
HAL Id: hal-01874949
https://hal.science/hal-01874949v1

Submitted on 15 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anytime Subgroup Discovery in Numerical Domains
with Guarantees - Technical Report
Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue

To cite this version:
Aimene Belfodil, Adnene Belfodil, Mehdi Kaytoue. Anytime Subgroup Discovery in Numerical Do-
mains with Guarantees - Technical Report. [Technical Report] LIRIS UMR 5205 CNRS/INSA de
Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon. 2019.
�hal-01874949�

https://hal.science/hal-01874949v1
https://hal.archives-ouvertes.fr

Anytime Subgroup Discovery in Numerical
Domains with Guarantees

Aimene Belfodil ∗,1,2, Adnene Belfodil∗,1, and Mehdi Kaytoue1,3

1 Univ Lyon, INSA Lyon, CNRS, LIRIS UMR 5205, F-69621, LYON, France
2 Mobile Devices Ingénierie, 100 Avenue Stalingrad, 94800, Villejuif, France

3 Infologic, 99 avenue de Lyon, 26500 Bourg-Lès-Valence, France
firstname.surname@insa-lyon.fr

Abstract. Subgroup discovery is the task of discovering patterns that
accurately discriminate a class label from the others. Existing approaches
can uncover such patterns either through an exhaustive or an approx-
imate exploration of the pattern search space. However, an exhaustive
exploration is generally unfeasible whereas approximate approaches do
not provide guarantees bounding the error of the best pattern quality nor
the exploration progression (“How far are we of an exhaustive search”).
We design here an algorithm for mining numerical data with three key
properties w.r.t. the state of the art: (i) It yields progressively interval
patterns whose quality improves over time; (ii) It can be interrupted
anytime and always gives a guarantee bounding the error on the top
pattern quality and (iii) It always bounds a distance to the exhaustive
exploration. After reporting experimentations showing the effectiveness
of our method, we discuss its generalization to other kinds of patterns.

Keywords: Subgroup discovery, Anytime algorithms, Discretization

1 Introduction

We address the problem of discovering patterns that accurately discriminate one
class label from the others in a numerical dataset. Subgroup discovery (SD) [29]
is a well established pattern mining framework which strives to find out data
regions uncovering such interesting patterns. When it comes to numerical at-
tributes, a pattern is generally a conjunction of restrictions over the attributes,
e.g., pattern 50 ≤ age < 70∧smoke per day ≥ 3 fosters lung cancer incidence. To
look for such patterns (namely interval patterns), various approaches are usually
implemented. Common techniques perform a discretization transforming the nu-
merical attributes to categorical ones in a pre-processing phase before using the
wide spectrum of existing mining techniques [2,22,24,3]. This leads, however,
to a loss of information even if an exhaustive enumeration is performed on the
transformed data [2]. Other approaches explore the whole search space of all
restrictions either exhaustively [19,15,6] or heuristically [25,5]. While an exhaus-
tive enumeration is generally unfeasible in large data, the various state-of-the-art

∗Both authors contributed equally to this work.

2 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

algorithms that heuristically explore the search space provide no provable guar-
antee on how they approximate the top quality patterns and on how far they
are from an exhaustive search. Recent techniques set up a third and elegant
paradigm, that is direct sampling approaches [3,4,14]. Algorithms falling un-
der this category are non-enumerative methods which directly sample solutions
from the pattern space. They simulate a distribution which rewards high quality
patterns with respect to some interestingness measure. While [3,4] propose a
direct two-step sampling procedure dedicated for categorical/boolean datasets,
authors in [14] devise an interesting framework which add a third step to handle
the specificity of numerical data. The proposed algorithm addresses the discovery
of dense neighborhood patterns by defining a new density metric. Nevertheless,
it does not consider the discovery of discriminant numerical patterns in labeled
numerical datasets. Direct sampling approaches abandon the completeness prop-
erty and generate only approximate results. In contrast, anytime pattern mining
algorithms [5,17] are enumerative methods which exhibits the anytime feature
[31], a solution is always available whose quality improves gradually over time
and which converges to an exhaustive search if given enough time, hence ensur-
ing completeness. However, to the best of our knowledge, no existing anytime
algorithm in SD framework, makes it possible to ensure guarantees on the pat-
terns discriminative power and the remaining distance to an exhaustive search
while taking into account the nature of numerical data.

To achieve this goal, we propose a novel anytime algorithm, RefineAndMine,
tailored for discriminant interval patterns discovery in numerical data. It starts
by mining interval patterns in a coarse discretization, followed by successive re-
finements yielding increasingly finer discretizations highlighting potentially new
interesting patterns. Eventually, it performs an exhaustive search, if given enough
time. Additionally, our method gives two provable guarantees at each refinement.
The first evaluates how close is the best found pattern so far to the optimal one
in the whole search space. The second measures how already found patterns are
diverse and cover well all the interesting regions in the dataset.

The outline is as follows. We recall in Sec. 2 basic definitions. Next, we
define formally the problem in Sec. 3. Subsequently We introduce in Sec. 4
our mining algorithm before formulating the guarantees it provides in Sec. 5.
We empirically evaluate the efficiency of RefineAndMine in Sec. 6 and discuss
its potential improvements in Sec. 7. Additional materials are available in our
companion page4. For more details and proofs, please see the appendix A-E.

2 Preliminaries

Input. A labeled numerical dataset (G,M) is given by a finite set (of objects) G
partitioned into two subsets G+ and G− enclosing respectively positive (target)
and negative instances; and a sequence of numerical attributes M = (mi)1≤i≤p
of size p = |M|. Each attribute mi is an application mi : G → R that associates

4https://github.com/Adnene93/RefineAndMine

https://github.com/Adnene93/RefineAndMine

Anytime Subgroup Discovery in Numerical Domains with Guarantees 3

to each object g ∈ G a value mi(g) ∈ R. We can also see M as a mapping
M : G → Rp, g 7→ (mi(g))1≤i≤p. We denote mi[G] = {mi(g) | g ∈ G} (More
generally, for a function f : E → F and a subset A ⊆ E, f [A] = {f(e) | e ∈ A}).
Fig. 1 (left table) presents a 2-dimensional labeled numerical dataset and its
representation in the Cartesian plane (filled dots represent positive instances).

