularization in the LHS is in the (t, z)-
variable, while the upper semicontinuous regularization in the RHS is in
the z-variable only, t being fixed. A classical theorem of Lelong (see [GZ,
Proposition 1.40]) ensures that Et = {z ∈ Ω ; Ut(z) < (Ut)

∗(z)} has zero
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Lebesgue measure in Cn. Since E = {(t, z) ∈ ΩT ; z ∈ Et} the second
statement of the lemma follows from Fubini’s theorem. �

1.1.2. Semi-continuous regularization. Given a function u on a metric space
(Z, d) which is locally bounded from above, we define uscZu to be the small-
est upper semi-continuous function lying above u,

uscZu (z) := lim sup
z′→z

u(z′) = inf
r>0

(

sup
B(z,r)

u

)

.

Fix I ⊂ R an interval, (Y, d) a metric space and φ : I × Y −→ [−∞,∞[ a
function. For any δ > 0, we denote by κI(φ, δ) the smallest constant κ > 0
such that for any s, t ∈ I with |s− t| ≤ δ and any y ∈ Y ,

φ(t, y) ≤ φ(s, y) + κ.

Lemma 1.5. Assume φ : I×Y −→ [−∞,+∞[ satisfies limδ→0 κI(φ, δ) = 0.
Then for all t ∈ I and y ∈ Y ,

(uscY φt)(y) = (uscI×Y φ)(t, y).

In particular if φ(t0, ·) is upper semi-continuous at a point y0 ∈ Y for
some t0 ∈ I, then φ is upper semi-continuous at the point (t0, y0) ∈ I × Y .

It follows from Lemma 1.5 that parabolic potentials are upper semi-
continuious in ΩT .

We can introduce similarly the lower semi-continuous regularization lscZu
of a function u which is locally bounded from below on Z. A similar con-
clusion holds.

Proof. Observe that uscI×Y φ(t, y) ≥ uscY (φt)(y) for any (t, y) ∈ I × Y . To
prove the reverse inequality, fix t ∈ I, y ∈ Y , A ≥ uscY (φt)(y) and ε > 0.
Then there exists a neighborhood V of y in Y such that for z ∈ V we have

φ(t, z) ≤ A+ ε.

Since limδ→0 κI(φ, δ) = 0, there exists δ > 0 small enough such that κI(φ, δ) ≤
ε. For (s, z) ∈ I × V with |s− t| ≤ δ we have

φ(s, z) ≤ φ(t, z) + κI(φ, δ) ≤ A+ ε+ κI(φ, δ) ≤ A+ 2ε.

This proves the inequality uscI×Y φ(t, y) ≤ uscY (φt)(y). �

1.1.3. Approximate submean value inequalities. Parabolic potentials satisfy
approximate sub-mean value inequalities:

Lemma 1.6. Let Ω ⊂ Cn be a domain and u ∈ P(ΩT ). Fix (t0, x0) ∈ ΩT

and ε0, r0 > 0 so that [t0 − ε0, t0 + ε0] × B̄(x0, r0) ⋐ ΩT . Then for any
0 < ε ≤ ε0, 0 < r ≤ r0,

u(t0, x0) ≤
∫ 1

−1

∫

B

u(t0 + εs, x0 + rξ) dλB(ξ) ds/2 + κ0ε,

where κ0 > 0 is the uniform Lipschitz constant of u in [t0 − ε0, t0 + ε0] ×
B(x0, r).
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Proof. Since u(t0, ·) is psh in Ω, the submean-value inequality yields, for all
0 < r ≤ r0,

u(t0, z0) ≤
∫

B

u(t0, z0 + rξ) dλB(ξ).

The Lipschitz condition ensures that for 0 < r ≤ r0, 0 < ε ≤ ε0, and
−1 ≤ s ≤ 1,

∫

B

u(t0, z0 + rξ) dλB(ξ) ≤
∫

B

u(t0 + εs, z0 + rξ) dλB(ξ) + κ0ε|s|.

Integrating in s we obtain the required inequality. �

Parabolic potentials therefore enjoy interesting integrability properties:

Corollary 1.7. We have P(ΩT ) ⊂ Lqloc(ΩT ) for any q ≥ 1. Moreover if
u ∈ P(ΩT ) then for all (t, z) ∈ ΩT ,

u(t, z) = lim
ε,r→0

∫ 1

−1

∫

B

u(t + εs, z + rξ) dλB(ξ) ds/2.

In particular if u, v ∈ P(ΩT ) and u ≤ v a.e. in ΩT , then u ≤ v everywhere.

Proof. Let u ∈ P(ΩT ) and fix K ⋐ ΩT a compact subset. Then there
exists a compact interval J ⋐]0, T [ and a compact subset D ⋐ Ω such that
K ⊂ J ×D.

Fix t0 ∈ J . Since u(t0, ·) is plurisubharmonic in Ω we have that u(t0, ·) ∈
Lq(D). Since u(·, z) is uniformly Lipschitz in J we infer |u(t, z)−u(t0, z)| ≤
κJ |t− t0| for all t ∈ J and z ∈ D. It thus follows from Fubini’s theorem that
∫

J×D
|u(t, z)|qdV (z)dt =

∫

J×D
|u(t, z)|qdV (z)dt

≤ 2q−1

(
∫

J×D
(|u(t0, z)|q + |u(t, z) − u(t0, z)|q) dV (z)dt

)

≤ 2q−1

∫

J×D
|u(t0, z)|q + 2q−1κqJVol(D)

∫

J
|t− t0|qdt.

This proves that u ∈ Lq(K), hence u ∈ Lqloc(ΩT ).

Fix (t0, z0) ∈ ΩT and δ > 0. Since u(t0, ·) is psh in Ω we have

u(t0, z0) = lim
r→0+

∫

B

u(t0, z0 + rξ)dλB(ξ).

For small enough r > 0 we infer

u(t0, z0) ≥
∫

B

u(t0, z0 + rξ)dλB(ξ) − δ.

Fix ε0 > 0 such that [t0−ε0, t0+ε0] ⋐]0, T [. Let κ0 be the uniform Lipschitz
constant of u in [t0 − ε0, t0 + ε0] × Ω. Then for ε ∈]0, ε0[,

u(t0, z0) ≥
∫

B

u(t0 + εs, z0 + rξ)dλB(ξ) − κ0ε|s| − δ.
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Integrating in s ∈ [−1, 1] we obtain

u(t0, z0) ≥
∫ 1

−1

∫

B

u(t0 + εs, z0 + rξ)dλB(ξ)ds/2 − κ0ε− δ.

Letting r → 0, ε → 0 and then δ → 0 we get one inequality. The reverse
inequality was already obtained in Lemma 1.6. �

1.2. Behaviour on slices. We now estimate the L1-norm on slices in terms
of the global L1-norm.

Lemma 1.8. Fix u, v ∈ P(ΩT ) and 0 < T0 < T1 < S < T . Then for all
T0 ≤ t ≤ T1,

‖u(t, ·) − v(t, ·)‖L1(Ω) ≤ 2M max
{

‖u− v‖1/2
L1(ΩT1

)
, ‖u− v‖L1(ΩT1

)

}

,

where M := max{
√

κVol(Ω), (S − T1)−1}, and

κ := sup
z∈Ω

sup∗
t,s∈[T0,S]

|(u− v)(t, z) − (u− v)(s, z)|
|t− s|

is the uniform Lipschitz constant of u− v in [T0, S].

Here sup∗ is the essential sup with respect to Lebesgue measure. This
lemma quantifies the following facts : for functions in P(ΩT ),

• convergence in L1(ΩT ) implies convergence of their slices in L1(Ω);
• boundedness in L1(ΩT ) implies compactness of their slices in L1(Ω).

Proof. Since u, v are uniformly Lipschitz in [T0, S] × Ω, we deduce that for
any T0 ≤ t ≤ S, and T0 ≤ s ≤ S,

|u(t, x) − v(t, x)| ≤ κ|s− t| + |u(s, x) − v(s, x)|,
where κ > 0 is the uniform Lipschitz constant of u− v on [T0, S]. We infer
∫

Ω
|u(t, z) − v(t, z)|dV (z) ≤ κ|s − t|Vol(Ω) +

∫

Ω
|u(s, z) − v(s, z)|dV (z).

Thus the function

t 7→ θ(t) :=

∫

Ω
|u(t, z) − v(t, z)|dV (z),

is a Lipschitz function in [T0, S] with Lipschitz constant κVol(Ω). The con-
clusion follows from the next lemma, an elementary result in one real vari-
able. �

We have used the following inequality :

Lemma 1.9. Fix 0 < S0 < S1 < S and let θ : [S0, S] −→ R be such that for
all s, σ ∈ [S0, S] with s ≤ σ, θ(s) ≤ θ(σ) + κ(σ − s). Then

max
S0≤s≤S1

θ(s) ≤ 2M max{
√

‖θ‖, ‖θ‖},

where M := max{√κ, (S − S1)
−1} and ‖θ‖ := ‖θ‖L1([S0,S]).
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Proof. Fix 0 < δ ≤ S − S1. Then for σ, s ∈ [S0, S1] with s ≤ σ,

θ(s) ≤ θ(σ) + κ(σ − s).

Fix S0 ≤ s ≤ S1. Integrating in σ in [s, s+ δ] ⊂ [S0, S], we get

(1.3) θ(s) ≤ κ δ

2
+

∫ s+δ

s
θ(σ)

dσ

δ
≤ δκ

2
+ δ−1‖θ‖.

The minimum of τ 7−→ κτ/2 + τ−1‖θ‖ is achieved at τ0 :=
√

2‖θ‖1/2/√κ. If

2‖θ‖ ≤ κ(S − S1)
2 i.e. τ0 ≤ S − S1, then θ(t) ≤ 2

√

κ‖θ‖, for t ∈ [S0, S1]. If
2‖θ‖ ≥ κ(S − S1)

2, applying (1.3) with δ = S − S1 yields

max
S0≤t≤S1

θ(t) ≤ κ(S − S1)/2 + ‖θ‖(S − S1)
−1 ≤ 2‖θ‖(S − S1)

−1.

Altogether we obtain

max
S0≤t≤S1

θ(t) ≤ 2 max{
√

κ‖θ‖, ‖θ‖(S − S1)
−1}.

�

1.3. Time derivatives and semi-concavity. In this section we observe
that a parabolic potential ϕ has well defined time derivatives ∂tϕ almost
everywhere. Let ℓ denote the Lebesgue measure on R, and fix a positive
Borel measure µ on Ω.

Lemma 1.10. Fix ϕ ∈ P(ΩT ). Then there exists a Borel set E ⊂ ΩT

ℓ⊗ µ-negligible such that ∂tϕ(t, z) exists for all (t, z) /∈ E.
In particular ∂tϕ ∈ L∞

loc(ΩT ) and for any continuous function γ ∈ C0(R,R),
γ(∂tϕ) ℓ⊗ µ is a well defined Borel measure in ΩT .

Proof. We set, for (t, z) ∈ ΩT ,

∂ut ϕ(t, z) := lim sup
s→0

ϕ(t + s, z) − ϕ(t, z)

s
= lim sup

Q∗∋s→0

ϕ(t+ s, z) − ϕ(t, z)

s
,

and

∂ltϕ(t, z) := lim inf
s→0

ϕ(t + s, z) − ϕ(t, z)

s
= lim inf

Q∗∋s→0

ϕ(t + s, z) − ϕ(t, z)

s
.

The equalities above follow from the Lipschitz property of ϕ. These two
functions are measurable in (ΩT , ℓ⊗ µ), hence the set

E := {(t, x) ∈ ΩT ; ∂lϕ(t, z) < ∂uϕ(t, z)}
is ℓ ⊗ µ-measurable. For each z ∈ Ω fixed, t 7→ ϕ(t, z) is locally Lipschitz
hence differentiable almost everywhere in ]0, T [. Hence, for all z ∈ Ω,

Ez := {t ∈]0, T [ ; (t, z) ∈ E}
has zero ℓ-measure. Fubini’s theorem thus ensures that ℓ⊗ µ(E) = 0. �
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The previous lemma shows that ∂ut ϕ = ∂ltϕ, ℓ ⊗ µ-almost everywhere in
ΩT . These thus define a function which we denote by ∂tϕ ∈ L∞

loc(ΩT ).
When ϕ is semi-concave (or semi-convex) in t, we can improve the previous

result.

Definition 1.11. We say that ϕ : ΩT −→ R is uniformly semi-concave in
]0, T [ if for any compact J ⋐]0, T [, there exists κ = κ(J, ϕ) > 0 such that
for all z ∈ Ω, the function t 7−→ ϕ(t, z) − κt2 is concave in J .

The definition of uniformly semi-convex functions is analogous. Note that
such functions are automatically locally uniformly Lipschitz.

Lemma 1.12. Let ϕ : ΩT −→ R be a continuous function which is uniformly
semi-concave in ]0, T [. Then (t, z) 7→ ∂−t ϕ(t, z) is upper semi-continuous
while (t, z) 7→ ∂+t ϕ(t, z) is lower semi-continuous in ΩT . In particular, there
exists a Borel set E ⊂ ΩT which is ℓ⊗ µ-negligible, such that ∂+t ϕ and ∂−t ϕ
coincide and are continous at each point in ΩT \E.

By replacing ϕ with −ϕ one obtains similar conclusions for uniformly
semi-convex functions.

For a bounded parabolic potential ϕ which is locally semi-concave in t
the left and right derivatives

∂+t ϕ(t, z) = lim
s→0+

ϕ(t + s, z) − ϕ(t, z)

s
,

and

∂−t ϕ(t, z) := lim
s→0−

ϕ(t + s, z) − ϕ(t, z)

s

exist for all t ∈]0, T [, and ∂tϕ(t, z) exists if ∂+t ϕ(t, z) = ∂−t ϕ(t, z).

Proof. For simplicity we only treat the semi-convex case. It suffices to con-
sider the case when t 7→ ϕ(t, z) is convex in ]0, T [, for all z ∈ Ω. In this case
for all (t, z) ∈ ΩT , the slope function

s 7−→ ps(t, z) :=
ϕ(t + s, z) − ϕ(t, z)

s
,

is monotone increasing on each interval not containing 0. It is moreover
continuous in (t, z). In particular,

∂+t ϕ(t, z) = lim
s→0+

ps(t, z) = inf
s>0

ps(t, z),

is upper semi-continuous in ΩT and

∂−t ϕ(t, z) = lim
s→0−

ps(t, z) = sup
s<0

ps(t, z),

is lower semi-continuous in ΩT . This proves the first part of the lemma.
The second part follows from the fact that convex functions are locally

Lipschitz in their domain and Lemma 1.10. �
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1.4. Compactness properties. We introduce a natural complete metriz-
able topology on the convex set P(ΩT ).

We recall the definition of the Sobolev space W 1,0
∞,loc(ΩT ) : this is the

set of functions u ∈ L1
loc(ΩT ) whose partial time derivative (in the sense of

distributions) satisfies ∂tu ∈ L∞
loc(ΩT ). It follows from Lemma 1.10 that

P(ΩT ) ⊂W 1,0
∞,loc(ΩT ).

Let K ⊂ Ω be a compact subset. The local uniform Lipschitz constant of
ϕ ∈ P(ΩT ) on a compact subinterval J ⋐]0, T [ is given by

sup
t,s∈J,s 6=t

sup
z∈K

∗ |ϕ(s, z) − ϕ(t, z)|
|s− t| = ‖∂tϕ‖L∞(J×Ω).

Definition 1.13. We endow P(ΩT ) with the semi-norms associated to

W 1,0
∞,loc(ΩT ): given a compact subset J ⋐]0, T [ and u ∈W 1,0

∞,loc(Ω), we set

ρJ,K(u) := ‖∂tu‖L∞(J×K) +

∫

J

∫

K
|u(t, z)|dV (z)dt.

The spaces Lq(ΩT ) are defined with respect to the (2n + 1)-dimensional

Lebesgue measure in ΩT . For k, ℓ ∈ N and q ≥ 1, we denote by W k,ℓ
q,loc(ΩT )

the Sobolev space of Lebesgue measurable functions whose partial deriva-
tives with respect to t up to order k and partial derivatives with respect to
z up to order ℓ in the sense of distributions are in Lqloc(ΩT ).

Parabolic potentials enjoy useful compactness properties :

Proposition 1.14. Let (ϕj) ⊂ P(ΩT ) be a sequence which

• is locally uniformly bounded from above in ΩT ;
• is locally uniformly Lipschitz in ]0, T [;
• does not converge locally uniformly to −∞ in ΩT .

Then (ϕj) is bounded in L1
loc(ΩT ) and there exists a subsequence which

converges to some function ϕ ∈ P(ΩT ) in L1
loc(ΩT )-topology.

