Rapport (Rapport Technique) Année : 2019

Anytime Subgroup Discovery in Numerical Domains with Guarantees - Technical Report

Résumé

Subgroup discovery is the task of discovering patterns that accurately discriminate a class label from the others. Existing approaches can uncover such patterns either through an exhaustive or an approximate exploration of the pattern search space. However, an exhaustive exploration is generally unfeasible whereas approximate approaches do not provide guarantees bounding the error of the best pattern quality nor the exploration progression ("How far are we of an exhaustive search"). We design here an algorithm for mining numerical data with three key properties w.r.t. the state of the art: (i) It yields progressively interval patterns whose quality improves over time; (ii) It can be interrupted anytime and always gives a guarantee bounding the error on the top pattern quality and (iii) It always bounds a distance to the exhaustive exploration. After reporting experimentations showing the effectiveness of our method, we discuss its generalization to other kinds of patterns.
Fichier principal
Vignette du fichier
Anytime Subgroup Discovery in Numerical Datasets with Guarantees-Technical_Report.pdf (728.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01874949 , version 1 (15-09-2018)

Identifiants

  • HAL Id : hal-01874949 , version 1

Citer

Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue. Anytime Subgroup Discovery in Numerical Domains with Guarantees - Technical Report. [Technical Report] LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon. 2019. ⟨hal-01874949⟩
239 Consultations
227 Téléchargements

Partager

More