Interval patterns and their extents. When dealing with numerical domains
in SD, we generally consider for intelligibility interval patterns [19]. An Interval
pattern is a conjunction of restrictions over the numerical attributes; i.e. a set
of conditions attribute ≷ v with ≷∈ {=,≤, <,≥, >}. Geometrically, interval
patterns are axis-parallel hyper-rectangles. Fig. 1 (center-left) depicts pattern
(non-hatched rectangle) c2 = (1 ≤ m1 ≤ 4) ∧ (0 ≤ m2 ≤ 3) , [1, 4]× [0, 3].

Interval patterns are naturally partially ordered thanks to “hyper-rectangle
inclusion”. We denote the infinite partially ordered set (poset) of all interval
patterns by (D,v) where v (same order used in [19]) denotes the dual order ⊇ of
hyper-rectangle inclusion. That is pattern d1 v d2 iff d1 encloses d2 (d1 ⊇ d2). It
is worth mentioning that (D,v) forms a complete lattice [28]. For a subset S ⊆ D,
the join

⊔
S (i.e. smallest upper bound) is given by the rectangle intersection.

Dually, the meet
d
S (i.e the largest lower bound) is given by the smallest hyper-

rectangle enclosing all patterns in S. Note that the top (resp. bottom) pattern
in (D,v) is given by > = ∅ (resp. ⊥ = Rp). Fig. 1 (right) depicts two patterns
(hatched) e1 = [1, 5] × (1, 4] and e2 = [0, 4) × [2, 6], their meet (non hatched)
e1 u e2 = [0, 5]× (1, 6] and their join (black) e1 t e2 = [1, 4)× [2, 4].

A pattern d ∈ D is said to cover an object g ∈ G iff M(g) ∈ d. To use
the same order v to define such a relationship, we associate to each g ∈ G
its corresponding pattern δ(g) ∈ D which is the degenerated hyper-rectangle
δ(g) = {M(g)} =×p

i=1
[mi(g),mi(g)]. The cover relationship becomes d v δ(g).

The extent of a pattern is the set of objects supporting it. Formally, there is
a function ext : D → ℘(G), d 7→ {g ∈ G | d v δ(g)} = {g ∈ G | M(g) ∈ d}
(where ℘(G) denotes the set of all subsets of G). Note that if d1 v d2 then
ext(d2) ⊆ ext(d1). We define also the positive (resp. negative) extent as follows:
ext+(d) = ext(d) ∩ G+ (resp. ext−(d) = ext(d) ∩ G−). With the mapping δ :
G → D and the complete lattice (D,v), we call the triple P = (G, (D,v), δ) the
interval pattern structure [19,11].

m1 m2 label

g1 1 2 +
g2 1 3 +
g3 2 1 +
g4 3 5 +
g5 2 4 −
g6 2 5 −
g7 3 4 −
g8 4 4 −

x

y

0 1 2 3 4 5
0

1

2

3

4

5

6

c2c1

g1

g2

g3

g4

g5

g6

g7 g8

m1

m2

x

y

0 1 2 3 4 5
0

1

2

3

4

5

6

d2

d1

g1

g2

g3

g4

g5

g6

g7 g8

m1

m2

x

y

0 1 2 3 4 5
0

1

2

3

4

5

6 e2

e1

e1 u e2

e1 t e2

m1

m2

Fig. 1: (left to right) (1) a labeled numerical dataset. (2) closed c1 vs non-closed c2
interval patterns. (3) cotp d1 vs non cotp d2. (4) meet and join of two patterns.

4 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

Measuring the discriminative power of a pattern. In SD, a quality mea-
sure φ : D → R is usually defined to evaluate at what extent a pattern well-
discriminates the positive instances in G+ from those in G−. Two atomic mea-
sures are generally employed to quantify the quality of a pattern d: the true
positive rate tpr : d → |ext+(d)|/|G+| and the false positive rate fpr : d →
|ext−(d)|/|G−|. Several measures exist in the literature [13,23]. A measure is said
to be objective or probability based [13] if it depends solely on the number of co-
occurrences and non co-occurrences of the pattern and the target label. In other
words, those measures can be defined using only tpr, fpr and potentially other
constants (e.g. |G|). Formally, ∃φ∗ : [0, 1]2 → R s.t. φ(d) = φ∗(tpr(d), fpr(d)).
Objective measures depends only on the pattern extent. Hence, we use inter-
changeably φ(ext(d)) and φ(d). An objective quality measure φ is said to be
discriminant if its associated measure φ∗ is increasing with tpr (fpr being fixed)
and decreasing with fpr (tpr being fixed). For instance, with α+ = |G+|/|G| and
α− = |G−|/|G| denoting labels prevalence, wracc∗(tpr, fpr) = α+ ·α− ·(tpr−fpr)
and informedness∗(tpr, fpr) = tpr − fpr are discriminant measures.

Compressing the set of interesting patterns using closure. Since dis-
criminant quality measures depend only on the extent, closed patterns can be
leveraged to reduce the number of resulting patterns [11]. A pattern d ∈ D is
said to be closed (w.r.t. pattern structure P) if and only if it is the most restric-
tive pattern (i.e. the smallest hyper-rectangle) enclosing its extent. Formally,
d = int(ext(d)) where int mapping (called intent) is given by: int : ℘(G) →
D, A 7→ d

g∈A δ(g) =×p

i=1
[ming∈Ami(g),maxg∈Ami(g)]. Fig. 1 (center-left)

depicts the closed interval pattern (hatched rectangle) c1 = [1, 2] × [1, 3] which
is the closure of c2 = [1, 4]× [0, 3] (non hatched rectangle). Note that since G is
finite, the set of all closed patterns is finite and is given by int[℘(G)].