If (ϕj) converges weakly to ϕ in the sense of distributions in ΩT , then it
converges in Lqloc(ΩT ) for all q ≥ 1.

The proof is an extension of Hartog’s lemma for sequences of plurisub-
harmonic functions (see e.g. [GZ, Theorem 1.46]).

Proof. We first prove that (ϕj) is bounded in L1
loc(ΩT ). Fix J ⋐]0, T [ and

K ⋐ Ω. From the assumptions it follows that, for each t ∈ J fixed, ϕj(t, ·)
does not converge locally uniformly in Ω to −∞. Hence ϕj(t, ·) is bounded
in L1

loc(Ω, dV ). The second condition thus ensures that {ϕj} is uniformly
bounded in L1(J ×K).

For each r ∈ Q∩]0, T [, there exists a subsequence of ϕj(r, ·) which con-
verges in L1

loc(Ω) to some plurisubharmonic function ϕ(r, ·) in Ω. After a
Cantor process we can extract a subsequence from {ϕj}, still denoted by
{ϕj}, such that for each r ∈ Q∩]0, T [, the sequence {ϕj(r, ·)} converges in
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L1
loc(Ω) to ϕ(r, ·). Since the sequence {ϕj} is locally uniformly Lipschitz

in t, it follows that the function (r, z) 7→ ϕ(r, z) is also locally uniformly
Lipschitz in r. The function ϕ therefore uniquely extends to ]0, T [×Ω by

ϕ(t, z) := lim
Q∋r→t

ϕ(r, z).

Since {ϕj} is uniformly Lipschitz in t it follows that {ϕj(t, ·)} converges in
L1
loc(Ω) to ϕ(t, ·), for all t ∈]0, T [ and ϕ is locally uniformly Lipschitz in

t ∈]0, T [. The latter then implies that ϕ ∈ P(ΩT ). By Fubini’s theorem and
dominated convergence it follows that {ϕj} converges in L1

loc(ΩT ) to ϕ.
We now prove the last statement, assuming that ϕ ∈ P(ΩT ) and that the

sequence {ϕj} converges in the weak sense of distributions to ϕ. We claim
that for each t ∈]0, T [, {ϕj(t, ·)} converges in the sense of distributions in Ω
to ϕ(t, ·). Indeed, fix t0 ∈]0, T [ and let χ : Ω → R be a smooth test function
in Ω. Let ε > 0 be a small constant and let ηε : R → R+ be a smooth test
function which is supported in [t0 − ε, t0 + ε] and such that

∫

R
ηε(t)dt = 1.

By assumption,

(1.4) lim
j→+∞

∫

ΩT

ϕj(t, z)χ(z)ηε(t)dtdV (z) =

∫

ΩT

ϕ(t, z)χ(z)ηε(t)dtdV (z).

Since the sequence {ϕj} is locally uniformly Lipschitz in t, there exists a
constant κ0 depending on ε0 := min(t0, T − t0)/2 such that

|ϕj(t, z) − ϕj(t0, z)| + |ϕ(t, z) − ϕ(t0, z)| ≤ κ0|t− t0|,
for all t ∈ [t0 − ε0, t0 + ε0] and z ∈ Ω. We infer

∣

∣

∣

∣

∫

ΩT

ϕj(t, z)χ(z)ηε(t)dtdV (z) −
∫

ΩT

ϕj(t0, z)χ(z)ηε(t)dtdV (z)

∣

∣

∣

∣

≤ κ0ε

∫

Ω
|χ(z)|dV (z).(1.5)

The same estimate holds for ϕ. Combining (1.4) and (1.5) yields

lim
j→+∞

∫

Ω
ϕj(t0, z)χ(z)dV (z) =

∫

Ω
ϕ(t0, z)χ(z)dV (z) +O(ε).

We finally let ε→ 0 to conclude the proof of the claim.
Classical properties of plurisubharmonic functions now ensure that {ϕj(t0, ·)}

converges in Lqloc(Ω) to ϕ(t0, ·). Since {ϕj} is locally uniformly Lipschitz in
t, we conclude as above that {ϕj} converges in Lqloc(ΩT ) to ϕ. �

Corollary 1.15. The class P(ΩT ) is a subset of Lqloc(ΩT ) for all q ≥ 1, and
the inclusions P(ΩT ) →֒ Lqloc(ΩT ) are continuous.

The weak topology and the Lqloc-topologies are thus all equivalent when
restricted to the class P(ΩT ). The set P(ΩT ) is thus a complete metric
space when endowed with any of these topologies.

Lemma 1.16. We have P(ΩT ) ⊂W 1,1
loc (ΩT ).
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Proof. Fix u ∈ P(ΩT ). The goal is to prove that u has partial derivative (in
t and z) in L1

loc(ΩT ).
We first recall a basic estimate for the gradient of a plurisubharmonic

function. Fix z0 ∈ Ω and r > 0 such that the polydisc D(z0, 2r) is contained
in Ω. It follows from [Hörm, Theorem 4.1.8] (see also [GZ, Theorem 1.48]
and its proof at page 32-33) that the derivative of any plurisubharmonic
function z 7→ ϕ(z) exists in Lploc(Ω) for any p < 2 and the uniform estimate

(

∫

D(z0,r)
|∇zϕ|pdV

)1/p

≤ C(p, r)

∫

D(z0,2r)
|ϕ|dV

holds for a positive constant C(p, r) depending only on r and p.
Fix J ×K a compact subset of ΩT . Then by our previous analysis and

the compactness of K there exists a constant C > 0 depending on K and
dist(K,∂Ω) and a compact subset K ⋐ L ⋐ Ω such that

(
∫

K
|∇zϕ|pdV

)1/p

≤ C

∫

L
|ϕ|dV,

for every ϕ ∈ PSH(Ω).
Now, for each t ∈]0, T [ the derivative of u in z exists and belongs to Lploc(Ω)

for any p < 2 (with uniform bound). Since u is locally uniformly Lipschitz
in t it follows that ∂tu(t, z) is bounded in J ×K and u ∈ L1(J × L, dtdV ).

Altogether we obtain u ∈W 1,1
loc (ΩT ) as desired. �

2. Parabolic Monge-Ampère operators

2.1. Parabolic Chern-Levine-Nirenberg inequalities. We assume here
that ϕ ∈ P(ΩT ) ∩ L∞

loc(ΩT ). For all t ∈]0, T [, the function

Ω ∋ z 7→ ϕt(z) = ϕ(t, z) ∈ R

is psh and locally bounded, hence the Monge-Ampère measures (ddcϕt)
n are

well defined Borel measures in the sense of Bedford and Taylor [BT76].
We now show that this family depends continuously on t :

Lemma 2.1. Fix ϕ ∈ P(ΩT ) ∩ L∞
loc(ΩT ) and χ a continuous test function

in ΩT . Then the function

Γχ : t 7−→
∫

Ω
χ(t, ·)(ddcϕt)n

is continuous in ]0, T [. Moreover if Supp(χ) ⋐ E1 ⋐ E2 ⋐ ΩT , then

(2.1) sup
0≤t<T

∣

∣

∣

∣

∫

Ω
χ(t, ·)(ddcϕt)n

∣

∣

∣

∣

≤ C max
ΩT

|χ|(max
E

|ϕ|)n,

where C > 0 is a constant depending only on (E1, E2,ΩT ).

In particular, t 7−→ (ddcϕt)
n is continuous, as a map from ]0, T [ to the

space of positive Radon measures in Ω endowed with the weak∗-topology.
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Proof. We can reduce to the case when the support of χ is contained in a
product of compact subsets J ×K ⊂ E◦ ⊂]0, T [×X.

We first prove (2.1). For any fixed t ∈]0, T [,
∣

∣

∣

∣

∫

Ω
χ(t, ·)(ddcϕt)n

∣

∣

∣

∣

≤ max
ΩT

|χ|
∫

K
(ddcϕt)

n.

Let L ⋐ Ω be a compact subset such that K ⋐ L◦ and J × L ⊂ E. The
classical Chern-Levine-Nirenberg inequalities (see [GZ, Theorem 3.9]) ensure
that there exists a constant C = C(K,L) > 0 such that

∫

Ω
χt(dd

cϕt)
n ≤ C max

Ω
|χ|(max

L
|ϕt|)n ≤ C max

ΩT

|χ|(max
E

|ϕ|)n,

where C > depends only on (K,E,ΩT ). This yields (2.1).

We now prove that Γχ is continous in ]0, T [. Fix compact sets J ⋐

]0, T [,K ⋐ Ω such that Supp(χ) ⊂ J ×K. The continuity of Γχ on ]0, T [\J
is clear. Fix now t0 ∈ J . By the CLN inequality (see [GZ, Theorem 3.9]),

lim
t→0

∫

Ω
|χ(t, ·) − χ(t0, ·)|(ddcϕt)n = 0.

Since χ is a continuous test function we also have

lim
t→t0

∫

Ω
χ(t0, ·)(ddcϕt)n =

∫

Ω
χ(t0, ·)(ddcϕt0)n.

This proves the continuity of Γχ at t0, finishing the proof. �

Definition 2.2. Fix ϕ ∈ P(Ω) ∩ L∞
loc(ΩT ). The map

χ 7→
∫

ΩT

χdt ∧ (ddcϕ)n :=

∫ T

0
dt

(
∫

Ω
χ(t, ·)(ddcϕt)n

)

.

defines a positive distribution in ΩT denoted by dt ∧ (ddcϕ)n, which can be
identified with a positive Radon measure in ΩT .

Proposition 2.3. Fix ϕ ∈ P(ΩT ) ∩ L∞
loc(ΩT ) and let (ϕj) be a monotone

sequence of functions in P(ΩT )∩L∞
loc(ΩT ) converging to ϕ almost everywhere

in ΩT . Then
dt ∧ (ddcϕj)n → dt ∧ (ddcϕ)n

in the weak sense of measures in ΩT .

Proof. Let χ be a continuous test function in ΩT . By definition,
∫

ΩT

χdt ∧ (ddcϕj)n =

∫ T

0
dt

(
∫

Ω
χ(t, ·)(ddcϕj(t, ·))n

)

=:

∫ T

0
Fj(t)dt.

It follows from [BT82, Theorem 2.1 and Proposition 5.2] that Fj converges
to F pointwise in ]0, T [. Lemma 2.1 ensures that Fj is uniformly bounded
hence the conclusion follows from Lebesgue convergence theorem. �

Remark 2.4. The conclusion of Proposition 2.3 also holds if the sequence
(ϕj) uniformly converges to ϕ ∈ P(ΩT ).
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2.2. Semi-continuity properties. It is difficult to pass to the limit in
the parabolic equation, due to the time derivative. We have the following
general semi-continuity property :

Lemma 2.5. Let (νj) be positive Borel measures on a topological manifold
Y which converge weakly to ν in the sense of Radon measures on Y . Let
vj : Y −→ R be a locally uniformly bounded sequence of measurable functions
which weakly converge to a measurable function v in L2(Y, ν).

(1) If ‖νj − ν‖ → 0 (total variation) then limj

∫

Y vjνj =
∫

Y vν and

lim inf
j→+∞

evjνj ≥ evν

in the weak sense of Radon measures in Y .
(2) If vj → v ν-a.e. in Y and M := {νj ; j ∈ N} ∪ {ν} is uniformly

absolutely continuous with respect to a fixed positive Borel measure
ν̃ on Y , then for any continuous function θ : R → R,

θ(vj)νj −→ θ(v)ν

as j → +∞, in the weak sense of Radon measures in Y .

Recall that a set M of positive Borel measures is uniformly absolutely
continuous with respect to a positive Borel measure ν̃ on Y if for any δ > 0
there exists α > 0 such that supσ∈M σ(B) ≤ δ whenever B ⊂ Y is a Borel
subset with ν̃(B) ≤ α

A typical example is when σ = fσν̃, where supσ∈M fσ is ν̃-integrable.
When ‖νj − ν‖ → 0 in the sense of total variation, then the set M :=
{νj ; j ∈ N}∪{ν} is uniformly absolutely continuous with respect to ν = ν̃.

Proof. We first prove (1). Recall Young’s formula which states that

et = sup
s>0

{st− s log s+ s}

for all t ∈ R. It therefore suffices to prove that for all s > 0,

lim inf
j→+∞

evjνj ≥ (sv − s log s+ s)ν

in the weak sense of Radon measures on Y . Now for all s > 0

evjνj = sup
s>0

{(svj − s log s+ s)νj},

so it suffices to prove that lim infj vjνj ≥ vν in the sense of Radon measures.
Let χ be a test function on Y . Observe that

∫

Y
χvjdνj −

∫

Y
χvdν =

∫

Y
χ(vj − v)dν +

∫

Y
χvjd(νj − ν).

The first term converges to zero by weak convergence. Since χvj is uniformly
bounded by a constant M the absolute value of the second term is less than
M‖νj − ν‖Supp(χ), which converges to 0.
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We now prove (2). Set fj := θ(vj) and f := θ(v) and write
∫

Y
χfjdνj −

∫

Y
χfdν =

∫

Y
χ(fj − f)dνj +

∫

Y
χfd(νj − ν).

Observe that gj := χ(f − fj) → 0 ν a.e. in Y since vj → v ν-a.e. in Y .
It follows from Egorov’s theorem that the sequence (fj) converges ν̃-quasi
uniformly to f . Since the sequence (νj) is uniformly absolutely continuous
with respect to ν̃ it follows that the first term above converges to 0 as
j → +∞. By Lusin’s theorem, the function f is ν̃-quasi continuous in Y ,
hence the second term also converges to 0 as j → +∞, completing the proof
of the lemma. �

Proposition 2.6. Let J ⊂ R be a bounded open interval, D be a bounded
open set in Rm, m ∈ N∗, and 0 ≤ g ∈ Lp(D) with p > 1. Let (ψj) be a

sequence of Borel functions in J ×D such that (eψjg) is uniformly bounded
in L1(J × D, dtdV ). Assume that there exists E ⊂ D with zero Lebesgue
measure such that for all z ∈ D \ E, ψj(·, z) converge to a bounded Borel
function ψ(·, z) in the sense of distributions on J and

(2.2) sup
j∈N,z∈D\E

∣

∣

∣

∣

∫

J
χ(t, z)ψj(t, z)dt

∣

∣

∣

∣

< +∞, for all χ ∈ C∞
0 (J ×D).

Then for any positive smooth test function χ ∈ C∞
0 (J ×D),

(2.3)

∫

J×D
χ(t, z)eψ(t,z)g(z)dtdV ≤ lim inf

j→+∞

∫

J×D
χ(t, z)eψj (t,z)g(z)dtdV.

Proof. Fix C > 0 such that |ψ| ≤ C in X. Set ϕj := max(ψj ,−C), j ∈ N.
Then eϕj is uniformly bounded in L1(J ×D, gdtdV ). It follows that (ϕj) is
bounded in L2(J ×D, gdtdV ). Up to extracting and relabelling, it follows
from Banach-Saks theorem that the arithmetic mean sequence

ΨN :=
1

N

N
∑

j=0

ϕj

converges almost everywhere and in L2(J × D, gdtdV ) towards a function
Ψ ∈ L2(J ×D, gdtdV ).

Condition (2.2) and Lebesgue’s theorem ensure that ψjg converges in the
sense of distributions on J×D to ψg. This together with the convergence of
ΨN towards Ψ ensure that for any positive smooth test function χ in J ×D,

∫

J×D
χΨgdtdV = lim

N→+∞

∫

J×D
χΨNgdtdV

= lim
N→+∞

1

N

N
∑

j=1

∫

J×D
χmax(ψj ,−C)gdtdV

≥ lim
N→+∞

1

N

N
∑

j=1

∫

J×D
χψjgdtdV =

∫

J×D
χψgdtdV.
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This implies that Ψg ≥ ψg in L1(J ×D), hence eΨg ≥ eψg in L1(J ×D).
It thus follows from Fatou’s lemma that

lim inf
N→+∞

∫

J×D
eΨNχgdtdV ≥

∫

J×D
eΨχgdtdV ≥

∫

J×D
eψχgdtdV.

It follows now from the convexity of the exponential that

∫

X
eΨNχgdtdV ≤ 1

N

N
∑

j=1

∫

X
eϕjχgdµ

≤ 1

N

N
∑

j=1

∫

X
eψjχgdµ +

∫

X
e−CχgdtdV,

hence letting N → +∞ we get
∫

eΨχgdtdV ≤ lim inf
j→+∞

∫

X
χeψjgdtdV + e−C

∫

X
χgddtdV.

Letting C → +∞ we obtain (2.3). �

2.3. Semi-concavity and convergence. In the sequel we need more pre-
cise convergence results which require stronger assumptions :

Definition 2.7. A function γ : I → R is κ-concave if t 7→ γ(t) − κt2 is
concave. It is called locally semi-concave in I if for any subinterval J ⊂ I,
there exists κ = κ(J, γ) > 0 such that γ is κ-concave in J .

A family A of semi-concave functions in some interval I ⊂ R is called
locally uniformly semi-concave if for any compact subinterval J ⋐ I, there
exists a constant κ = κ(J,A) > 0 such that any γ ∈ A is κ-concave in J .

The following elementary lemma is useful :

Lemma 2.8. Let (γj) be a sequence of uniformly semi-concave functions in
an interval I ⊂ R which converges pointwise to a function γ. Then there
exists a countable subset S ⊂ I such that for all t ∈ I \ S, the derivatives
γ̇j(t), γ̇(t) exist and limj→+∞ γ̇j(t) = γ̇(t). Moreover if γ̇(t0) exists then

lim
j→+∞

∂−t γj(t0) = lim
j→+∞

∂+t γj(t0) = γ̇(t0).

We include a proof for the reader’s convenience.

Proof. We can assume that γj is concave in I for all j and t0 = 0. Thus for
all j ∈ N and t < 0,

t∂−t γj(0) ≥ γj(t) − γj(0).

Dividing by t < 0 and taking limits (first j → +∞, then t → 0−), we
obtain ∂−t γ(0) ≥ lim supj→+∞ ∂−t γj(0). Similarly lim infj→+∞ ∂+t γj(0) ≥
∂+t γ(0). Since ∂−t γj(0) ≥ ∂+t γj(0) we conclude that

∂−t γ(0) ≥ lim sup
j→+∞

∂−t γj(0) ≥ lim inf
j→+∞

∂+t γj(0) ≥ ∂+t γ(0).
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If γ̇(0) exists, ∂−t γ(0) = γ̇(0) = ∂+t γ(0), hence

lim
j→+∞

∂−t γj(0) = lim
j→+∞

∂+t γj(0) = γ̇(0).

Observe now that the derivatives of a concave function ∂±t γ(t) are mono-
tone decreasing, hence continuous outside a countable subset of I. Since
∂+t γ(t) = ∂−t γ(t) almost everywhere by Lemma 1.12, it follows that they are
equal outside a countable set in I. �

We now prove a convergence result that will play a key role in the sequel.
We fix µ a positive Borel measure on Ω and let ℓ denote the Lebesgue
measure on R.

Proposition 2.9. Let (fj) be a sequence of positive functions converging to
f in L1(ΩT , ℓ⊗ µ). Let (ϕj) be a sequence of functions in P(ΩT ) which

• converges ℓ⊗ µ-almost everywhere in ΩT to a function ϕ ∈ P(ΩT );
• is locally uniformly semi-concave in ]0, T [.

Then limj→+∞ ϕ̇j(t, x) = ϕ̇(t, x) for ℓ⊗ µ-almost any (t, x) ∈ ΩT , and

θ(ϕ̇j) fj ℓ⊗ µ→ θ(ϕ̇) f ℓ⊗ µ,

in the weak sense of Radon measures in ΩT , for all θ ∈ C0(R,R).

Proof. Fix a compact subinterval J ⋐]0, T [. By definition there exists a
constant κ > 0 such that all the functions t 7−→ uj(t, x) := ϕj(t, x)−κt2 are
concave in J . By our hypothesis there exists a µ-negligible subset E1 ⊂ ΩT

such that for any (t, x) /∈ E1, the sequence uj(t, x) converges to u(t, x) :=
ϕ(t, x) − κt2. It follows from Lemma 1.12 and Lemma 2.8 that there exists
a ℓ ⊗ µ-negligeable subset E2 ⊂ ΩT containing E1 such that ϕ̇j(t, x) and
ϕ̇(t, x) are well defined for all j and all (t, x) /∈ E2, with

lim
j→+∞

ϕ̇j(t, x) = ϕ̇(t, x).

Since fj → f in L1(ΩT , ℓ ⊗ µ) we can find g ∈ L1(ΩT , ℓ ⊗ µ) such that
0 ≤ fj ≤ g in ΩT . The measures (fjℓ ⊗ µ) are thus uniformly absolutely
continuous with respect to the positive Borel measure g ℓ×µ. The conclusion
of the theorem follows therefore from Lebesgue’s theorem. �

2.4. Elliptic tools.

Lemma 2.10. Let u, v be bounded psh functions in Ω such that

(ddcu)n ≥ ef1µ and (ddcv)n ≥ ef2µ,

where f1, f2 are bounded Borel functions in Ω and µ is a positive Radon
measure with L1 density with respect to Lebesgue measure. Then

(ddc(λu+ (1 − λ)v))n ≥ eλf1+(1−λ)f2µ, for all , λ ∈ [0, 1].
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Proof. Observe first that

(ddc(λu+ (1 − λ)v))n =
n
∑

k=0

ak(dd
cu)k ∧ (ddcv)n−k,

where ak ∈ (0, 1), for all k and
∑n

k=0 ak = 1. It follows from the mixed
Monge-Ampère inequalities [Ko l03] (see also [Din09]) that for all k = 0, · · · n,

(ddcu)k ∧ (ddcv)n−k ≥ e(kf1+(n−k)f2)/nµ.

Summing up the above inequalities and using the convexity of the exponen-
tial yields the desired inequality. �

Lemma 2.11. Let u be a psh function in Ω such that limz→ζ u(z) = φ(ζ)
where φ is a continuous function on ∂Ω. There exists a decreasing sequence
(uj) of plurisubharmonic functions which are continuous on Ω̄ and such that
uj = φ on ∂Ω and uj ց u in Ω.

This result is classical but we include a proof for the reader’s convenience.

Proof. It follows from the strictly pseudoconvex assumption on Ω that there
exists a harmonic function Φ in Ω with boundary value φ. We first take a
sequence of continuous functions {fj} ⊂ C(Ω̄) which decreases pointwise to
u in Ω̄. By considering min(fj,Φ) we can assume that fj = φ on ∂Ω. For
each j, consider the psh envelope

uj := P (fj) := sup{v ∈ PSH(Ω) ; v∗ ≤ fj in Ω̄}.
Then u ≤ uj ≤ fj and uj ↓ u. Hence (uj)∗ = (uj)

∗ = φ on ∂Ω. It thus
follows from [Wal69, Lemma 1] (see also [B lo05, Proposition 3.2]) that uj is
continuous in Ω̄. �

3. Boundary behavior of parabolic envelopes

Our aim is to solve the Cauchy-Dirichlet problem for (CMAF) with com-
patible boundary data h using the Perron method of upper envelopes. In
this section we prove that, under natural assumptions, the parabolic Perron
envelope has the right boundary values. We assume T < +∞.

3.1. Parabolic pluripotential subsolutions. Recall that for u ∈ P(ΩT )
the time derivative ∂tu exists a.e. in ΩT and satisfies the local uniform
bound |∂tu| ≤ κJ(u) in J × Ω, for each J ⋐]0, T [ (see Lemma 1.10).

Definition 3.1. Fix u ∈ P(ΩT ) ∩ L∞(ΩT ). The function u is called a
pluripotential subsolution to (CMAF) if it satisfies the inequality

dt ∧ (ddcu)n ≥ eu̇+F (t,x,u)gdt ∧ dV
in the sense of measures in ΩT . It is called a pluripotential supersolution to
(CMAF) if the reverse inequality holds in the sense of measures in ΩT .
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If moreover u∗ ≤ h in ∂0ΩT , we say that u is a pluripotential subsolution
to the Cauchy-Dirichlet problem for the parabolic complex Monge-Ampère
equation (CMAF) with boundary data h. Here

u∗(τ, ζ) := lim sup
ΩT∋(t,z)→(τ,ζ)

u(t, z), (τ, ζ) ∈ ∂0ΩT .

Proposition 3.2. Fix u ∈ P(ΩT ) ∩ L∞
loc(ΩT ).

1) u is a pluripotential subsolution to (CMAF) if and only if for a.e. t,

(3.1) (ddcut)
n ≥ e∂tu(t,·)+F (t,·,ut)gdV,

in the sense of measures in Ω.
2) If u is moreover locally semi-concave in t, it is a pluripotential subso-

lution to (CMAF) if and only if for all t,

(ddcut)
n ≥ e∂

+
t u(t,·)+F (t,·,ut)gdV,

in the sense of measures in Ω.

Proof. Recall that ∂tu makes sense almost everywhere and, in case u is
semi-concave, coincides with ∂+t u which is well defined at every point.

Assume first that (3.1) holds for a.e. t. Let χ ∈ C∞
0 (ΩT ) be a nonnegative

test function. Multiplying (3.1) by χ and integrating in x we obtain
∫

Ω
χ(t, x)(ddcut)

n ≥
∫

Ω
χ(t, x)e∂tu+F (t,x,ut)g(x)dV (x).

Integrating with respect to t, we infer
∫

ΩT

χ(t, x)(ddcut)
n ∧ dt ≥

∫

ΩT

χ(t, x)e∂tu+F (t,x,ut)g(x)dV (x) ∧ dt,

i.e. u is a pluripotential subsolution to (CMAF).
Assume now that u is a pluripotential subsolution to (CMAF). We con-

sider product of nonnegative test functions

χ(t, x) = α(t)θj(x),

where (θj) is a sequence of test functions in Ω which generates a dense
subspace of the space of test functions (for the C0-topology). It follows from
Fubini theorem that
∫ T

0

{
∫

Ω
θj(x)(ddcut)

n

}

α(t)dt ≥
{
∫

Ω
θj(x)e∂tu+F (t,x,ut)g(x)dV (x)

}

α(t)dt.

We infer that for all t ∈ Bj ⊂ [0, T [,

∫

Ω
θj(x)(ddcut)

n ≥
∫

Ω
θj(x)e∂tu+F (t,x,ut)g(x)dV (x),

where Bj has full measure in [0, T [. The set B = ∩jBj ⊂ [0, T [ has full
measure and the previous inequality holds for all t ∈ B and for all j ∈ N.
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Approximating an arbitrary nonnegative test function θ ∈ C0(Ω) by convex
combinations of the θj’s, we infer that for almost every t,

(ddcut)
n ≥ e∂tu(t,·)+F (t,·,ut)gdV.

When u is moreover locally semi-concave in t the function ∂+t u is lower
semi-continuous (see Lemma 1.12), hence

t 7→
∫

Ω
χ(x)e∂

+
t u(t,x)+F (t,x,ut(x))g(x)dV (x)

is lower semi-continuous by Fatou’s lemma. Since t 7→
∫

Ω χ(ddcut)
n is con-

tinuous (by Lemma 2.1), we infer that (3.1) holds for almost every t if and
only if it holds for every t. �

Remark 3.3. A similar result holds in this case, using the partial derivative
∂−t u which is upper semi-continuous when u is locally semi-concave (by
Lemma 1.12 again). As a consequence, if u ∈ P(ΩT ) ∩ L∞

loc(ΩT ) solves
(CMAF) and u is locally uniformly semi-concave in t ∈]0, T [ then for almost
all t ∈]0, T [,

(ddcut)
n = e∂tut+F (t,·,ut)gdV.

Lemma 3.4. For any u, v ∈ P(ΩT ) ∩ L∞
loc(ΩT ), we have

1{u≥v}∂t max(u, v) = 1{u≥v}∂tu and 1{u>v}∂t max(u, v) = 1{u>v}∂tu

almost everywhere in ΩT and

(ddc max(u, v))n ∧ dt ≥ 1{u>v}(ddcu)n ∧ dt+ 1{u≤v}(ddcv)n ∧ dt.
In particular the maximum of two subsolutions is again a subsolution.

Proof. It follows from Lemma 1.16 that P(ΩT ) ⊂W 1,1
loc (ΩT ). The first iden-

tity is then a classical result in the theory of Sobolev spaces (see e.g. [GT01,
Lemma 7.6 page 152]). The second inequality is a consequence of the elliptic
maximum principle for psh functions (see e.g. [GZ, Corollary 3.28]). �

It is therefore natural to consider the Perron envelope of subsolutions :

Definition 3.5. We let Sh,g,F (ΩT ) denote the set of u ∈ P(ΩT ) such that

(1) u is a pluripotential subsolution to (CMAF) in ΩT ;
(2) u∗ ≤ h on ∂0ΩT , i.e. for all (s, ζ) ∈ ∂0ΩT ,

lim sup
ΩT∋(t,z)→(s,ζ)

u(t, z) ≤ h(s, ζ).

We let
U = Uh,g,F,ΩT

:= sup{u ; u ∈ Sh,g,F (ΩT )}
denote the upper envelope of all subsolutions.

Lemma 3.6. The set Sh,g,F (ΩT ) is not empty, uniformly bounded in ΩT ,
stable under finite maxima. The envelope U := Uh,g,F,ΩT

and its upper
semi-continuous regularization U∗ satisfy for all (t, z) ∈ ΩT ,

Bρ(z) −Mh ≤ U(t, z) ≤ U∗(t, z) ≤Mh,
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where B = eMF /n. In particular

(3.2) ‖U‖L∞(ΩT ) ≤MU := Mh + cne
MF ‖g‖1/nLp(Ω).

Recall that

Mh := sup
∂0ΩT

|h| , MF := sup
ΩT

F (·, ·,Mh).

Proof. Fix B = eMF /n. Since gdV = (ddcρ)n we obtain

eMF gdV ≤ Bn(ddcρ)n.

Set, for (t, z) ∈ ΩT ,

u(t, z) := Bρ(z) −Mh.

Then u ∈ Sh,g,F (ΩT ), hence u ≤ Uh,g,F,ΩT
.

Fix u ∈ Sh,g,F (ΩT ) and fix t ∈]0, T [. Then lim supz→ζ u(t, z) ≤ h(t, ζ),
for every ζ ∈ ∂Ω. It thus follows from the classical maximum principle
for plurisubharmonic functions that u(t, z) ≤ Mh for every z ∈ Ω. Thus
U(t, ·) ≤Mh for any t ∈]0, T [.

Therefore, the upper envelope U is well defined and satisfies the uniform
estimates u ≤ U ≤Mh, in ΩT , hence

U(t, z) := sup{u(t, z) ; u ∈ Sh,g,F (ΩT ), u ≤ u ≤Mh}.
The stability under finite maxima follows from Lemma 3.4. �

3.2. Construction of sub-barriers. The family t 7−→ h(t, z) (z ∈ ∂Ω) is
uniformly Lipschitz in ]0, T [ if there exists a constant κ(h) > 0 such that

(3.3) |h(t, z) − h(s, z)| ≤ κ(h) |t − s|, ∀(t, s) ∈ [0, T [2,∀z ∈ ∂Ω.

The parabolic boundary of ΩT consists in two different types of points.
We provide barriers for each type.

3.2.1. Sub-barriers at boundary points of Dirichlet type. We first construct
subbarriers at Dirichlet boundary points in [0, T [×∂Ω.

Lemma 3.7. Assume h satisfies (3.3). Then there exists u ∈ Sh,g,F (ΩT )
such that u(·, z) (z ∈ Ω) is uniformly Lipschitz in [0, T [ and satisfies : for
any (s, ζ) ∈ [0, T [×∂Ω,

lim
(t,z)→(s,ζ)

u(t, z) = h(s, ζ).

If h0 is continuous on Ω̄ then u can be chosen to be continuous in [0, T [×Ω̄.

Proof. Fix t ∈ [0, T [ and set ht := h(t, ·) ∈ C(∂Ω). Let φt be the unique
continuous plurisubharmonic function in Ω such that

(3.4)

{

(ddcφt)
n = 0 in Ω,

limz→ζ φt(z) = ht(ζ) − h0(ζ), ∀ζ ∈ ∂Ω.

The existence and continuity of φt on Ω̄ follows from classical results in
pluripotential theory (see [BT76, BT82], [GZ, Theorem 5.12]). Moreover,



26 VINCENT GUEDJ, CHINH H. LU, AND AHMED ZERIAHI

φt can be characterized as the supremum of all subsolutions to (3.4). Since
t 7−→ h(t, z) (z ∈ ∂Ω) is uniformly Lipschitz in [0, T [, the tautological max-
imum principle reveals that the family of functions t 7−→ φ(t, z) := φt(z)
(z ∈ Ω) is uniformly Lipschitz in [0, T [ with a Lipschitz constant κ(φ) ≤
κ(h). By Lemma 1.5, (t, z) 7−→ φt(z) is continuous in [0, T [×Ω̄. Consider
now, for (t, z) ∈ ΩT ,

u(t, z) := φt(z) + h0(z) +Aρ(z),

where A > 0 is a large constant to be chosen later, and ρ is defined in (0.7).
Observe that u ∈ P(ΩT ) and u∗ ≤ h in ∂0ΩT . It is clear that t 7−→ u(t, z)
(z ∈ Ω) is uniformly Lipschitz in [0, T [ with κ(u) ≤ κ(h). Moreover

dt ∧ (ddcu)n ≥ Andt ∧ (ddcρ)n ≥ Andt ∧ gdV
in the weak sense of measures in ΩT . We choose A > 0 so that n logA ≥
κ(h) +MF . It is then clear that u ∈ Sh,g,F (ΩT ). By definition, u is contin-
uous in [0, T [×Ω provided that h0 is continuous on Ω̄. �

3.2.2. Sub-barriers at boundary points of Cauchy type. We now construct
sub-barriers at boundary points in {0} × Ω.

Lemma 3.8. Assume h satisfies (3.3). Then there exists v ∈ Sh,g,F (ΩT )
such that for all ζ ∈ Ω̄,

lim sup
ΩT∋(t,z)→(0,ζ)

v(t, z) = h0(ζ), and lim
t→0+

v(t, ζ) = h0(ζ).