A more concise set of patterns using Relevance theory. Fig. 1 (center-
right) depicts two interval patterns, the hatched pattern d1 = [1, 2] × [1, 3] and
the non-hatched one d2 = [1, 4] × [1, 4]. While both patterns are closed, d1 has
better discriminative power than d2 since they both cover exactly the same
positive instances {g1, g2, g3}; yet, d2 covers more negative instances than d1.
Relevance theory [12] formalizes this observation and helps us to remove some
clearly uninteresting closed patterns. In a nutshell, a closed pattern d1 ∈ D is
said to be more relevant than a closed pattern d2 ∈ D iff ext+(d2) ⊆ ext+(d1)
and ext−(d1) ⊆ ext−(d2). For φ discriminant, if d1 is more relevant than d2 then
φ(d1) ≥ φ(d2). A closed pattern d is said to be relevant iff there is no other
closed pattern c that is more relevant than d. It follows that if a closed pattern
is relevant then it is closed on the positive (cotp for short). An interval pattern
is said to be cotp if any smaller interval pattern will at least drop one positive
instance (i.e. d = int(ext+(d))). interestingly, int ◦ ext+ is a closure operator on
(D,v). Fig. 1 (center-right) depicts a non cotp pattern d2 = [1, 4]× [1, 4] and its
closure on the positive d1 = int(ext+(d2)) = [1, 2]× [1, 3] which is relevant. Note
that not all cotp are relevant. The set of cotp patterns is given by int[℘(G+)].
We call relevant (resp. cotp) extent, any set A ⊆ G s.t. A = ext(d) with d is a
relevant (resp. cotp) pattern. The set of relevant extents is denoted by R.

Anytime Subgroup Discovery in Numerical Domains with Guarantees 5

3 Problem Statement

Correct enumeration of relevant extents. First, consider the (simpler)
problem of enumerating all relevant extents in R. For a (relevant extents) enu-
meration algorithm, three properties need generally to hold. An algorithm which
output is the set of solutions S is said to be (1) complete if S ⊇ R, (2) sound
if S ⊆ R and (3) non redundant if each solution in S is outputted only once.
It is said to be correct if the three properties hold. Guyet et al. [16] proposed a
correct algorithm that enumerate relevant extents induced by the interval pat-
tern structure in two steps: (1) Start by a DFS complete and non redundant
enumeration of all cotp patterns (extents) using MinIntChange algorithm [19];
(2) Post-process the found cotp patterns by removing non relevant ones using
[12] characterization (this step adds the soundness property to the algorithm).

Problem Statement. Given a discriminant objective quality measure φ, we
want to design an anytime enumeration algorithm such that: (1) given enough
time, outputs all relevant extents in R, (2) when interrupted, provides a guaran-
tee bounding the difference of quality between the top-quality found extent and
the top possible quality w.r.t. φ; and (3) outputs a second guarantee ensuring
that the resulting patterns are diverse.

Formally, let Si be the set of outputted solutions by the anytime algorithm
at some step (or instant) i (at i+1 we have Si ⊆ Si+1). We want that (1) when i
is big enough, Si ⊇ R (only completeness is required). For (2) and (3), we define
two metrics5 to compare the results in Si with the ones in R. The first metric,
called accuracy (eq. 1), evaluates the difference between top pattern quality φ
in Si and R while the second metric, called specificity (eq. 2), evaluates how
diverse and complete are patterns in Si.

accuracyφ(Si,R) = sup
A∈R

φ(A)− sup
B∈Si

φ(B) (1)

specificity(Si,R) = sup
A∈R

inf
B∈Si

(|A∆B|/|G|) (2)

The idea behind specificity is that each extent A in R is “approximated”
by the most similar extent in Si; that is the set B ∈ Si minimizing the met-
ric distance A,B 7→ |A∆B|/|G| in ℘(G). The specificity6 is then the highest
possible distance (pessimistic). Note that specificity(Si,R) = 0 is equivalent to
Si ⊇ R. Clearly, the lower these two metrics are, the closer we get to the desired
output R. While accuracyφ and specificity can be evaluated when a complete
exploration of R is possible, our aim is to bound the two aforementioned mea-
sures independently from R providing a guarantee. In other words, the anytime
algorithm need to output additionally to Si, the two following measures: (2)
accuracyφ(Si) and (3) specificity(Si) s.t. accuracyφ(Si,R) ≤ accuracyφ(Si)
and specificity(Si,R) ≤ specificity(Si). These two bounds need to decrease
overtime providing better information on R through Si.

5The metrics names fall under the taxonomy of [31] for anytime algorithms.
6The specificity is actually a directed Hausdorff distance [18] from R to Si.

6 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

4 Anytime Interval Pattern Mining

Discretizations and pattern space. Our algorithm relies on the enumeration
of a chain of discretization from the coarsest to the finest. A discretization of R
is any partition of R using intervals. In particular, let C = {ci}1≤i≤|C| ⊆ R be
a finite set with ci < ci+1 for i ∈ {1, ..., |C| − 1}. Element of C are called cut
points or cuts. We associate to C a finite discretization denoted by dr(C) and
given by dr(C) = {(−∞, c1)} ∪ {[ci, ci+1) | i ∈ {1, ..., |C| − 1]}} ∪

{
[c|C|,+∞)

}
.

Generally speaking, let p ∈ N∗ and let C = (Ck)1≤k≤p ∈ ℘(R)p repre-
senting sets of cut points associated to each dimension k (i.e. Ck ⊆ R finite
∀k ∈ {1, ..., p}). The partition dr(C) of Rp is given by: dr(C) =

∏p
k=1 dr(Ck).

Fig. 2 depicts two discretizations. Discretizations are ordered using the natural
order between partitions7. Moreover, cut-points sets are ordered by ≤ as follows:
C1 ≤ C2 ≡ (∀k ∈ {1, ..., p}) C1

k ⊆ C2
k with Ci = (Cik)1≤k≤p. Clearly, if C1 ≤ C2

then discretization dr(C1) is coarser than dr(C2).
Let C = (Ck)1≤k≤p be the cut-points. Using the elementary hyper-rectangles

(i.e. cells) in the discretization dr(C), one can build a (finite) subset of descrip-
tions DC ⊆ D which is the set of all possible descriptions (hyper-rectangles)
that can be built using these cells. Formally: DC = {dS | S ⊆ dr(C)}. Note
that > = ∅ ∈ DC since

d ∅ =
⊔D = > by definition. Proposition 1 states that

(DC ,v) is a complete sub-lattice of (D,v).

Proposition 1. (DC ,v) is a finite (complete) sub-lattice of (D,v) that is:
∀d1, d2 ∈ DC : d1 t d2 ∈ DC and d1 u d2 ∈ DC . Moreover, if C1 ≤ C2 are
two cut-points sets, then (DC1 ,v) is a (complete) sub-lattice of (DC2 ,v).

Finest discretization for a complete enumeration of relevant extents.
There exist cut points C ⊆ ℘(R)p such that the space (DC ,v) holds all relevant
extents (i.e. ext[DC] ⊇ R). For instance, if we consider C = (mk[G])1≤k≤p, the
description space (DC ,v) holds all relevant extents. However, is there coarser
discretization that holds all the relevant extents? The answer is affirmative. One
can show that the only interesting cuts are those separating between positive and
negative instances (called boundary cut-points by [9]). We call such cuts, relevant
cuts. They are denoted by Crel = (Crelk)1≤k≤p and we have ext[DCrel] ⊇ R.
Formally, for each dimension k, a value c ∈ mk[G] is a relevant cut in Crelk for
attribute mk iff: (c ∈ mk[G+] and prev(c,mk[G]) ∈ mk[G−]) or (c ∈ mk[G−]
and prev(c,mk[G]) ∈ mk[G+]) where next(c, A) = inf{a ∈ A | c < a} (resp.
prev(c, A) = sup{a ∈ A | a < c}) is the following (resp. preceding) element of c in
A. Finding relevant cuts Crelk is of the same complexity of sortingmk[G] [9]. In the
dataset depicted in Fig. 1, relevant cuts are given by Crel = ({2, 3, 4, 5}, {4, 5}).
Discretization dr(Crel2) is depicted in Fig. 2 (center).

7Let E be a set, a partition P2 of E is finer than a partition P1 (or P1 is coarser
than P2) and we denote P1 ≤ P2 if any subset in P1 is a subset of a subset in P2.

Anytime Subgroup Discovery in Numerical Domains with Guarantees 7

x

y

0 1 2 3 4 5
0

1

2

3

4

5

6

m1

m2

4

5

−∞

+∞m2

Fig. 2: (left) Discretization dr((C1, C2)) in R2 with
C1 = {2, 3} and C2 = {4, 5} and (right) discretization
dr((C2)) in R. Adding a cut point in any Ck will create
finer discretization.

Anytime enumeration of relevant extents. We design an anytime and
interruptible algorithm dubbed RefineAndMine. This method, presented in Al-
gorithm 1, relies on the enumeration of a chain of discretizations on the data
space, from the coarsest to the finest. It begins by searching relevant cuts in
pre-processing phase (line 2). Then, it builds a coarse discretization (line 3) con-
taining a small set of relevant cut-points. Once the initial discretization built,
cotp patterns are mined thanks to MinIntChange Algorithm (line 4) [19]. Then
as long as the algorithm is not interrupted (or within the computational bud-
get), we add new cut-points (line 6) building finer discretizations. For each added
cut-point (line 8), only new interval patterns are searched for (mined descrip-
tions d are new but their extents ext(d) are not necessarily new) . That is cotp
patterns which left or right bound is cut on the considered attribute attr (i.e.
d.Iattr ∈ {[cut, a), [cut,+∞), [a, cut), (−∞, cut) | a ∈ Ccurattr} with d.Iattr is the
attrth interval of d). This can be done by a slight modification of MinIntChange
method. RefineAndMine terminates when the set of relevant cuts is exhausted
(i.e. Ccur = Crel) ensuring a complete enumeration of relevant extents R.

The initial discretization (Line 3) can be done by various strategies (see
[30]). A simple, yet efficient, choice is the equal frequency discretization with a
fixed number of cuts. Other strategies can be used, e.g. [9]. Adding new cut-
points (Line 6) can also be done in various ways. One strategy is to add a
random relevant cut on a random attribute to build the next discretization.
Section 5.3 proposes another more elaborated strategy that heuristically guide
RefineAndMine to rapidly find good quality patterns (observed experimentally).

Algorithm 1: RefineAndMine

Input: (G,M) a numerical datasets with {G+,G−} partition of G
1 procedure RefineAndMine()

2 Compute relevant cuts Crel

3 Build an initial set of cut-points Ccur ≤ Crel

4 Mine cotp patterns in DCcur (and their extents) using MinIntChange

5 while Ccur 6= Crel and within computational budget do

6 Choose the next relevant cut (attr, cut) with cut ∈ Crel
attr\Ccur

attr

7 Add the relevant cut cut to Ccur

8 Mine new cotp patterns (and their extents) in DCcur

8 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

5 Anytime Interval Pattern Mining with Guarantees

Algorithm RefineAndMine starts by mining patterns in a coarse discretization.
It continues by mining more patterns in increasingly finer discretizations un-
til the search space is totally explored (final complete lattice being (DCrel ,v)).
According to Proposition 1, the description spaces built on discretizations are
complete sub-lattices of the total description space. A similar idea involves per-
forming successive enumeration of growing pattern languages (projections) [6].
In our case, it is a successive enumeration of growing complete sub-lattices. For
the sake of generality, in the following of this section (D,v) denotes a complete
lattice, and for all i ∈ N∗, (Di,v) denotes complete sub-lattices of (D,v) such
that Di ⊆ Di+1 ⊆ D. For instance, in RefineAndMine, the total complete lat-
tice is (DCrel ,v) while the (Di,v) are (DCcur ,v) at each step. Following Sec. 3
notation, the outputted set Si at a step i contains the set of all cotp extents as-
sociated to Di. Before giving the formulas of accuracyφ(Si) and specificity(Si),
we give some necessary definitions and underlying properties. At the end of this
section, we show how RefineAndMine can be adapted to efficiently compute
these two bounds for the case of interval patterns.