If h0 is continuous on Ω̄ then v can be chosen to be continuous on [0, T [×Ω̄.

Proof. By assumption on h we have, for all (t, z) ∈ [0, T [×∂Ω,

h(0, z) ≤ h(t, z) + κt.

Set, for (t, z) ∈ ΩT ,

v(t, z) := h0(z) + t(ρ(z) − C) + n[(t/T ) log(t/T ) − t/T )],

where C := κh + MF − min(n log T, 0). Then v ∈ Sh,g,F (ΩT ) and v is
continuous on [0, T [×Ω̄ if h0 is continuous on Ω̄. �

3.3. Super-barriers.

3.3.1. Super-barriers at boundary points of Dirichlet type. For each t ∈
[0, T [, we let Ht be the unique harmonic function in Ω with boundary value
ht on ∂Ω and set H(t, z) := Ht(z) (the existence of Ht is a classical fact;
see e.g. [GT01, Theorem 2.14]). Recall that Ht can be defined as the up-
per envelope of all subharmonic functions in Ω with boundary values ≤ ht.
Observe that h0 ≤ H(0, ·) in Ω, with equality at the boundary.

Lemma 3.9. For all (t, z) ∈ [0, T [×Ω we have U∗(t, z) ≤ H(t, z). In par-
ticular, for all (s, ζ) ∈ [0, T [×∂Ω,

lim sup
(t,z)→(s,ζ)

U∗(t, z) ≤ h(s, ζ).
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Proof. It follows directly from the maximum principle for subharmonic func-
tions that Ut ≤ Ht, for all t ∈ [0, T [. Fix S ∈]0, T [. Since the family
{h(·, z) ; z ∈ ∂Ω} is equicontinuous in [0, S], it follows by definition that
the family {H(·, z) ; z ∈ Ω̄} is equicontinuous in [0, S], hence the function
H is continuous in [0, T [×Ω̄, by Lemma 1.5. Then U∗(t, z) ≤ H(t, z) for
any (t, z) ∈ ΩT . From the continuity of H, it follows that U∗ ≤ H in
[0, T [×Ω̄. �

3.3.2. Boundary behaviour at Cauchy boundary points. So far we have con-
structed enough barriers to ensure that the envelope of subsolutions either
matches the boundary data (at Dirichlet points), or stays below it. The
following average argument will allow us to conclude that it also coincides
with the boundary data at Cauchy points :

Lemma 3.10. Let ϕ ∈ P(ΩT )∩L∞(ΩT ) be a subsolution to (CMAF) such
that

∫

D(ddcϕt)
n ≤ C, for every t ∈ [0, T [, for some C > 0, where D is an

open set in Ω. Then, for each positive continuous test function χ in D, there
exists A > 0 such that

t 7→
∫

D
χϕtgdV −At

is decreasing in ]0, T [.

Proof. Since ϕ is a subsolution to (CMAF) we obtain for a.e. t ∈]0, T [,
∫

D
χeϕ̇t+mF gdV ≤

∫

D
χeϕ̇t+F gdV ≤

∫

D
χ(ddcϕt)

n ≤ C,

where mF := inf [0,T [×Ω̄×[−MU ,MU ] F . It follows from Jensen’s inequality that
∫

D
χϕ̇tgdV ≤ C2,

for a.e. t ∈]0, T [, where C2 > 0 is a uniform constant. We then infer that
the function t 7→

∫

D χϕtgdV − C2t is decreasing in ]0, T [. �

Corollary 3.11. Assume {uj} ⊂ Sh,g,F (ΩT ) is a bounded sequence which
is locally uniformly Lipschitz in ]0, T [ (with Lipschitz constant independing
of j). If {uj} converges in L1

loc(ΩT ) to u ∈ P(ΩT ) then

lim sup
(t,z)→(s,ζ)

u(t, z) ≤ h(s, ζ), ∀(s, ζ) ∈ ∂0ΩT .

Proof. For (s, ζ) ∈]0, T [×∂Ω the desired inequality holds thanks to Lemma
3.9. Fix D ⋐ Ω and let χ be a positive continuous test function in Ω. It
follows from the Chern-Levine-Nirenberg inequality [GZ, Theorem 3.9] that
∫

D(ddcujt )
n is uniformly bounded. Lemma 3.10 therefore provides us with a

uniform constant A > 0 such that
∫

D
χujtgdV ≤

∫

D
χh0gdV +At, ∀t ∈]0, T [, ∀j.
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Letting j → +∞, Lemma 1.8 ensures that
∫

D
χutgdV ≤

∫

D
χh0gdV +At, ∀t ∈]0, T [.

If v is a cluster point of ut as t → 0 then the above estimate yields v ≤ h0
on D. Since D was chosen arbitrarily, v ≤ h0 on Ω. The conclusion thus
follows from Lemma 1.3. �

3.4. Boundary behavior of the Perron envelope.

Theorem 3.12. Assume h satisfies (3.3). Then the upper semi-continuous
regularization of the envelope U = Uh,g,F,ΩT

satisfies

(i) for any (s, ζ) ∈ [0, T [×∂Ω, limΩT∋(t,z)→(s,ζ)U
∗(t, z) = h(s, ζ).

(ii) for any z0 ∈ Ω,

lim
t→0+

U∗(t, z0) = h(0, z0), and lim sup
ΩT∋(t,z)→(0,z0)

U∗(t, z) = h(0, z0).

Here U∗ denotes the u.s.c. regularization of U in the variable (t, z) in ΩT .

Proof. Fix (s, ζ) ∈ [0, T [×∂Ω. Lemma 3.7 and Lemma 3.9 yield (i).
In view of Lemma 3.8 it remains to prove that for all z0 ∈ Ω,

lim sup
ΩT∋(t,z)→(0,z0)

U∗(t, z) ≤ h0(z0).

The envelope U is locally uniformly Lipschitz in ]0, T [, as follows from The-
orem 4.2. We can thus apply Lemma 1.4 to conclude that U∗(t, ·) = U∗

t

in Ω for any t ∈]0, T [, where U∗
t = (Ut)

∗ is the u.s.c. regularization of the
function Ut (t fixed) in Ω. Using Lemma 1.3 it is then enough to show that

lim sup
t→0

U∗
t (z0) ≤ h0(z0),∀z0 ∈ Ω.

Observe that U can be seen as the upper envelope of all ϕ ∈ Sh,g,F (ΩT ) such
that supΩT

|ϕ| ≤MU , where MU is given in Lemma 3.6.
Fix χ a continuous positive test function in Ω. We claim that there exists

a constant C > 0 such that for all t ∈]0, T [,

(3.5)

∫

Ω1

χU∗
t gdV ≤

∫

Ω1

χh0gdV + Ct.

Indeed, fix t0 ∈]0, T [. Since the set of subsolutions is stable under max-

imum, by Choquet’s lemma, U∗
t0 = (limj→+∞ ϕjt0)∗ in Ω, where {ϕj} is an

increasing sequence in Sh,g,F (ΩT ) with |ϕj | ≤ MU . The sequence {ϕj} de-
pends on t0 but, as will be shown later, the constant C does not depend on
t0. Now fix j ∈ N, Ω1 ⋐ Ω2 ⋐ Ω compact subsets of Ω. It follows from the
Chern-Levine-Nirenberg inequality [GZ, Theorem 3.9] that

∫

Ω1

χ(ddcϕjt )
n ≤ C1, for all t ∈]0, T [,
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where C1 depends only on Ω1,Ω2, χ and MU . It thus follows from Lemma
3.10 that

∫

Ω1

χϕjtgdV ≤
∫

Ω1

χh0gdV + C2t, for all t ∈]0, T [,

for a uniform constant C2 > 0. A classical theorem of Lelong (see [GZ,
Proposition1.40]) ensures that

{

z ∈ Ω ; lim
j→+∞

ϕjt0(z) < (Ut0)∗(z)

}

has volume zero in Ω. Therefore taking the limit as j → +∞ in the previous
inequality for t = t0, we deduce that

∫

Ω1

χU∗
t0gdV ≤

∫

Ω1

χh0gdV + C2t0.

Since C2 does not depend on t0, the claim is proved.
Let w0 ∈ PSH(Ω) be any cluster point of U∗

t as t → 0+. We can assume
that U∗

t converge to w0 in Lq(Ω) for any q > 1. Then U∗
t g converge to w0g in

L1(Ω). Thus, by (3.5),
∫

Ω1
χw0gdV ≤

∫

Ω1
χh0gdV . Since χ ≥ 0 was chosen

arbitrarily, we infer that w0 ≤ h0 almost everywhere in Ω1 with respect to
gdV . The assumption on g finally yields w0 ≤ h0 on Ω1. By letting Ω1 → Ω
we can then conclude that lim supt→0 U

∗
t ≤ h0 in Ω. �

Lemma 3.13. If h0 is continuous on Ω̄ then U∗(t, ·) uniformly converges
to h0 as t→ 0+.

Note that in Lemma 3.13 we merely assume that h is locally uniformly
Lipschitz in t ∈]0, T [.

Proof. We first assume that h satisfies (3.3). It follows from Lemma 3.8 that
there exists a continuous subsolution u ∈ Sh,g,F (ΩT ) :

u(t, z) := h0(z) + t(ρ(z) − C) + η(t),

where C is a uniform constant, η(t) → 0 as t→ 0 and ρ is defined by (0.7).
For each t ∈ [0, T [, let Ht be the unique continuous harmonic function in

Ω with boundary value ht. Then

u ≤ U∗ ≤ H.

It follows moreover from Theorem 3.12 that U∗(t, ·) converges in L1(Ω)
to h0 as t → 0. Hartog’s lemma thus yields

lim sup
t→0

max
z∈K

(U∗(t, z) − h0(z)) ≤ 0,

for any compact K ⋐ Ω. Since ut uniformly converges to h0 as t → 0+ we
infer, for any compact K ⋐ Ω,

(3.6) lim
t→0+

sup
z∈K

|U∗(t, z) − h0(z)| = 0.
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Fix ε > 0. Since H0 and h0 are continuous on Ω̄ with h0 = H0 on ∂Ω,
there exists δ > 0 small enough such that

sup
z∈Ωδ

|H0(z) − h0(z)| ≤ ε,

where Ωδ := {z ∈ Ω̄ ; dist(z, ∂Ω) < δ}. We also have, for (t, z) ∈ [0, T [×Ω̄,

U∗(t, z) − h0(z) ≤ Ht(z) − h0(z) ≤ H0(z) − h0(z) + κht.

Using this and the uniform convergence of ut to h0 as t→ 0 we obtain

lim
t→0

sup
z∈Ωδ

|U∗(t, z) − h0(z)| ≤ ε.

Using (3.6) we infer

lim
t→0

sup
z∈Ω̄

|U∗(t, z) − h0(z)| ≤ ε.

Letting ε→ 0+ yields the conclusion.
For the general case (i.e. h is locally uniformly Lipschitz in ]0, T [ with

h0 continuous on Ω̄), we proceed by approximation. Fix S ∈]T/2, T [, ε > 0
small enough. Proposition 4.1 ensures that Uh,g,F,ΩS

= Uh,g,F,ΩT
in ΩS . Set

{

hǫ(t, ζ) := h(t+ ǫ, ζ) if (t, ζ) ∈ [0, S] × ∂Ω
hǫ(0, z) = h0(z) + ψǫ(z) if z ∈ Ω,

where ψǫ is the maximal plurisubharmonic function in Ω such that ψǫ(ζ) =
h(ǫ, ζ) − h(0, ζ) in ∂Ω. Recall that ψǫ is the upper envelope of all psh
functions ψ in Ω whose boundary values satisfy ψ∗ ≤ h(ǫ, ζ)−h(0, ζ) on ∂Ω.

Since hǫ(0, ·) = h(ε, ·) → h(0, ·) uniformly on ∂Ω as ǫ→ 0, it follows that
ψǫ → 0 uniformly in Ω̄ as ǫ → 0. Therefore {hǫ} uniformly converges on
∂0ΩS to h as ǫ → 0. Set U ε := Uhε,g,F,ΩS

. Then (U ε)∗ uniformly converges
to U∗ in ΩS . Since hǫ is uniformly Lipschitz in t ∈ [0, S], the previous step
(using Theorem 3.12) guarantees that (U ε)∗(t, ·) uniformly converges to h0
as t→ 0, hence U∗

t uniformly converges to h0 as t→ 0. �

4. Time regularity of parabolic envelopes

We establish in this section time regularity of the envelope U := Uh,g,F,ΩT

by using and adapting some classical ideas of pluripotential theory.
We work in ΩS for each 0 < S < T and eventually let S → T . We thus

assume T < +∞, the family {F (·, z, ·) ; z ∈ Ω} is uniformly Lipschitz and
semi-convex in [0, T ] × J for each J ⋐ R, and h satisfies

(4.1) t|∂th(t, z)| ≤ κh, for all (t, z) ∈]0, T [×∂Ω,

for some positive constant κ. The condition (4.1) is equivalent to the fact
that for all (t, z) ∈ ΩT and s > 0 with st < T , we have

(4.2) |h(t, z) − h(st, z)| ≤ κh
|s − 1|

min(s, 1)
.
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If h is uniformly Lipschitz in t ∈ [0, T [ (as in (3.3)) then the above condition
is automatically satisfied. On the other hand the condition above implies
that h(·, z), z ∈ Ω is locally uniformly Lipschitz in ]0, T [.

4.1. Lipschitz control in the time variable. The following identity prin-
ciple plays a crucial role in the sequel. For simplicity we will denote the
restriction of h on ∂0ΩS , for 0 < S < T , by h.

Proposition 4.1. For all S ∈]0, T [ we have Uh,g,F,ΩT
= Uh,g,F,ΩS

in ΩS.

Proof. Set V := Uh,g,F,ΩS
and U := Uh,g,F,ΩT

. Fix u ∈ Sh,g,F (ΩS) and
t0 ∈]0, S[ such that

(ddcu(t0, ·))n ≥ e∂tu(t0,·)+F (t0,·,u(t0,·)gdV.

Set M1 := supΩ |∂tu(t0, ·)| < +∞. If A ≥M1 the function

ΩT ∋ (t, z) 7→ v(t, z) :=

{

u(t, z), if t ∈ [0, t0],

u(t0, z) −A(t− t0) if t ∈ [t0, T [,

is again a subsolution to (CMAF) in ΩT . Applying (3.3) on the interval
J := [t0, T [, we obtain that v∗ ≤ h on ∂0ΩT if A ≥ κJ(h).

We therefore choose A ≥ max{M1, κJ(h)}. Then v ∈ Sh,g,F (ΩT ) hence
v ≤ U in ΩT . In particular u ≤ U on Ωt0 . Taking supremum over all
candidates u we obtain V ≤ U in Ωt0 . Using Proposition 3.2 we can let
t0 → S to obtain V ≤ U in ΩS . The reverse inequality is clear. �

Theorem 4.2. If h satisfies (4.1), then the envelope U := Uh,g,F,ΩT
satisfies

t|∂tU(t, z)| ≤ κU , ∀(t, z) ∈ ΩT ,

where κU > 0 is a uniform constant.

We will show that the constant κU is actually explicit,

(4.3) κU = (T + 1)(3MU + 2κh + 2n + κF (T +MU )).

This quantitative information will be crucial in perturbation arguments, to
obtain uniform Lipschitz constants of the approximants.

The proof of this theorem follows and adapt ideas developed by Bedford
and Taylor in their study of Dirichlet problems for elliptic complex Monge-
Ampère equations (see [BT76, Theorem 6.7], [Dem91]).

Proof. By the assumption on F , there exists a constant κF such that, for
all z ∈ Ω and (tj , rj) ∈ [0, T [×[−2MU , 2MU ], j = 1, 2,

(4.4) |F (t1, z, r1) − F (t2, z, r2)| ≤ κF (|t1 − t2| + |r1 − r2|).
Fix u ∈ Sh,g,F (ΩT ) such that supΩT

|u| ≤ MU , where MU is defined in
Lemma 3.6. Fix 0 < S < T and s ≥ 1/2 close to 1 enough such that
sS < T . Set, for (t, z) ∈ ΩS ,

vs(t, z) := s−1u(st, z) − C|s− 1|(t + 1),
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where

(4.5) C := 2MU + 2κh + 2n+ κF (T +MU ).