Similarly to the interval pattern structure [19], we define in the general case
a pattern structure P = (G, (D,v), δ) on the complete lattice (D,v) where G is
a non empty finite set (partitioned into {G+,G−}) and δ : G → D is a mapping
associating to each object its description (recall that in interval pattern structure,
δ is the degenerated hyper-rectangle representing a single point). The extent ext
and intent int operators are then respectively given by ext : D → ℘(G), d 7→
{g ∈ G | d v δ(g)} and int : ℘(G) → ℘(G), A 7→ d

g∈A δ(g) with
d

represents
the meet operator in (D,v) [11].

5.1 Approximating descriptions in a complete sub-lattice

Upper and lower approximations of a pattern. We start by approx-
imating each pattern in D using two patterns in Di. Consider for instance
Fig. 3 where D is the space of interval patterns in R2 while DC is the space
containing only rectangles that can be built over discretization dr(C) with
C = ({1, 4, 6, 8}, {1, 3, 5, 6}). Since the hatched rectangle d = [3, 7]× [2, 5.5] ∈ D
does not belong to DC , two descriptions in DC can be used to encapsulate it.
The first one, depicted by a gray rectangle, is called the upper approximation
of d. It is given by the smallest rectangle in DC enclosing d. Dually, the second
approximation represented as a black rectangle and coined lower approximation
of d, is given by the greatest rectangle in DC enclosed by d. This two denomina-
tions comes from Rough Set Theory [27] where lower and upper approximations
form together a rough set and try to capture the undefined rectangle d ∈ D\DC .
Definition 1 formalizes these two approximations in the general case.

Definition 1. The upper approximation mapping ψi and lower approximation
mapping ψi are the mappings defined as follows:

ψi : D → Di, d 7→
⊔{

c ∈ Di | c v d
}

ψi : D → Di, d 7→
l{

c ∈ Di | d v c
}

Anytime Subgroup Discovery in Numerical Domains with Guarantees 9

x

y

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

ψC(d) d ψC(d)

m1

m2

Fig. 3: Description d = [3, 7] × [2, 5.5] in D (hatched)
and C = ({1, 4, 6, 8}, {1, 3, 5, 6}). Upper approximation
of d in DC is ψC(d) = [1, 8) × [1, 6) (gray rectangle)
while lower approximation of d is ψC(d) = [4, 6)× [3, 5)
(black rectangle).

The existence of these two mappings is ensured by the fact that (Di,v) is a
complete sublattice of (D,v). Theorem 4.1 in [8] provides more properties for
the two aforementioned mappings. Proposition 2 restates an important property.

Proposition 2. ∀d ∈ D : ψi(d) v d v ψi(d). The term lower and upper-
approximation here are reversed to fit the fact that in term of extent we have
∀d ∈ D: ext(ψi(d)) ⊆ ext(d) ⊆ ext(ψi(d)).

A projected pattern structure. Now that we have the upper-approximation
mapping ψi, one can associate a new pattern structure Pi = (G, (Di,v), ψi ◦ δ)8
to the pattern space (Di,v). It is worth mentioning, that while extent exti
mapping associated to Pi is equal to ext, the intent inti of Pi is given by inti :
℘(G) → Di, A 7→ ψi(int(A)). Note that, the set of cotp patterns associated to
Pi are given by inti[℘(G+)] = ψi[int[℘(G+)]]. That is, the upper approximation
of a cotp pattern in P is a cotp pattern in Pi.

Encapsulating patterns using their upper-approximations. We want to
encapsulate any description by knowing only its upper-approximation. Formally,
we want some function f : Di → Di such that (∀d ∈ D)ψi(d) v d v f(ψi(d)).
Proposition 3 define such a function f (called core) and states that the core is
the tightest (w.r.t. v) possible function f .

Proposition 3. The function corei defined by:

corei : Di → Di, c 7→ core(c) = ψi

(⊔{
d ∈ D | ψi(d) = c

})
verifies the following property: ∀d ∈ D : ψi(d) v d v ψi(d) v corei(ψi(d)).

Moreover, for f : Di → Di, (∀d ∈ D) d v f(ψi(d)) ⇔ (∀c ∈ Di) corei(c) v f(c).

Note that, while the core operator definition depends clearly on the complete
lattice (D,v), its computation should be done independently from (D,v).

We show here how to compute the core in RefineAndMine. In each step and
for cut-points C = (Ck) ⊆ ℘(R)p, the finite lattice (DC ,v) is a sub-lattice of
the finest finite lattice (DCrel ,v) (since C ≤ Crel). Thereby, the core is com-
puted according to this latter as follows: Let d ∈ DC with d.Ik = [ak, bk) for all

8Pi is said to be a projected pattern structure of P by the projection ψi [7].

10 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

k ∈ {1, ..., p}. The left (resp. right) bound of coreC(d).Ik for any k is equal to
next(ak, Ck) (resp. prev(bk, Ck)) if next(ak, C

rel
k) 6∈ Ck (resp. prev(bk, C

rel
k) 6∈

Ck). Otherwise, it is equal to ak (resp. bk). Consider the step C = ({2, 3}, {4, 5})
in RefineAndMine (its associated discretization is depicted in Fig. 2 (left))
and recall that the relevant cuts set is Crel = ({2, 3, 4, 5}, {4, 5}). The core
of the bottom pattern ⊥ = R2 at this step is coreCcur (⊥) = (−∞, 3) × R.
Indeed, there is three descriptions in DCrel which upper approximation is ⊥,
namely ⊥, c1 = (−∞, 4) × R and c2 = (−∞, 5) × R. Their lower approxima-
tions are respectively ⊥, (−∞, 3) × R and (−∞, 3) × R. The join (intersec-
tion) of these three descriptions is then coreCcur (⊥) = (−∞, 3) × (−∞,+∞).
Note that particularly for interval patterns, the core has monotonicity, that is
(∀c, d ∈ DC) c v d⇒ coreC(c) v coreC(d).

5.2 Bounding accuracy and specificity metrics

At the ith step, the outputted extents Si contains the set of cotp extents in Pi.
Formally, inti[Si] ⊇ inti[℘(G+)]. Theorem 1 and Theorem 2 gives respectively
the bounds accuracyφ and specificity.

Theorem 1. Let φ : D → R be a discriminant objective quality measure. The
accuracy metric is bounded by:

accuracyφ(Si) = sup
c∈inti[Si]

[
φ∗
(
tpr
(
c
)
, fpr

(
corei(c)

))
− φ∗ (tpr(c), fpr(c))

]
Moreover accuracyφ(Si+1) ≤ accuracyφ(Si).

Theorem 2. The specificity metric is bounded by:

specificity(Si) = sup
c∈inti[Si]

((
|ext(c)| − |ext(core+i (c))|)/(2 · |G|)

))
where core+i (c) = inti(ext

+(corei(c))), that is core+i (c) is the closure on the
positive of corei(c) in Pi. Moreover specificity(Si+1) ≤ specificity(Si).

5.3 Computing and updating bounds in RefineAndMine

We show below how the different steps of the method RefineAndMine (see Al-
gorithm 1) should be updated in order to compute the two bounds accuracy
and specificity. For the sake of brevity, we explain here a naive approach to
provide an overview of the algorithm. Note that here, core (resp. core+) refers
to coreCcur (resp. core+Ccur).

Compute the initial bounds (line 4). As MinIntChange enumerates all cotp
patterns d ∈ DCcur , RefineAndMine stores in a key-value structure (i.e. map)
called BoundPerPosExt the following entries:

ext+(d) :
(
φ(d), φ∗

(
tpr
(
d
)
, fpr

(
core(d)

))
, (|ext(d)| − |ext(core+(d))|)/(2 · |G|)

)
The error-bounds accuracyφ and specificity are then computed at the end by
a single pass on the entries of BoundPerPosExt using Theorems 1 and 2.

Anytime Subgroup Discovery in Numerical Domains with Guarantees 11

Update the bounds after adding a new cut-point (line 8). In order to
compute the new error-bounds accuracyφ and specificity which decrease accord-
ing to theorems 1 and 2, one need to add/update some entries in the structure
BoundPerPosExt. For that, only two types of patterns should be looked for:

1. The new cotp patterns mined by RefineAndMine, that is those which left or
right bound on attribute attr is the added value cut. Visiting these patterns
will add potentially new entries in BoundPerPosExt or update ancient ones.

2. The old cotp which core changes (i.e. becomes less restrictive) in the new
discretization. One can show that these patterns are those which left bound
is prev(cut, Ccurattr) or right bound is next(cut, Ccurattr) on attribute attr. Vis-
iting these patterns will only update ancient entries of BoundPerPosExt by
potentially decreasing both second and third value.

Adding a new cut-point (line 7). We have implemented for now a strategy
which aims to decrease the accuracyφ. For that, we search in BoundPerPosExt for
the description d having the maximal value φ∗

(
tpr
(
d
)
, fpr

(
core(d)

))
. In order

to decrease accuracyφ, we increase the size of core(d) (to potentially increase
fpr
(
core(d)

)
). This is equivalent to choose a cut-point in the border region

Crelattr\Ccurattr for some attribute attr such that cut ∈ d.Iattr\core(d).Iattr. Consider
that we are in the step where the current discretization Ccur is the one depicted
in Fig. 2. Imagine that the bottom pattern ⊥ = R2 is the one associated to the
maximal value φ∗

(
tpr
(
⊥
)
, fpr

(
core(⊥)

))
. The new cut-point should be chosen

in {4, 5} for attr = 1 (recall that core(⊥) = (−∞, 3)× (−∞,+∞)). Note that if
for such description there is no remaining relevant cut in its border regions for
all attr ∈ {1, ..., p} then core(d) = d ensuring that d is the top pattern.

6 Empirical Study

In this section we report quantitative experiments over the implemented algo-
rithms. For reproducibility purpose, the source code is made available in our
companion page9 which also provide a wider set of experiments. Experiments
were carried out on a variety of datasets (Tab. 1) involving ordinal or continuous
numerical attributes from the UCI repository.

Dataset num rows intervals class α Dataset num rows intervals class α

ABALONE 02 M 2 4177 56× 106 M 0.37 GLASS 02 1 2 214 161× 106 1 0.33
ABALONE 03 M 3 4177 74× 109 M 0.37 GLASS 04 1 4 214 5× 1015 1 0.33
CREDITA 02 + 2 666 1× 109 + 0.45 HABERMAN 03 2 3 306 47× 106 2 0.26
CREDITA 04 + 4 666 3× 1015 +

Table 1: Benchmark datasets and their characteristics: number of numerical attributes,
number of rows, number of all possible intervals, the considered class and its prevalence

9Companion page: https://github.com/Adnene93/RefineAndMine

https://github.com/Adnene93/RefineAndMine

12 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

First, we study the effectiveness of RefineAndMine in terms of the speed
of convergence to the optimal solution, as well as regarding the evolution over
time of the accuracy of the provided bounding quality’s guarantee. To this end,
we report in Fig. 4, the behavior of RefineAndMine (i.e. quality and bounding
guarantee) according to the execution time to evaluate the time/quality trade-
off of the devised approach. accuracy as presented in Theorem 1 is the differ-
ence between the quality and its bounding measure. The experiments were con-
ducted by running both RefineAndMine and the exhaustive enumeration algo-
rithm (MinIntChange performed considering DCrel) on the benchmark datasets
using informedness measure. The exhaustive algorithm execution time enables
the estimation of the computational overhead incurred by RefineAndMine. We
interrupt a method if its execution time exceeds two hours. Note that, in the
experiments, we choose to disable the computation of specificity since the lat-
ter is only optional and does not affect the effectiveness of the algorithm. This
in contrast to the quality bound computation which is essential as it guides
RefineAndMine in the cut-points selection strategy. The experiments give evi-
dence of the effectiveness of RefineAndMine both in terms of finding the optimal
solution as well as in providing stringent bound on the top quality pattern in a
prompt manner. Two important milestones achieved by RefineAndMine during
its execution are highlighted in Fig. 4. The first one, illustrated by the green
dotted line, points out the required time to find the best pattern. The second
milestone (purple line) is reached when the quality’s and the bound’s curves
meet, this ensures that the best quality was already found by RefineAndMine.
Interestingly, we observe that for most configurations the second milestone is
attained by RefineAndMine promptly and well before the exhaustive method
termination time. This is explained by the fact that the adopted cut points se-
lection strategy aims to decrease as early as possible the accuracy metric. Finally,
RefineAndMine requires in average 2 times of the requested execution time (red
dotted line) by the exhaustive algorithm. This overhead is mostly incurred by
the quality guarantee computation.