We are going to prove that vs ∈ Sh,g,F (ΩS). Since u is a subsolution to
(CMAF), for a.e. t ∈]0, S[ we have

(ddcvs(t, ·))n = s−n(ddcu(st, ·)n

≥ e−n log s+∂τu(st,·)+F (st,·,u(st,·))gdV

≥ e∂tv
s(t,·)+C|s−1|+F (t,·,s−1u(st,·))−n log s−κF (T |s−1|+|s−1−1|MU )gdV

≥ e∂tv
s(t,·)+F (t,·,vs(t,·))gdV,

where in the last line we use (4.5) and the fact that F is increasing in r.
We now take care of the boundary values. For t ∈ [0, S], z ∈ ∂Ω we have

vs(t, z) ≤ −C|s− 1| + |s−1 − 1|MU + h(st, z)

≤ −C|s− 1| + 2|s− 1|MU + h(t, z) + 2κh|s− 1|
≤ h(t, z),

where in the second line we use (4.2), and in the last line we use again (4.5).
For z ∈ Ω we similarly get (vs)∗(0, z) ≤ h0(z).

The computations above show that vs ∈ Sh,g,F (ΩS). Proposition 4.1 thus
yields vs ≤ U in ΩS. Taking supremum over u we arrive at

s−1U(st, z) − C|s− 1|(t + 1) ≤ U(t, z), for all (t, z) ∈ ΩS.

Letting s→ 1 we infer, for all (t, z) ∈ ΩS,

|∂tU(t, z)| ≤MU + C(T + 1).

Letting S → T yields the conclusion. �

Definition 4.3. Given a constant κ > 0 we let Sκ := Sκh,g,F (ΩT ) denote the

set of all u ∈ Sh,g,F (ΩT ) such that, for all t ∈]0, T [,

(4.6) sup
Ω

|∂tu(t, z)| ≤ κ/min(t, b),

where b = min(1, T/2), and we set

Uκ := Uκh,g,F,ΩT
:= sup{u ; u ∈ Sκh,g,F (ΩT )}.

We will need the following identity principle :

Proposition 4.4. For all S ∈]T/2, T [ and κ ≥ 2Tκh we have

Uκh,g,F,ΩT
= Uκh,g,F,ΩS

in ΩS.

Proof. The proof is similar to that of Proposition 4.1. Fix S ∈]T/2, T [ and
set V := Uκh,g,F,ΩS

, W := Uκh,g,F,ΩT
. Fix u ∈ Sκh,g,F (ΩS). Using Proposition

3.2 we fix t0 ∈]T/2, S[ such that

(ddcu(t0, ·))n ≥ e∂tu(t0,·)+F (t0,·,u(t0,·)gdV.
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Since supΩ |∂tu(t0, ·)| ≤ κ/b, the function

ΩT ∋ (t, z) 7→ v(t, z) :=

{

u(t, z), if t ∈ [0, t0],

u(t0, z) − κb−1(t− t0) if t ∈ [t0, T [,

is still a subsolution to (CMAF) in ΩT . It folllows from (4.2) that

|h(t, z) − h(t0, z)| ≤
2κh
T

|t− t0|, for all t ∈ [t0, T [.

Using that κ ≥ 2Tκh and b < 1, we thus obtain v∗ ≤ h on ∂0ΩT . By
construction, v satisfies (4.6). Therefore v ∈ Sκh,g,F (ΩT ), hence v ≤ W
in ΩT . We infer in particular u ≤ W on Ωt0 . Taking supremum over all
candidates u we obtain V ≤ W in Ωt0 . Using Proposition 3.2 we can let
t0 → S to obtain V ≤W in ΩS. The reverse inequality is obvious. �

Theorem 4.5. There exists an explicit κ0 > 0 such that, for all κ > κ0,

sup
ΩT

t|∂tUκ| ≤ κ0.

Proof. We use the same notations as in the proof of Theorem 4.2. Define

(4.7) C := κFT + 2κFMU + 2MF + 2κh + 2Mh + 2n,

and

(4.8) κ0 := 2MU + 3C(T + 1) + 2 sup
Ω

|ρ|.

Fix κ > κ0. By definition of κ0 we have, for all t ∈]0, T [, 2κh ≤ κ0/t.
Proposition 4.4 thus ensures that, for all T/2 < S < T ,

(4.9) Uκh,g,F,ΩT
= Uκh,g,F,ΩS

in ΩS.

Fix u ∈ Sκ, T/2 < S < T , s > 0 close enough to 1 and set, for (t, z) ∈ ΩS ,

w(t, z) := as−1u(st, z) + (1 − a)ρ− C(1 − a)(t+ 1),

where a = 1 − 2|s − 1| > 0, ρ is defined in (0.7).
Since u is a subsolution to (CMAF) we have, for almost all t ∈]0, T [,

(ddcs−1u(st, ·))n ≥ exp{−n log s+ ∂τu(st, z) + F (st, z, u(st, z))}gdV.
It thus follows from Lemma 2.10 that

(ddcw)n ≥ exp{a∂tu(st, z) + aF (st, z, u(st, z)) − an log s}gdV
= exp{∂tw(t, z) +C(1 − a) − an log s+ aF (st, z, u(st, z))}gdV.

From (4.4) and the assumption that F is increasing in r we obtain

aF (st, z, u(st, z)) = F (st, z, u(st, z)) + (1 − a)F (st, z, u(st, z))

≥ F (t, z, as−1u(st, z)) − |s− 1|(κFT + 2κFMU + 2MF )

≥ F (t, z, w(t, z)) − |s− 1|(κFT + 2κFMU + 2MF ).
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For (τ, ζ) ∈ ∂0ΩS we have

w(τ, ζ) ≤ as−1h(st, ζ) − 2C|s− 1|
≤ h(st, ζ) + |as−1 − 1|Mh − 2C|s− 1|
≤ h(t, ζ) + 2|s − 1|κh + 2Mh|s− 1| − 2C|s− 1|.

The choice of C in (4.7) and the previous computations ensure that w ∈
Sh,g,F (ΩS). Moreover, for s ∈ [1/2, 3/2], t ∈]0, S[,

sup
Ω

|∂tw(t, z)| ≤ (1 − 2|s− 1|)κ
min(st, b)

+ 2C|s− 1|.

Since κ/t > κ0/t > 3C, it follows that for s ∈ [1, 3/2], t ∈]0, S[,

sup
Ω

|∂tw(t, z)| ≤ (3 − 2s)κ

min(t, b)
+

2(s− 1)κ

3t
≤ κ

min(t, b)
.

Hence w ∈ Sκh,g,F (ΩS). By definition of Uκ and (4.9) we have w ≤ Uκ on

ΩS. Taking supremum over u ∈ Sκh,g,F (ΩT ) we obtain, for all (t, z) ∈ ΩS ,

as−1Uκ(st, z) − 2C|s− 1|(t + 1) + 2|s − 1|ρ(z) ≤ Uκ(t, z).

Letting s→ 1 yields

t|∂tUκ(t, z)| ≤ 2MU + 2C(T + 1) + 2 sup
Ω

|ρ| ≤ κ0,

where in the last inequality we use (4.8). This concludes the proof. �

4.2. The maximal subsolution. We now prove that U ∈ Sh,g,F (ΩT ).

Theorem 4.6. Assume h satisfies (4.1) and set U := Uh,g,F,ΩT
. Then

U ∈ Sh,g,F (ΩT ) and satisfies the following properties:

(1) limΩT∋(t,z)→(s,ζ)U(t, z) = h(s, ζ) for all (s, ζ) ∈ [0, T [×∂Ω;
(2) lim supΩT∋(t,z)→(0,z0) U(t, z) = h(0, z0) for all (0, z0) ∈ {0} × Ω;

(3) limt→0 Ut(z) = h0(z) for all z ∈ Ω.

If h0 is continuous then for all (s, ζ) ∈ ∂0ΩT ,

lim
ΩT∋(t,z)→(s,ζ)

U(t, z) = h(s, ζ).

Proof. We proceed in several steps.

Step 1. Assume h satisfies (3.3).
Theorem 3.12 ensures that U∗ has the desired boundary values. We are

going to prove that U∗ is a subsolution to (CMAF).

Step 1.1. Assume h0 is continuous on Ω̄.
Fix κ ≥ κ0, where κ0 is defined in Theorem 4.5.

Claim 1: Uκ = (Uκ)∗ ∈ Sκh,g,F (ΩT ).

Indeed, since Uκ ≤ U , the boundary condition (Uκ)∗
∣

∣

∂0ΩT
≤ h is satisfied.

We now prove that (Uκ)∗ is a subsolution to (CMAF). A classical lemma
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of Choquet ensures that there exists a sequence {uj} in Sκ(h, g, F,ΩT ) such
that

(Uκ)∗ =

(

sup
j∈N

uj

)∗

in ΩT .

By Lemma 3.6, we can assume supΩT
|uj | ≤ MU . Since Sκ is stable under

taking maximum we can assume that {uj} is increasing. By definition of
Sκ, limj u

j is locally uniformly Lipschitz in t ∈]0, T [. Hence from Lemma
1.4 it follows that uj increases to (Uκ)∗ almost everywhere in ΩT . We
infer that dt ∧ (ddcuj)

n → dt ∧ (ddc(Uκ)∗)n weakly in ΩT . Moreover, the
sequence {ψj} := {∂tuj +F (t, z, uj)} is bounded and converges in the sense
of distributions to ∂t(U

κ)∗ + F (t, z, (Uκ)∗). Proposition 2.6 thus yields

e∂t(U
κ)∗+F (t,z,(Uκ)∗)gdt ∧ dV ≤ lim inf

j
e∂tu

j+F (t,z,uj)gdt ∧ dV,

weakly in ΩT . Therefore, (Uκ)∗ is a subsolution to (CMAF) in ΩT . Hence
(Uκ)∗ = Uκ and Claim 1 is proved.

It now follows from Theorem 4.5 that Uκ = Uκ0 , for all κ > κ0.

Claim 2: U = Uκ0 in ΩT .

Fix v ∈ Sh,g,F (ΩT ), S ∈]T/2, T [, ε > 0 small enough. Define, for (t, z) ∈
[0, S] × Ω,

u(t, z) := v(t + ε, z) − Cε(1 + t) − θ(ε),

where C > 0 is a uniform constant and θ(ε) := supΩ̄ |U∗(ε, z) − h0(z)|
converges to 0 (by Lemma 3.13). Since v∗ ≤ h on ∂0ΩT , we obtain for all
(τ, ζ) ∈ [0, S] × ∂Ω,

u(τ, ζ) ≤ h(τ + ε, ζ) − Cε ≤ h(τ, ζ),

if C ≥ κh. By definition of θ(ε) we also have u(0, z) ≤ h0(z) in Ω.
A direct computation shows that, for C > 0 large enough, u ∈ Sh,g,F (ΩS).

Since u is uniformly Lipchitz in [0, S], u ∈ Sκh,g,F (ΩS) for some κ > 0 large
enough. Hence u ≤ Uκ0 in ΩS . Letting ε → 0 we obtain v ≤ Uκ0 in ΩS.
Letting S → T we arrive at v ≤ Uκ0 , hence U ≤ Uκ0 . Therefore U = Uκ0 is
the maximal subsolution to (CMAF) with boundary value h.

Step 1.2. We now remove the continuity assumption on h0.

Using Lemma 2.11 we can find a sequence hj0 of psh functions in Ω such

that hj0 is continuous on Ω̄, hj0 = h0 on ∂Ω, and hj0 ↓ h0 in Ω. We then define

hj(t, z) := h(t, z) for (t, z) ∈ [0, T [×∂Ω and hj(0, z) = hj0(z) for z ∈ Ω. We
thus obtain a sequence of continuous Cauchy-Dirichlet boundary data for
ΩT such that hj = h on [0, T [×∂Ω and hj decreases pointwise to h. The
previous step ensures that U j := Uhj ,g,F,ΩT

is a subsolution to (CMAF).

Theorem 4.2 and Theorem 4.7 provide a uniform Lipschitz constant for U j.
Since hj decreases to h, U ≤ U j decreases to some V ∈ P(ΩT ). We thus
have V ∗

∣

∣

∂0ΩT
≤ h, and Proposition 2.6 reveals that V is a subsolution to

(CMAF). It then follows that V = U .
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Step 2. To treat the general case we proceed by approximation as in the
proof of Lemma 3.13. Fix 0 < S < T and 0 < ε < (T − S)/2. Define

{

hǫ(t, ζ) := h(t+ ǫ, ζ) if (t, ζ) ∈ [0, S] × ∂Ω
hǫ(0, z) = h0(z) + ψǫ(z) if z ∈ Ω,

where ψǫ is the maximal psh function in Ω such that ψǫ(ζ) = h(ǫ, ζ)−h(0, ζ)
in ∂Ω. Then {hǫ} uniformly converges on ∂0ΩS to h as ǫ → 0. Since hǫ is
uniformly Lipschitz in t ∈ [0, S], the previous step and Theorem 3.12 ensure
that U ε := Uhε,g,F,ΩS

∈ Shε,F,g(ΩS) satisfies the boundary conditions (1),
(2), (3). Moreover, it follows Proposition 4.1 that the envelopes U ε uniformly
converge in ΩS to U as ε → 0. Hence, Proposition 2.6 and Proposition 2.3
(together with Remark 2.4) yield that U is a subsolution to (CMAF) and U
satisfies the boundary conditions (1), (2), (3).

If h0 is continuous on Ω̄ then Lemma 3.13 and the three boundary con-
ditions (1), (2), (3) give the last statement. �

4.3. Semi-concavity in the time variable. In this section we assume
that h satisfies (4.1) and there exists Ch > 0 such that, for all z ∈ ∂Ω,

(4.10) ∂2t h(t, z) ≤ Cht
−2

in the sense of distributions in ]0, T [. Condition (4.10) is equivalent to the
fact that t 7→ h(t, z) + Ch log t is concave in ]0, T [. It implies in particular
that h is locally uniformly semi-concave in the t-variable.

Theorem 4.7. Assume h satisfies (4.1) and (4.10). The envelope U :=
Uh,g,F,ΩT

is locally uniformly semi-concave in ]0, T [ : for all z ∈ Ω,

∂2t U(t, z) ≤ CU t
−2

in the sense of distributions in ]0, T [, for some uniform constant CU > 0.

We will show that the constant CU is actually explicit,

(4.11) CU := Ch + 2Mh + 8κh + (2κF + 3)(MU + 5κU + 1 +CFT
2 + 16κ2U ).

This quantitative information is important in perturbation arguments, to
obtain uniform semi-concavity constants of the approximants.

By the assumption on F , there is a constant CF > 0 such that for all
z ∈ Ω, the function

(4.12) (t, r) 7→ F (t, z, r) + CF (t2 + r2) is convex in [0, T ] × [−2MU , 2MU ].

Proof. It follows from Theorem 4.6 that U ∈ Sh,g,F (ΩT ). Fix 0 < S < T ,
and s > 1/2 close to 1 enough such that sS < T . Set, for (t, z) ∈ ΩS ,

vs(t, z) :=
s−1U(st, z) + sU(s−1t, z)

2
− C(t+ 1)(s − 1)2,

where C > 0 is defined as

(4.13) C := Ch + 1 + 2Mh + 8κh + 2κF (MU + 4κU + T + CFT
2 + 16κ2U ).

We are going to prove that vs ∈ Sh,g,F (ΩS).
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Boundary values of vs. It follows from (4.10) that for all z ∈ ∂Ω, t ∈]0, S[,

h(st, z) + h(s−1t, z)

2
≤ h

(

(s+ s−1)t

2
, z

)

+ Ch log

(

s+ s−1

2

)

≤ h

(

(s+ s−1)t

2
, z

)

+ Ch(s− 1)2

≤ h(t, z) + (Ch + 1)(s − 1)2,

where in the last line we use (4.2). We claim that for all (t, z) ∈]0, S[×∂Ω,

s−1h(st, z) + sh(s−1t, z) ≤ h(st, z) + h(s−1t, z) + (2Mh + 3κh)(s− 1)2.

Indeed, write s = 1 − σ and observe that s−1 = 1 + σ + O(σ2), where
|O(σ2)| ≤ 2σ2 for |σ| ≤ 1/2. Thus for all (t, z) ∈]0, S[×∂Ω,

s−1h(st, z) + sh(s−1t, z) ≤ (1 + σ)h(st, z) + (1 − σ)h(s−1t, z) + 2Mhσ
2

≤ h(st, z) + h(s−1t, z) + σ(h(st, z) − h(s−1t, z)) + 2Mhσ
2.

Using (4.2), we obtain

s−1h(st, z) + sh(s−1t, z) ≤ h(st, z) + h(s−1t, z) + (2Mh + 4κh)(s− 1)2,

which proves the claim.
Since U∗

∣

∣

∂0ΩT
≤ h, the above estimate implies that (vs)∗ ≤ h on ∂0ΩS.

Using similarly the estimate in Theorem 4.2, we obtain the following esti-
mate which will be useful later: for all (t, z) ∈]0, S[×Ω̄,

|(U(st, z) + U(s−1t, z)) − (s−1U(st, z) + sU(s−1t, z))|(4.14)

≤ (2MU + 4κU )(s − 1)2.

Estimating the Monge-Ampère measure of vs. It follows from Proposition
3.2 that for almost all t ∈]0, S[,

(ddcs−1U(st, ·))n ≥ en log s−1+∂τU(st,·)+F (st,·,U(st,·))gdV.

Using Lemma 2.10 we infer

(ddcvs(t, ·))n ≥ ea(s)+a(s
−1)gdV,

where

a(s) =
1

2
(∂τU(st, ·) + F (st, ·, U(st, ·))) .

By the semi-convexity assumption (4.12) on F , for λ ∈]0, 1[, t1, t2 ∈ [0, T ],
r1, r2 ∈ [−2MU , 2MU ] we have

F (λ(t1, r1) + (1 − λ)(t2, r2)) ≤ λF (t1, r1) + (1 − λ)F (t2, r2)

+ CFλ(1 − λ)
(

(t1 − t2)
2 + (r1 − r2)

2
)

.
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Applying this for (t, r) 7→ F (t, z, r), z ∈ Ω, λ = 1/2, t1 = st, t2 = s−1t,
r1 = U(st, z), r2 = U(s−1t, z), we obtain

1

2
F (st, z, U(st, z)) +

1

2
F (s−1t, z, U(s−1t, z)) ≥

F

(

(s+ s−1)t

2
, z, (U(st, z) + U(s−1t, z))/2

)

− CF
4

(

t2(s− s−1)2 + (U(st, ·) − U(s−1t, ·))2
)

.

Using (4.4), (4.14), and the fact that F is increasing in r, we thus get

1

2
F (st, z, U(st, z)) +

1

2
F (s−1t, z, U(s−1t, z)) ≥

F (t, z, vs(t, z)) − κF (MU + 2κU + t)(s− 1)2

− CF
4

(

t2(s− s−1)2 + (U(st, ·) − U(s−1t, ·))2
)

≥ F (t, z, vs(t, z)) − (κF (MU + 2κU + T ) + 2CF (T 2 + 2κ2U ))(s − 1)2.

The choice of C (4.13) ensures that

a(s) + a(s−1) ≥ ∂tv
s(t, ·) + F (t, ·, vs(t, ·)).

Altogether we conclude that vs ∈ Sh,g,F (ΩS). Using Proposition 4.1 we
infer vs ≤ U in ΩS . From this and (4.14) we obtain that for all (t, z) ∈ ΩS ,

U(st, z) + U(s−1t, z)

2
− U(t, z) ≤ (C + 2MU + 8κU )(s − 1)2.

An elementary computation then yields (letting s→ 1) that ∀(t, z) ∈ ΩS,

t2∂2tU(t, z) ≤ (9κU + 2MU + C).

We finally let S → T to conclude the proof. �

5. Space regularity of parabolic envelopes

We establish the first steps of a balayage process by studying solutions
constructed in small balls, and establishing space regularity of Uh,g,F,BT

:
assuming adequate regularity conditions on the data we prove that Uh,g,F,BT

is locally C1,1 in z ∈ B.
We assume that T < +∞, and h satisfies (4.1) and (4.10).

5.1. Continuity in the space variable. Let (Y, dY ) be a metric space.
The uniform partial modulus of continuity in the space variable y ∈ Y of a
function u : [0, T [×Y −→ R is

η(u, δ) := sup{|u(t, y1) − u(t, y2)| ; t ∈ [0, T [, y1, y2 ∈ Y, dY (y1, y2) ≤ δ}.
In particular, the uniform partial modulus of continuity of F is defined

as above with Y := Ω × R.

Theorem 5.1. Assume the following conditions :
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• G := log g is continuous in Ω ;
• there exists u ∈ Sh,g,F (ΩT ) ∩ C([0, T [×Ω̄), such that u = h on ∂0ΩT .

Then U := Uh,g,F,ΩT
is continuous on [0, T [×Ω̄ and

(5.1) η(U, δ) ≤ η(u, δ) + η(H, δ) + (η(F, δ) + η(G, δ))T.

Recall that Ht is the unique harmonic function in Ω with Ht = ht on ∂Ω.

A continuous subsolution which agrees with h on ∂0Ω is called a subbar-
rier. Such a subbarrier (for the whole boundary ∂0ΩT as required in the
Theorem) exists when h is uniformly Lipschitz in [0, T [ and continuous on
∂0ΩT by Lemma 3.7, Lemma 3.8 and Lemma 3.9.

Proof. It follows from Theorem 3.12 that U continuously extends to the
boundary ∂0ΩT so that U = h on ∂0ΩT . We use the perturbation method
of Walsh [Wal69] to extend this property to the interior and prove that U
is continuous on [0, T [×Ω̄.

Fix δ > 0 small enough. Since u = h = U in [0, T [×∂Ω, we infer that for
all t ∈ [0, T [, z ∈ Ω, ζ ∈ ∂Ω with |z − ζ| ≤ δ,

(5.2) U(t, ζ) = u(t, ζ) ≤ u(t, z) + η(u, δ) ≤ U(t, z) + η(u, δ).

Fix ξ ∈ Cn such that |ξ| ≤ δ and set Ωξ := Ω − ξ and consider

W (t, z) :=

{

U(t, z), if t ∈ [0, T [, z ∈ Ω \ Ωξ,

max{U(t, z), U(t, z + ξ) − η(u, δ)}, if t ∈ [0, T [, z ∈ Ω ∩ Ωξ.

By (5.2) the two definitions coincide when (t, z) ∈ [0, T [×Ω and z+ξ ∈ ∂Ω.
Therefore W ∈ P(ΩT ). We are going to prove that W − O(δ)(t + 1) ∈
Sh,g,F (ΩT ) for some small error term O(δ).

The subsolution property. By Lemma 3.4, for a.e. (t, z) ∈ [0, T [×(Ω ∩ Ωξ),

∂tW (t, z) = 1{U(t,z)<Ũ (t,z)}∂tŨ(t, z) + 1{U(t,z)≥Ũ(t,z)}∂tU(t, z),

where

Ũ(t, z) := U(t, z + ξ) − η(u, δ) in Ω ∩ Ωξ.

Moreover

e∂tŨ(t,z)+F (t,z,Ũ(t,z))+G(z)dt ∧ dV (z)

≤ e∂tU(t,z+ξ)+F (t,z+ξ,U(t,z+ξ))+η(F,δ)+G(z+ξ)+η(G,δ)dt ∧ dV (z)

≤ eη(F,δ)+η(G,δ)dt ∧ (ddcŨ)n,

in the weak sense on ]0, T [×(Ω ∩ Ωξ). We thus obtain

e∂tW (t,z)+F (t,z,W (t,z))+G(z)dt ∧ dV (z) ≤ eb(δ)dt ∧ (ddcW )n,

i.e. the function defined on [0, T [×Ω by W1(t, z) := W (t, z) − b(δ)t, is a
subsolution to (CMAF) in ]0, T [×Ω. Here b(δ) := η(F, δ) + η(G, δ).

Estimating boundary values. It follows from Theorem 3.12 that

lim
(t,z′)→(0,z)

U(t, z′) = h0(z), z ∈ Ω.
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By definition of W and the assumption that h0 = u on {0} × Ω, we obtain

lim
(t,z′)→(0,z)

W (t, z′) ≤ h0(z), for all z ∈ Ω.

Fix (τ, ζ) ∈ [0, T [×∂Ω.
Since U ≤ H in ΩT and U = h in [0, T [×∂Ω, we infer

lim
]0,T [×(Ω∩Ωξ)∋(t,z)→(τ,ζ)

W (t, z) ≤ max(h(τ, ζ),H(τ, ζ + ξ)) ≤ h(τ, ζ) + η(H, δ),

and

lim
]0,T [×(Ω\Ωξ)∋(t,z)→(τ,ζ)

W (t, z) = lim
]0,T [×(Ω\Ωξ)∋(t,z)→(τ,ζ)

U(t, ζ) = h(τ, ζ).

From the computations above we conclude thatW1−η(H, δ) ∈ Sh,g,F (ΩT ).
Thus W1 − η(H, δ) ≤ U in ΩT , hence

U(t, z + ξ) − η(u, δ) − η(H, δ) − (η(F, δ) + η(G, δ))t ≤ U(t, z),

for (t, z) ∈ [0, T [×(Ω ∩ Ωξ) and ξ ∈ Cn with |ξ| ≤ δ. This gives (5.1).

The continuity of U on [0, T [×Ω̄ follows from Theorem 4.6, the continuity
of h0, the continuity of each slice U(t, ·) on Ω̄ and the fact that U is locally
uniformly Lipschitz in t ∈]0, T [. �

Corollary 5.2. Assume that

(1) G := log g is Lipschitz in Ω;
(2) the family {h(·, z) ; z ∈ ∂Ω} is uniformly Lipschitz in [0, T [;
(3) h0 is Lipschitz on Ω̄;
(4) the family {h(t, ·) ; t ∈]0, T [} is uniformly C1,1 on ∂Ω;
(5) the function F is Lipschitz on [0, T [×Ω × J , for each J ⋐ R.

Then the family {U(t, ·) ; t ∈ [0, T [} is uniformly Lipschitz on Ω̄.

Proof. It follows from Lemma 3.7, Lemma 3.8 and assumption (2) that there
exists u ∈ Sg,h,F (ΩT )∩C([0, T [×Ω̄) with u

∣

∣

∂0ΩT
= h. [GZ, Theorem 5.2] and

(3), (4) ensure that the family {u(t, ·) ; t ∈ [0, T [} is uniformly Lipschitz on
Ω̄. We now invoke Theorem 5.1 to finish the proof. �

5.2. C1,1-regularity in the space variable. We prove the following regu-
larity result:

Theorem 5.3. Assume Ω = B is the unit ball, T < +∞, and

(1) G := log g ∈ C1,1(B̄);
(2) h satisfies the assumptions of Corollary 5.2;
(3) F is Lipschitz and semi-convex in [0, T [×B̄ × J , for each J ⋐ R.

Then the envelope Uh,g,F,BT
is locally uniformly C1,1 in z ∈ B.

By scaling and translating, the result still holds for any ball B(z0, r) ⋐ Cn.
In the proof below we use C to denote various uniform constants which may
be different from place to place.
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Proof. The proof is a parabolic analogue of [BT76, Theorem 6.7]. We follow
closely the presentation of [GZ, Theorem 5.3.1]. Recall from Corollary 5.2
that the family {U(t, ·) ; t ∈ [0, T [} is uniformly Lipschitz on B̄.

Automorphisms of the ball B. For a ∈ B, we set

Ta(z) =
Pa(z) − a+

√

1 − |a|2(z − Pa(z))

1 − 〈z, a〉 ; Pa(z) =
〈z, a〉
|a|2 a

where 〈·, ·〉 denote the Hermitian product in Cn. It is well known (see [Klim,
Lemma 4.3.1]) that Ta is a holomorphic automorphism of the unit ball such
that Ta(a) = 0 and Ta(∂B) = ∂B. Note that T0 is the identity. We set

ξ = ξ(a, z) := a− 〈z, a〉z.
Observe that ξ(−a, z) = −ξ(a, z). If |a| ≤ 1/2 then

Ta(z) = z − ξ +O(|a|2),

where O(|a|2) ≤ C0|a|2, with C0 a numerical constant independent of z ∈ B

when |a| ≤ 1/2. Thus T±a is the translation by ∓ξ up to small second order
terms, when |a| is small enough.

We set, for (t, z) ∈ BT ,

Va(t, z) :=
1

2
(U(t,Ta(z)) + U(t, T−a(z)).

We are going to prove that, for a uniform constant C > 0, the function
Va − C|a|2(t+ 1) belongs to Sh,g,F (BT ). We proceed in two steps.

Step 1: Boundary values of Va. If q is C1,1(B̄) then, as in [GZ, Page 145],

(5.3) |q(Ta(z)) + q(T−a(z)) − 2q(z)| ≤ 2C(q)|a|2,
where C(q) > 0 depends on the uniform C1,1-norm of q on B̄.

Since the family {h(t, ·) ; t ∈ [0, T [} is uniformly Lipschitz in ∂B, applying
(5.3) yields

h(t,Ta(z)) + h(t,T−a(z)) ≤ 2h(t, z) + 2C(h)|a|2,
for z ∈ ∂B, |a| small enough, where C(h) > 0 depends on the uniform
C1,1-bound of h(t, ·) in a neighborhood of ∂B. We infer, for all (t, ζ) ∈ ∂0BT ,

Va(t, ζ) ≤ h(t, ζ) + C(h)|a|2.

Step 2: Estimating the Monge-Ampère measure of Va. Since U is a subsolu-
tion to (CMAF) a direct computation shows that

(ddcU ◦ Ta)n = |detT ′
a |2(ddcU)n ◦ Ta

≥ |det T ′
a |2 exp (∂tU(t,Ta(z)) + F (t,Ta(z), U(t,Ta(z)) +G(Ta(z))) .

Since the function (a, z) 7→ θ(0, z) := log |detT ′
a(z)|2 + log |det T ′

−a(z)|2 is
smooth in B1/2 × B̄ and θ(0, z) = 0, the Taylor expansion yields

θ(a, z) + θ(−a, z) = O(|a|2).
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The assumption (3) provides us with a uniform constant C such that

1

2
{F (t,Ta(z), U(t,Ta(z)) + F (t,T−a(z), U(t,T−a(z))}

≥ F

(

t,
Ta(z) + T−a(z)

2
, Va(t, z)

)

− C(‖Ta(z) − T−a(z)‖2 + (U(t,Ta(z) − U(t,T−a(z))2)

≥ F (t, z, Va(t, z)) − C|a|2,
where in the last inequality we have used Ta(z) + T−a(z) − 2z = O(|a|2),
Ta(z) − T−a(z) = O(|a|), and the Lipschitz regularity (in z ∈ B̄) of U .
Using this, and applying Lemma 2.10 and the uniform estimate (5.3) to the
function G we obtain

(ddcVa(t, ·))n ≥ exp
{

∂tVa + F (t, z, Va(t, z)) +G(z) − C|a|2
}

.

By the computations above we conclude that the function

BT ∋ (t, z) 7→Wa(t, z) = Va(t, z) − C|a|2(t + 1)

belongs to Sh,g,F (BT ). Therefore, for all (t, z) ∈ BT ,

Va(t, z) − (T + 1)C|a|2 ≤ U(t, z).

From this estimate, we proceed as in [GZ, page 146-147] to prove that the
second order partial derivatives (in z) of U are locally bounded in B. �

We now show that U admits a Taylor expansion up to order (1, 2) :

Lemma 5.4. Assume (h, g, F,BT ) is as in Theorem 5.3. Then the envelope
U admits the following Taylor expansion at almost every point (t0, z0) ∈ BT ,

U(t, z) = U(t0, z0) + (t− t0)∂tU(t0, z0) + ℜP (z − z0) + L(z − z0)

+ o(|t− t0| + |z − z0|2),

where P is a polynomial of degree 2 and L is the Levi form of U(t0, z) at z0.

Proof. It follows from Theorem 4.7 that U is locally uniformly semi-concave
in t ∈]0, T [. Theorem 5.3 ensures that U is locally uniformly Lipschitz in
z ∈ B, hence, for all t ∈]0, T [, U(t, ·) is twice differentiable at a.e. z ∈ B.

Let A1 be the set of points (t0, z0) ∈ ΩT such that U(·, z0) is not differ-
entiable at t0 and A2 be the set of points (t0, z0) ∈ ΩT such that U(t0, ·) is
not twice differentiable at z0. It follows from Fubini’s Theorem that the set
A := A1 ∪A2 is of Lebesgue measure zero in ΩT .

We show that the Taylor expansion holds at any point (t0, z0) /∈ A. Fix
ε > 0 and (t0, z0) /∈ A. We first write for (t, z) ∈ ΩT ,

U(t, z) − U(t0, z0) = U(t, z) − U(t0, z) + U(t0, z) − U(t0, z0).