QualityBound Quality ExhaustiveTime ConfirmationTime BestFoundTime

10−2 10−1 100 101

Time (s) - HABERMAN 03 2

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103

Time (s) - GLASS 04 1

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103 104

Time (s) - ABALONE 03 M

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103 104

Time (s) - CREDITA 04 +

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

Fig. 4: Evolution over time of top pattern quality and its bounding guarantee provided
by RefineAndMine. Execution time is reported in log scale. The last figure reports that
the exhaustive enumeration algorithm was not able to finish within 2 hours

Anytime Subgroup Discovery in Numerical Domains with Guarantees 13

We illustrate in Fig. 5 the behavior of RefineAndMine in terms of finding
diverse set of high quality patterns covering different parts of the dataset. To
evaluate how quickly the devised approach finds a diverse patterns set, we run the
exhaustive approach over the benchmark datasets to constitute a top-k diverse
patterns set heuristically as following: the patterns extracted by the exhaus-
tive search algorithm are sorted according to the quality measure and the best
pattern is kept in the returned top-k list. Next, the complete patterns list are
iterated over, and the top-k list is augmented by a pattern if and only if its sim-
ilarity with all the patterns of the current content of the top-k list is lower than
a given threshold (a Jaccard index between extents). This process is interrupted
if the desired number of patterns of the top-k list is reached or no remaining
dissimilar pattern is available. Similar post-processing techniques were used by
[22,5]. Once this ground truth top-k list is constituted over some benchmark
dataset, we run RefineAndMine and measure the specificity quantity of the ob-
tained results set Sol with the top-k list. specificity metric is rewritten in eq. 3 to
accommodate the desired evaluation objective of these experiments. Still, it re-
mains upper-bounded by the general formula of specificity given in Theorem 2.
This in order to evaluate at what extent the visited patterns by RefineAndMine

well-cover the ground-truth patterns which are scattered over different parts of
some input dataset. We report in Fig. 5 both specificity and its bounding guar-
antee specificity, as well as, a diversity metric defined in eq. 4. Such a metric
was defined in [5] to evaluate the ability of an approximate algorithm to retrieve
a given ground-truth (i.e. diversified top-k discriminant patterns set). This di-
versity metric relies on a similarity rather than a distance (as in specificity), and
is equal to 1 when all patterns of the top-k list are fully discovered.

specificity(top-k, Sol) = sup
d∈top-k

inf
c∈Sol

(|ext(d)∆ext(c)|/|G|) (3)

diversity(top-k, Sol) = avg
d∈top-k

sup
c∈Sol

(Jaccard(ext(d), ext(c))) (4)

SpecificityBound Specificity Diversity ExhaustiveTime

10−3 10−2 10−1 100 101

Time (s) - HABERMAN 3 2

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−1 100 101 102 103

Time (s) - GLASS 4 1

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−3 10−2 10−1 100 101 102

Time (s) - ABALONE 2 M

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−2 10−1 100 101 102 103

Time (s) - CREDITA 2 +

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

Fig. 5: Efficiency of RefineAndMine in terms of retrieving a diverse patterns set. Ex-
ecution time is reported in log scale. The ground-truth for each benchmark dataset
corresponds to the obtained Top10 diversified patterns set with a similarity threshold
of 0.25 and a minimum tpr of 15% .

14 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

In most configurations, we notice that RefineAndMine is able to uncover ap-
proximately 80% (given by diversity) of the ground truth’s patterns in less than
20% of the time required by the exhaustive search algorithm. For instance, in
ABALONE 02 M, we observe that after 2 seconds (12% of the required time for
the exhaustive algorithm), the patterns outputted by RefineAndMine approx-
imate 92% of the ground truth. Moreover, we observe that the specificity and
specificity decrease quickly with time, guaranteeing a high level of diversity.

For a comparative study, we choose to compare RefineAndMine with the
closest approach following the same paradigm (anytime) in the literature, that
is the recent MCTS4DM technique [5]. MCTS4DM is depicted by the authors as an
algorithm which enables the anytime discovery of a diverse patterns set of high
quality. While MCTS4DM ensures interruptibility and an exhaustive exploration
if given enough time and memory budget, it does not ensures any theoretical
guarantees on the distance from optimality and on the diversity. We report in
Fig. 6 a comparative evaluation between the two techniques. To realize this
study, we investigate the ability of the two methods in retrieving the ground
truth patterns, this by evaluating the quality of their respective diversified top-k
lists against the ground truth using the diversity metric (eq. 4). We observe that
RefineAndMine outperforms MCTS4DM both in terms of finding the best pattern,
and of uncovering diverse patterns set of high qualities. This is partially due to
the fact that our method is specifically tailored for mining discriminant patterns
in numerical data, in contrast to MCTS4DM which is agnostic of the interestingness
measure and the description language. Note that, to enable a fair comparison of
the two approaches, we report the full time spent by the methods including the
overhead induced by the post-computation of the diversified top-k patterns set.

R&M Guarantee MCTS Quality R&M Quality MCTS Diversity R&M Diversity

10−2 10−1 100 101 102 103

Time (s) - HABERMAN 3 2

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

10−2 10−1 100 101 102 103

Time (s) - GLASS 2 1

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

10−1 100 101 102 103

Time (s) - ABALONE 2 M

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

10−2 10−1 100 101 102 103 104

Time (s) - CREDITA 2 +

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

Fig. 6: Comparative experiments between RefineAndMine (R&M) and MCTS4DM. Ex-
ecution time is reported in log scale. The ground-truth for each benchmark dataset
corresponds to the obtained Top10 diversified patterns set with a similarity threshold
of 0.25 and no minimum support size threshold.