Since (t0, z0) /∈ A1, the function U(t0, ·) is twice differentiable at z0. Thus
there exists r > 0 such that for |z − z0| < r,

(5.4) |U(t0, z) − U(t0, z0) −ℜP (z − z0) − L(z − z0)| ≤ ε|z − z0|2.
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On the other hand since (t0, z0) /∈ A2, ∂tU(t0, z0) exists and we have

U(t, z) − U(t0, z) − (t− t0)∂tU(t0, z0) =

∫ t

t0

(∂+τ U(τ, z) − ∂tU(t0, z0))dτ

=

∫ t

t0

(∂−τ U(τ, z) − ∂tU(t0, z0))dτ.

Since ∂+τ U is lsc and ∂−τ U is usc, we can choose r so small that for
|t− t0| + |z − z0| < r,

(5.5) |U(t, z) − U(t0, z) − (t− t0)∂tU(t0, z0)| ≤ ε|t− t0|.
The Taylor expansion thus follows from (5.4) and (5.5). �

6. Pluripotential solutions

We finally prove in this section that Uh,g,F,ΩT
is the unique pluripoten-

tial solution to the Cauchy-Dirichlet problem for (CMAF) which is locally
uniformly semi-concave.

6.1. The case of Euclidean balls. We first treat the case when Ω is a
euclidean ball in Cn. By scaling and translating, it suffices to treat the case
of the unit ball.

Theorem 6.1. Let Ω = B be the unit ball in Cn, T < +∞, and assume that

(1) G := log g is C1,1 in B̄;
(2) h is uniformly C1,1 in z ∈ ∂B, h0 is C1,1 in B̄;
(3) h is uniformly Lipschitz in t ∈ [0, T [ and ∂2t h ≤ Ct−2 on ]0, T [×∂B;
(4) F is Lipschitz and semi-convex in (t, z, r) ∈ [0, T [×B̄ × J for each

J ⋐ R.

Then for almost every (t, z) ∈ BT ,

det

(

∂2U

∂zj∂z̄k
(t, z)

)

= eU̇(t,z)+F (t,z,U(t,z))+G(z).

In particular U is a pluripotential solution to the Cauchy-Dirichlet prob-
lem for the parabolic equation (CMAF) with boundary data h.

Proof. Theorem 4.6 and the Lipschitz assumption on h ensure that U is a
subsolution to (CMAF) with U = h on ∂0ΩT . It follows from Corollary 5.2
and Theorem 5.3 that U is uniformly Lipschitz in z ∈ B̄ and locally C1,1

in B. In particular U is twice differentiable in z almost everywhere in ΩT ,
hence

(ddcU)n = det(Uj,k̄(t, z))dV (z).

As U is also almost everywhere differentiable in t and a subsolution to
the parabolic equation (CMAF), we infer by Proposition 3.2,

(6.1) det(Uj,k̄(t, z)) ≥ e∂tU(t,z)+F (t,z,U(t,z))+G(z),

almost everywhere in BT .
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We want to prove that equality holds in (6.1). We use the notation of
the proof of Lemma 5.4 and set E = BT \ A. Arguing by contradiction we
assume that

det
(

Uj,k̄(t0, z0) − εIn
)

> eU̇(t0,z0)+F (t0,z0,U(t0,z0))+G(z0)+ε,

at some point (t0, z0) ∈ E, for a small constant ε > 0.
We use a bump construction to produce a subsolution v ∈ Sh,g,F (BT )

which satisfies v(t0, z0) > U(t0, z0) providing a contradiction. It follows
from Lemma 5.4 that

U(t, z) − U(t0, z0) = (t− t0)∂tU(t0, z0) + ℜP (z − z0) + L(z − z0)

+ o(|t− t0| + |z − z0|2).(6.2)

Set Dr := {(t, z) ; |t− t0| + |z − z0|2 < r} and define

w(t, z) := U(t0, z0) + ∂tU(t0, z0)(t− t0) + ℜP (z − z0)

+ L(z − z0) + δ − γ(|z − z0|2 + |t− t0|),
where δ, γ > 0 are constants to be specified later. Note that if γ is small
enough then w ∈ P(Dr). For any (t, z) ∈ Dr, the Taylor expansion (6.2)
ensures that

U(t, z) ≥ w(t, z) + γ(|t− t0|) + |z − z0|2) − δ + o(r).

Hence for any (t, z) ∈ Dr \Dr/2,

U(t, z) ≥ w(t, z) + γr/2 − δ + o(r) > w(t, z),

if δ = γr/4, and r > 0 is small enough. On the other hand for (t, z) ∈ Dr,

(ddcw)n = (ddcU − γ|z − z0|2)n(t0, z0),

and for (t, z) ∈ Dr, t 6= t0,

∂tw(t, z) = ∂tU(t0, z0) − γ(t− t0)/|t− t0|.
Thus if γ < ε, we obtain for any (t, z) ∈ Dr,

(ddcw(t, z))n ≥ e∂tw(t,z)+γ(t−t0)/|t−t0|))+F (t0,z0,U(t0,z0))+G(z0)+εdV

≥ e∂tw(t,z)−γ+F (t,z,w(t,z))+G(z)+R(t,z)+εdV,

where

R(t, z) := F (t0, z0, U(t0, z0)) − F (t, z, w(t, z)) + (G(z0) −G(z)).

Since U and F are locally Lipschitz, there exists A > 0 such that for r > 0
small enough and (t, z) ∈ Dr,

R(t, z) ≥ −A√r ≥ γ − ε.

The function w is therefore a subsolution to (CMAF) in Dr.
The previous estimates ensure that the function

v(t, z) :=

{

max{U(t, z), w(t, z)} if (t, z) ∈ Dr

U(t, z) if (t, z) ∈ BT \Dr
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belongs to Sh,g,F (BT ), hence v ≤ U in BT . In particular, w ≤ U in Dr which
is a contradiction since w(t0, z0) = U(t0, z0) + δ > U(t0, z0). �

We now relax the regularity assumptions in Theorem 6.1.

Proposition 6.2. Assume Ω = B is the unit ball in Cn, T < +∞, and

• G := log g is continuous in B̄;
• h is continuous on ∂0BT and satisfies (4.1) and (4.10);
• F extends as a continuous function on [0, T [×B̄ × R which is uni-
formly Lipschitz and uniformly semi-convex in (t, r) ∈ [0, T [×J for
each J ⋐ R.

Then Uh,g,F,BT
is a continuous solution to (CMAF) with boundary values h.

Proof. It follows from Theorem 4.6 that U ∈ Sh,g,F (BT ) satisfies the bound-
ary conditions (0.2), (0.3). It remains to prove that U is continuous on
[0, T [×Ω̄ and solves (CMAF) in ΩT . By Proposition 4.1 it suffices to prove
these statements in BS for each fixed S < T . We proceed in several steps.

Step 1. Assume that h(·, z) is uniformly Lipschitz in t ∈ [0, T [. It follows
from Theorem 5.1 that U is continuous on [0, T [×Ω̄. The goal is to prove
that U solves (CMAF) in BS. We proceed by approximation as follows.

Let (Gj) = (log gj) be a sequence of smooth functions uniformly con-
verging to G on B̄. Extending F continuously in an open neighborhood
of [0, S] × B̄ × R and taking convolution in (t, z, r) we can find a sequence
Fj : [0, S] × B̄ ×R of functions which are smooth in (t, z, r) and

• Lipschitz and semi-convex in [0, S] × B̄× J for each J ⋐ R;
• uniformly converges to F on [0, S] × B̄× J , for each J ⋐ R.

We extend h as a continuous function in [0, T [×{|z| ≥ 1/4} by setting

h(t, z) := h

(

t,
z

|z|

)

, z ∈ Cn, |z| ≥ 1/4;

The extension h satisfies (4.1) and (4.10) for all |z| ≥ 1/4 (with the
same constants κh, Ch as the original function h defined on ∂0BT ). Taking

convolution in the z variable we can find a sequence (ĥj) of functions in
[0, T [×{|z| > 1/3} which are smooth in z and

• are uniformly Lipschitz in t;
• satisfy (4.10) with the same uniform constant Ch;
• uniformly converge to h on [0, S] × ∂B.

Fix j ∈ N and define hj by
{

hj(t, z) := ĥj(t, z) if (t, z) ∈]0, T [×∂B
hj(0, z) = h0 +Hj if (t, z) ∈ {0} × B,

where Hj is the maximal plurisubharmonic function in B with boundary
values ĥj(0, ·) − h0. Observe that hj is a Cauchy-Dirichlet boundary data
on BT which satisfies the assumptions of Theorem 6.1. Note also that hj

uniformly converges to h on ∂0BT , since Hj uniformly converges to 0.
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Set U j := Uhj ,gj ,Fj
(BS), j ∈ N. Theorem 6.1 ensures that U j is a pluripo-

tential solution to the equation (CMAF) and U j = hj on ∂0BS. It also
follows from Theorem 4.2 and Theorem 4.7 that U j is locally uniformly
semi-concave in t ∈]0, S]. Moreover, (4.5) and (4.13) ensure that the Lip-
schitz and semi-concave constants of U j are uniform. By definition of the
envelope, U j uniformly converges to U as j → +∞. It thus follows from
Proposition 2.9, Proposition 2.3, Remark 2.4 and Lemma 2.8 that U is a
pluripotential solution to (CMAF) in BS .

Step 2. To treat the general case, we approximate h by a family of functions
hε which are Lipschitz up to zero, in such a way that they satisfy (4.1) and
(4.10) with constants independent of ε.

We proceed as in the proof of Theorem 4.6. Fix S > 0 and ε > 0 such
that S + ε < T , and define

{

hε(t, ζ) = h(t + ε, ζ) if (t, ζ) ∈ [0, S] × ∂B
hε(0, z) = h0(z) + φε(z) if z ∈ B,

where φε is the maximal plurisubharmonic function in B such that φε(ζ) =
h(ε, ζ) − h0(ζ) on ∂B. Then hε uniformly converges to h on ∂0BS .

Observe that hε is a Cauchy-Dirichlet boundary data satisfying (4.1) and
(4.10) with constants independent of ε. By construction hε is uniformly
Lipschitz in t ∈ [0, S]. The previous step shows that U ε := Uhε,g,F,BS

is a
continuous pluripotential solution to (CMAF) with boundary data hε. By
Proposition 4.1, U ε uniformly converges to U on BS. The continuity of U ε

ensures that U is continuous in BS. Since h0 is continuous, Theorem 3.12
ensures that U is continuous in [0, S[×B̄. It follows from Theorem 4.2 and
Theorem 4.7 that the family U ε is locally uniformly semi-concave in t ∈]0, S[
with constants independent of ε; see (4.3) and (4.11). Arguing as in the last
part of Step 1 we conclude that U solves (CMAF) in BS . �

6.2. The case of bounded strictly pseudoconvex domains. We now
consider the case of a smooth bounded strictly pseudoconvex domain.

We first prove the existence result in a particular case.

Proposition 6.3. Assume T < +∞, h satisfies (4.1) and (4.10). Then
Uh,g,F is a pluripotential solution to the Cauchy-Dirichlet problem for the
parabolic equation (CMAF) in ΩT with boundary conditions (0.2) and (0.3).

Proof. It follows from Theorem 4.2, Theorem 4.6, Theorem 4.7 that U is
locally uniformly semi-concave in t ∈]0, T [, U ∈ Sh,g,F (ΩT ) and it satisfies
the boundary conditions (0.2) and (0.3). It remains to verify that U solves
(CMAF). We proceed in several steps.

Step 1. We first assume that h0 and G := log g are continuous in Ω̄. Then
U is also continuous on [0, T [×Ω̄ thanks to Theorem 5.1.

Let B ⋐ Ω be a small ball and hB denote the restriction of U on the par-
abolic boundary of BT . The boundary data hB for the Cauchy-Dirichlet
problem for (CMAF) satisfies the assumption of Proposition 6.2. Also,
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the restriction of U on [0, T [×B is a continuous subsolution to the Cauchy
Dirichlet problem (CMAF) in BT with boundary data hB . It follows from
Proposition 6.2 that UB := UhB,g,F,BT

is a pluripotential solution to (CMAF)
with boundary data hB and UB ≥ U in BT .

The function V , which is defined as UB in BT and U in ΩT \BT , belongs
to Sh,g,F (ΩT ). Hence V = U is a pluripotential solution to (CMAF).

Step 2. We next assume h0 is continuous, but we merely assume g ∈ Lp.
Let (gj) be a sequence of strictly positive continuous functions in Ω̄ that

converges to g in Lp(Ω). Set U j := Uh,gj,F and U := Uh,g,F . Since the
Lp-norm of gj is uniformly bounded, Theorem 4.2 and Theorem 4.7 ensure
that the functions U j are locally uniformly semi-concave (with constants
independent of j). It thus follows from Proposition 1.14 that a subsequence
of U j, still denoted by U j, converges almost everywhere in ΩT to a function

V ∈ P(ΩT ). Lemma 1.8 ensures that U jt converges in L1(Ω) to Vt, for all
t ∈]0, T [. By Proposition 2.9, for almost all t ∈]0, T [, ∂tU

j(t, ·) converges
pointwise to ∂tV (t, ·). Thus, for almost all t ∈]0, T [,

e∂tU
j(t,·)+F (t,·,Uj)gj

Lp(Ω)−→ e∂tV (t,·)+F (t,·,V )g.

A result due to Ko lodziej (see [Ko l96, End of the proof of Theorem 3],
see also [DK14, Theorem 2.8]) ensures that U j(t, ·) uniformly converges
to V (t, ·) and (ddcU j(t, ·))n converges in the sense of positive measures to
(ddcV (t, ·))n. Thus dt ∧ (ddcU j)n weakly converges in ΩT to dt ∧ (ddcV )n

(see the proof of Proposition 2.3). Hence V solves (CMAF) in ΩT . Lemma
3.9 and Corollary 3.11 ensure that V ∗

∣

∣

∂0ΩT
≤ h. Thus V ≤ U .

To prove that U ≤ V we now use a perturbation argument following
an idea of Ko lodziej [Ko l96] (see also [GLZ18]). For each j let θj be the
unique continuous psh function in Ω̄, vanishing on ∂Ω such that (ddcθj)

n =
|gj − g|dV . It follows from [Ko l98] that

lim
j→+∞

sup
Ω̄

|θj| = 0.

Fix 0 < S < T , ε > 0 small enough and set, for (t, z) ∈ ΩS ,

W j(t, z) := W j,ε(t, z) := U(t+ ε, z) − δ(ε)t + C(ε)θj(z),

where δ(ε) > 0, C(ε) > 0 are constants to be chosen in such a way that
δ(ε) → 0 but C(ε) may blow up as ε → 0. The goal is to prove that
W j ∈ Sh,gj,F (ΩS). It follows from Lemma 3.13 that Ut uniformly converges

on Ω̄ to h0, ensuring that

b(ε) := sup
∂0ΩS

|U(t+ ε, z) − h(t, z)| ε→0−→ 0.

A direct computation shows that

(ddcW j)n ≥ (ddcU(t+ ε, ·))n + C(ε)n(ddcθj)
n

≥ e∂tU(t+ε,·)+F (t+ε,·,U(t+ε,·))g(z)dV + C(ε)n|g − gj |dV.
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By the Lipschitz condition (4.4) on F we can write

|F (t + ε, ·, U(t + ε, ·)) − F (t, ·, U(t + ε, ·))| ≤ εκF .

Since r 7→ F (t, z, r) is increasing,

F (t, ·, U(t + ε, ·)) ≥ F (t, ·,W j(t, ·)) −Aε,

where A > 0 depends on κF ,MU . We choose δ(ε) := b(ε) +Aε. Then

(ddcW j)n ≥ e∂tU(t+ε,·)+F (t,·,W j(t,·))−Aεg(z)dV + C(ε)n|g − gj |dV
≥ e∂tW

j(t,·)+F (t,·,W j(t,·))g(z)dV + C(ε)n|g − gj |dV
and W j

∣

∣

∂0ΩS
≤ h. We now choose

C(ε) :=

(

sup
ΩS

exp {∂tU(t+ ε, z) + F (t, z, U(t + ε, z))}
)1/n

< +∞.

Since r 7→ F (t, z, r) is increasing we obtain

(ddcW j)n ≥ e∂tW
j(t,·)+F (t,·,W j(t,·))gdV + e∂tW

j(t,·)+F (t,·,W j(t,·))|g − gj |dV
≥ e∂tW

j(t,·)+F (t,·,W j(t,·))gjdV.

Thus W j ∈ Sh,gj,F (ΩS). Together with Proposition 4.1 this yields

(6.3) W j,ε ≤ Uh,gj,F,ΩT
, for all (t, z) ∈ ΩS .

In (6.3) we first let j → +∞ and then ε → 0 to arrive at U ≤ V . Hence
U = V is a pluripotential solution to the parabolic Monge-Ampère equation
(CMAF) with boundary data h.

Step 3. We finally remove the continuity assumption on h0. Using Lemma
2.11 we find a sequence hj of continuous Cauchy-Dirichlet boundary data
for ΩT such that hj = h on [0, T [×∂Ω and hj decreases pointwise to h.
The previous step ensures that U j := U(hj , g, F ) solves (CMAF). Theorem
4.2 and Theorem 4.7 provide uniform concavity constants for U j . Since
hj decreases to h, U ≤ U j decreases to some V ∈ P(ΩT ). We thus have
V ∗
∣

∣

∂0ΩT
≤ h, and Proposition 2.9 and Proposition 2.3 reveal that V solves

(CMAF). Thus V is a candidate defining U , hence U = V . �

We are now ready to prove a general existence result. Here T may take
the value +∞. We assume that, for each 0 < S < T , there exists a constant
C(S) > 0 such that for all (t, z) ∈]0, S] × ∂Ω,

(6.4) t|∂th(t, z)| ≤ C(S) ; t2∂2t h(t, z) ≤ C(S).

Theorem 6.4. If h satisfies (6.4) then U := Uh,g,F is a pluripotential so-
lution to the Cauchy-Dirichlet problem for (CMAF) in ΩT with boundary
condition h. Moreover, U is continuous in ]0, T [×Ω̄ and locally uniformly
semi-concave in t ∈]0, T [.

In particular, if h0 is continuous on Ω̄ then U is continuous on [0, T [×Ω̄.
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Proof. For S ∈]0, T [ we define US := Uh,g,F,ΩS
. Proposition 6.3 ensures

that US solves (CMAF) with US = h on ∂0ΩS. It follows from Proposition
4.1 that, for 0 < S1 < S2 < T , US1 = US2 on ΩS1

. Letting S → T we
obtain a function V ∈ P(ΩT ) which solves (CMAF) and satisfies V = h on
∂0ΩT . Obviously U ≤ US , for all S ∈]0, T [, hence U ≤ V . But V is also a
candidate defining U , hence V ≤ U . Therefore V = U solves (CMAF) in
ΩT . Moreover, by Theorem 4.2 and Theorem 4.7, US is locally uniformly
Lipschitz and semiconcave in t ∈]0, S[, hence so is U .

It follows from Proposition 3.2 and Remark 3.3 that

(ddcUt)
n = e∂tUt+F (t,·,Ut)gdV

for almost every t ∈]0, T [. Since ∂tU is locally bounded and ht is continuous
on ∂Ω for all t ∈]0, T [, [Ko l98] ensures that Ut is continuous on Ω̄ for almost
all t ∈]0, T [. Since U is locally uniformly Lipschitz in t we infer that U is
continuous in ]0, T [×Ω̄.

If h0 is continuous on Ω̄ then Theorem 4.6 and the continuity of U(t, ·)
(for each t ∈]0, T [ fixed) ensure that U is continuous on [0, T [×Ω̄. �

6.3. Uniqueness. We have proved in Section 6.2 the existence of a pluripo-
tential solution to (CMAF) which is locally uniformly semi-concave in t. Our
next goal is to prove that this is the unique such solution :

Theorem 6.5. Let Φ,Ψ ∈ P(ΩT ) ∩ L∞(ΩT ) with boundary data hΦ, hΨ.
Assume that

(1) Ψ is locally uniformly semi-concave in t ∈]0, T [;
(2) Φ is a subsolution while Ψ is a supersolution to (CMAF) in ΩT ;
(3) hΦ satisfies (6.4).

Then hΦ ≤ hΨ =⇒ Φ ≤ Ψ.

Here hΦ, hΨ are Cauchy Dirichlet boundary data in ΩT . In particular,
hΨ(t, ·) is continuous on ∂Ω, and the supersolution property of Ψ implies
that Ψ is continuous in ]0, T [×Ω̄ (see Theorem 6.4).

An important consequence of this comparison principle is the following
uniqueness result :

Corollary 6.6. Assume that Φ,Ψ ∈ P(ΩT ) are two pluripotential solutions
to (CMAF) with boundary values h satisfying (6.4). If Φ,Ψ are locally
uniformly semi-concave in t ∈]0, T [ then Φ = Ψ in ΩT .

Proof. Let U := Uh,g,F,ΩT
. Then Theorem 6.4 ensures that U solves (CMAF)

and U,Φ,Ψ are continuous on ]0, T [×Ω̄. By definition, Φ,Ψ ≤ U . It follows
from Theorem 6.5 that U ≤ Φ,Ψ, hence equality. �

We first establish Theorem 6.5 under extra assumptions :

Lemma 6.7. With the same assumptions as in Theorem 6.5, assume more-
over that Φ is C1 in t, continuous on ]0, T [×Ω̄, and Ψ is continuous on
[0, T [×Ω̄. Then hΦ ≤ hΨ =⇒ Φ ≤ Ψ.
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The first assumption (that Φ is C1 in t) means that (t, z) 7→ ∂tΦ(t, z)
exists and it is continuous on ]0, T [×Ω.

Proof. We fix S ∈]0, T [, ε > 0 small enough, and prove that

Φ ≤ Ψ + 2εt in ΩS.

The function

[0, S] × Ω̄ ∋ (t, z) 7→W (t, z) := Φ(t, z) − Ψ(t, z) − 2εt

is upper semi-continuous and bounded. We are done if the maximum is
attained on ∂0ΩS . We thus assume that maxW is reached at some point
(t0, z0) ∈]0, S] × Ω. We want to prove that W (t0, z0) ≤ 0. Assume, by
contradiction that it is not the case. Then the set

K := {z ∈ Ω ; W (t0, z) = W (t0, z0)}
is compact and the maximum principle ensures that

∂tΦ(t0, z) ≥ ∂−t Ψ(t0, z) + 2ε, for all z ∈ K.

Since Ψ is locally uniformly semi-concave in t ∈]0, T [ and continuous on
[0, T [×Ω̄, the left derivative ∂−t Ψ(t, z) exists and it is upper semi-continuous
in ]0, T [×Ω. Hence we can find r > 0 so small that

∂tΦ(t0, z) ≥ ∂−t Ψ(t0, z) + ε, for all z ∈ B,

where B = Br := {z ∈ Ω ; dist(z,K) < r}.
Since Φ is a subsolution (which is C1 in t) while Ψ is a supersolution to

(CMAF), Proposition 3.2 and Remark 3.3 ensure that

(ddcϕ)n ≥ eF (t0,z,ϕ(z))−F (t0,z,ψ(z))+ε(ddcψ)n,

setting ϕ := Φ(t0, ·), ψ := Ψ(t0, ·). Since ϕ and ψ are continuous in Ω, F
is increasing in r, and ϕ(z) ≥ ψ(z) + 2εt0 on K, up to shrinking B we can
assume that

(ddcϕ)n ≥ eε(ddcψ)n in B.

Set now ϕr := ϕ + mr, where mr := min∂B(ψ − ϕ). Since ψ ≥ ϕr on ∂B,
the comparison principle [BT76] yields

∫

{ψ<ϕr}∩B
eε(ddcψ)n ≤

∫

{ψ<ϕr}∩B
(ddcϕr)

n ≤
∫

{ψ<ϕr}∩B
(ddcψ)n.

Therefore (ddcψ)n does not charge the set {z ∈ B ; ψ(z) < ϕr(z)} and the
domination principle (see e.g. [GLZ18, Proposition 1.2]) yields ϕr ≤ ψ in
B. In particular

ϕ(z0) − ψ(z0) + min
∂B

(ψ − ϕ) = ϕr(z0) − ψ(z0) ≤ 0.

Since K ∩ ∂B = ∅, we obtain, for all z ∈ ∂B, W (t0, z) < W (t0, z0) hence

ϕ(z) − ψ(z) < ϕ(z0) − ψ(z0) ≤ max
∂B

(ϕ− ψ),

a contradiction. Thus Φ ≤ Ψ + 2εt and we conclude by letting ε→ 0. �
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We next establish an estimate for supersolutions to (CMAF).

Lemma 6.8. Assume Ψ ∈ P(ΩT ) has boundary data hΨ. If Ψ is a pluripo-
tential supersolution to (CMAF) then for all (t, z) ∈ ΩT ,

Ψ(t, z) ≥ hΨ(0, z) − c(t),

where c(t) > 0 satisfies limt→0+ c(t) = 0.

Proof. Fix 0 < S < T . For s > 0 small enough we set

(6.5) δ(s) := sup{|hΨ(τ, z) − hΨ(t, z)| ; z ∈ ∂Ω, t, τ ∈ [0, S], |t− τ | ≤ s}.
Since hΨ is continuous on [0, T [×∂Ω, we have lims→0+ δ(s) = 0.

Fix s ∈]0, (T − S)/2[. We are going to prove that

Ψ(s, z) ≥ hΨ(0, z) − δ(s) + s(ρ(z) − C) + n(s log(s/T ) − s),

where ρ is defined in (0.7) and C is a uniform constant.
Fix ε ∈]0, s] and let hε denote the restriction of (t, z) 7→ Ψ(t + ε, z) on

∂0Ωs. Then hε is a continuous boundary data on Ωs. Set, for (t, z) ∈ Ωs,

uε(t, z) := Ψ(ε, z) − δ(s) + t(ρ(z) − C1) + n(t log(t/T ) − t),

where C1 is a positive constant. By definition of δ(s) we have

uε(t, z) ≤ Ψ(t+ ε, z) = hε(t, z), for all (t, z) ∈ ∂0Ωs.

Arguing as in the proof of Lemma 3.8 we see that for C1 > 0 big enough
(depending on MF ), uε is a pluripotential subsolution to (CMAF) in Ωs.
Moreover, uε is of class C1 in t ∈ [0, s]. On the other hand, a direct com-
putation shows that, for C2 > 0 large enough and under control (depending
on κF ), the function

[0, s] × Ω ∋ (t, z) 7→ wε(t, z) := Ψ(t+ ε, z) + C2εt

is a pluripotential supersolution to (CMAF) and wε ≥ hε on ∂0Ωs. By
assumption on Ψ, wε is continuous on [0, s]× Ω̄. It thus follows from Lemma
6.7 that wε ≥ uε on [0, s] × Ω. We conclude by letting ε→ 0. �

We next remove the continuity assumption on Ψ in Lemma 6.7.

Lemma 6.9. With the same assumptions as in Theorem 6.5, assume more-
over that Φ is C1 in t and continuous on ]0, T [×Ω̄. Then

hΦ ≤ hΨ =⇒ Φ ≤ Ψ.

Proof. Since hΨ is continuous on [0, T [×∂Ω, the proof of Theorem 6.4 shows
that Ψ is continuous in ]0, T [×Ω̄, but it may not be continuous on [0, T [×Ω̄.
We use an idea in [DL17], exploiting the regularity of Ψ at positive times
close to zero. We fix S ∈]0, T [ and prove that Φ ≤ Ψ on ΩS.

Fix s ∈]0, (T − S)/2[ and set, for (t, z) ∈ [0, S] × Ω̄,

v(t, z) := Ψ(t+ s, z) + c(s) + δ(s) +Ast,

where δ(s) is defined in (6.5), A > 0 is a constant, and c(s) > 0 is as in
Lemma 6.8 (which ensures Ψ(s, z) ≥ hΨ(0, z) − c(s)).
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From the definition of δ(s) it follows that v(t, z) ≥ Ψ(t, z) = hΨ(t, z) on
[0, S]×∂Ω. For A > 0 large enough (depending on κF ), a direct computation
shows that v is a supersolution to (CMAF). Since v is continuous on [0, S]×
Ω̄, Lemma 6.7 then applies and yields Φ(t, z) ≤ v(t, z) on [0, S] × Ω. We
conclude by letting s→ 0. �

We are now ready to prove the comparison principle.

Proof of Theorem 6.5. We can assume without loss of generality that Φ =
UhΦ,g,F . From assumption (3) and Theorem 6.4 we deduce that UhΦ,g,F is
continuous on ]0, T [×Ω̄. We would like to apply Lemma 6.9 but Φ is a priori
not C1 in t. We are going to regularize Φ by taking convolution in t.

Fix 0 < S < T . For s > 0 near 1 we set, for (t, z) ∈ ΩS,

W s(t, z) := s−1Φ(st), z) − C|s− 1|(t + 1).

If C > 0 is large enough, the proof of Theorem 4.2 ensures that W s ∈
ShΦ,g,F (ΩS). Let {χε}ε>0 be a family of smoothing kernels in R approxi-
mating the Dirac mass δ0. For ε > 0 small enough we define

(6.6) Φε(t, z) :=

∫

R

W s(t, z)χε(s)ds.

We are going to prove that Φε (or Φε−O(ε)) is again a subsolution and use
the previous step to conclude.

Let H denote the space of hermitian positive definite matrix H that are
normalized by detH = 1, and let ∆H denote the Laplace operator

∆Hϕ :=
1

n

n
∑

j,k=1

hjk
∂2ϕ

∂zj∂z̄k
.

Fix H ∈ H. Since W s ∈ ShΦ,g,F (ΩT ), Proposition 3.2 and [GLZ17, Main
Theorem] yield

∆HW
s(t, z) ≥ exp

(

∂tW
s(t, z) + F (t, z,W s(t, z))

n

)

g(z)1/n.

By definition of Φε we obtain, using the convexity of the exponential,

∆HΦε(t, z) =

∫

R

∆HW
s(t, z)χε(s)ds

≥ g(z)1/n
∫

R

exp

(

∂tW
s(t, z) + F (t, z,W s(t, z))

n

)

χε(s)ds

≥ g(z)1/n exp

(

1

n

(
∫

R

(∂tW
s(t, z) + F (t, z,W s(t, z)))χε(s)ds

))

.
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Step 1. To simplify we first treat the case when F is convex in r. Thus

∆HΦε(t, z) =

∫

R

∆HW
s(t, z)χε(s)ds

≥ g(z)1/n exp

(

1

n

(

∂tΦ
ε(t, z) + F

(

t, z,

∫

R

W s(t, z)χε(s)ds

)))

= g(z)1/n exp

(

1

n
(∂tΦ

ε(t, z) + F (t, z,Φε(t, z)))

)

.

Using Proposition 3.2 and [GLZ17, Main Theorem] again, we infer that
Φε is a subsolution to (CMAF) in ΩS.

We now check that (Φε)∗ − O(ε) ≤ hΦ on ∂0ΩS . Indeed, for z ∈ ∂Ω we
have W s(t, z) ≤ hΦ(t, z), for all s, thus Φε(t, z) ≤ hΦ(t, z) for all (t, z) ∈
[0, S] × ∂Ω. It remains to check that (Φε)∗(0, z) ≤ hΦ(0, z), for all z ∈ Ω. It
follows from Theorem 6.4 that UhΦ,g,F,ΩT

has boundary value hΦ, hence, for
C large enough

lim
t→0

W s(t, z) ≤ hΦ(0, z) − C|s− 1|, for all z ∈ Ω̄.

From the definition of Φε in (6.6) it follows that

lim
t→0

Φε(t, z) ≤ hΦ(0, z), ∀z ∈ Ω̄.

Hence Φε−O(ε)t ∈ ShΦ,g,F (ΩS). Moreover, Φε is of class C1 in t ∈]0, S[ and
Φε converges pointwise to Φ as ε→ 0. Using Lemma 6.9 we obtain Φε ≤ Ψ
in ΩS. The conclusion follows by letting ε→ 0.

Step 2. We now treat the case when F is merely uniformly semi-convex in
r. It follows from (4.2) and Theorem 4.2 that the functions s 7→ W s(t, z),
(t, z) ∈ ΩS, are uniformly Lipschitz in [1/2, 3/2]. Thus for all (t, z) ∈ ΩS,

|Φε(t, z) − Φ(t, z)| ≤ Cε,

for some uniform constant C, hence

(6.7)

∫

R

(W s)2(t, z)χε(s)ds−
(
∫

R

W s(t, z)χε(s)ds

)2

= O(ε).

Recall (assumption (0.5)) that the function r 7→ F (t, z, r)+CF r
2 is convex

in a large interval J ⋐ R, for fixed (t, z) ∈ ΩS . Jensen’s inequality yields
∫

R

(

F (t, z,W s(t, z)) + CF (W s(t, z))2
)

χε(s)ds

≥ F

(

t, z,

∫

R

W s(t, z)χε(s)ds

)

+ CF

(
∫

R

W s(t, z)χε(s)ds

)2

.

Using this and (6.7) we obtain
∫

R

F (t, z,W s(t, z))χε(s)ds − F

(

t, z,

∫

R

W s(t, z)χε(s)ds

)

≥ O(ε).

We repeat the previous step to conclude that Φε − O(ε)t ∈ ShΦ,g,F (ΩS).
�
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[Hörm] L. Hörmander, Notions of convexity, Modern Birkhäuser Boston, Inc., Boston,
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