Anytime Subgroup Discovery in Numerical Domains with Guarantees 15

7 Discussions and Conclusion

We introduced a novel anytime pattern mining technique for uncovering dis-
criminant patterns in numerical data. We took a close look to discriminant in-
terestingness measures to focus on hyper-rectangles in the dataset fostering the
presence of some class. By leveraging the properties of the quality measures,
we defined a guarantee on the accuracy of RefineAndMine in approximating
the optimal solution which improves over time. We also presented a guarantee
on the specificity of RefineAndMine –which is agnostic of the quality measure–
ensuring its diversity and completeness. Empirical evaluation gives evidence of
the effectiveness both in terms of finding the optimal solution (w.r.t. the quality
measure φ) and revealing local optimas located in different parts of the data.

This work paves the way for many improvements. RefineAndMine can be
initialized with more sophisticated discretization techniques [21,9]. We have to
investigate additional cut-points selection strategies. While we considered here
discriminant pattern mining, the enumeration process (i.e. successive refinement
of discretizations) can be tailored to various other quality measures in subgroup
discovery. For example, the accuracy bound guarantee definition can be extended
to handle several other traditional measures such as Mutual Information, χ2 and
Gini split by exploiting their (quasi)-convexity properties w.r.t. tpr and fpr
variables [26,1]. Other improvements include the adaptation of RefineAndMine
for high-dimensional datasets and its generalization for handling additional types
of attributes (categorical, itemsets, etc.). The latter is facilitated by the generic
notions from Section 5 and the recent works of Buzmakov et al. [6].

Aknowledgement. This work has been partially supported by the project
ContentCheck ANR-15-CE23-0025 funded by the French National Research
Agency, the Association Nationale Recherche Technologie (ANRt) French pro-
gram and the APRC Conf Pap - CNRS project. The authors would like to
thank the reviewers for their valuable remarks. They also warmly thank Löıc
Cerf, Marc Plantevit and Anes Bendimerad for interesting discussions.

References

1. Abudawood, T., Flach, P.A.: Evaluation measures for multi-class subgroup discov-
ery. In: ECML PKDD. pp. 35–50. Springer (2009)

2. Atzmueller, M., Puppe, F.: Sd-map–a fast algorithm for exhaustive subgroup dis-
covery. In: PKDD. pp. 6–17. Springer (2006)

3. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by
efficient two-step random procedures. In: KDD. pp. 582–590 (2011)

4. Boley, M., Moens, S., Gärtner, T.: Linear space direct pattern sampling using
coupling from the past. In: KDD. pp. 69–77 (2012)

5. Bosc, G., Boulicaut, J., Räıssi, C., Kaytoue, M.: Anytime discovery of a diverse
set of patterns with monte carlo tree search. DMKD 32(3), 604–650 (2018)

6. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Fast generation of best interval pat-
terns for nonmonotonic constraints. In: ECML PKDD. pp. 157–172 (2015)

16 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

7. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Revisiting pattern structure projec-
tions. In: Formal Concept Analysis. pp. 200–215. Springer (2015)

8. Denecke, K., Wismath, S.L.: Galois connections and complete sublattices. In: Ga-
lois Connections and Applications, pp. 211–229. Springer (2004)

9. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: IJCAI. pp. 1022–1029 (1993)

10. Ganter, B., Wille, R.: Formal Concept Analysis. Springer (1999)
11. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: ICCS

2001. LNCS (2120). 129–142.
12. Garriga, G.C., Kralj, P., Lavrac, N.: Closed sets for labeled data. Journal of Ma-

chine Learning Research 9, 559–580 (2008)
13. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM

Comput. Surv. 38(3), 9 (2006)
14. Giacometti, A., Soulet, A.: Dense neighborhood pattern sampling in numerical

data. In: SIAM. pp. 756–764 (2018)
15. Grosskreutz, H., Rüping, S.: On subgroup discovery in numerical domains. Data

Min. Knowl. Discov. 19(2), 210–226 (2009)
16. Guyet, T., Quiniou, R., Masson, V.: Mining relevant interval rules. CoRR

abs/1709.03267 (2017), http://arxiv.org/abs/1709.03267
17. Hu, Q., Imielinski, T.: Alpine: Progressive itemset mining with definite guarantees.

In: SIAM. pp. 63–71 (2017)
18. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.: Comparing images using

the hausdorff distance. IEEE Trans. Pat. Anal. Mach. Intell. 15(9), 850–863 (1993)
19. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting Numerical Pattern Mining

with Formal Concept Analysis. In: IJCAI. pp. 1342–1347 (2011)
20. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression

data with pattern structures in fca. Inf. Sci. 181(10), 1989–2001 (2011)
21. Kurgan, L., Cios, K.J.: Discretization algorithm that uses class-attribute interde-

pendence maximization. In: IC-AI. pp. 980–987 (2001)
22. van Leeuwen, M., Knobbe, A.J.: Diverse subgroup set discovery. Data Min. Knowl.

Discov. 25(2), 208–242 (2012)
23. Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures

for association rules: User oriented description and multiple criteria decision aid.
European Journal of Operational Research 184(2), 610–626 (2008)

24. Lucas, T., Silva, T.C.P.B., Vimieiro, R., Ludermir, T.B.: A new evolutionary al-
gorithm for mining top-k discriminative patterns in high dimensional data. Appl.
Soft Comput. 59, 487–499 (2017)

25. Mampaey, M., Nijssen, S., Feelders, A., Knobbe, A.J.: Efficient algorithms for
finding richer subgroup descriptions in numeric and nominal data. In: ICDM. pp.
499–508 (2012)

26. Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning.
In: ACM SIGMOD-SIGACT-SIGART. pp. 226–236 (2000)

27. Pawlak, Z.: Rough sets. International Journal of Parallel Programming 11(5), 341–
356 (1982)

28. Roman, S.: Lattices and Ordered Sets. Springer New York (2008)
29. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: PKDD.

pp. 78–87 (1997)
30. Yang, Y., Webb, G.I., Wu, X.: Discretization methods. In: Data Mining and Knowl-

edge Discovery Handbook, 2nd ed., pp. 101–116. Springer (2010)
31. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3),

73–83 (1996)

http://arxiv.org/abs/1709.03267

Anytime Subgroup Discovery in Numerical Domains with Guarantees 17

A Appendix - Proofs

A.1 Proof of Proposition 1

Proof. By construction, (DC ,v) is a closure system (preserve meet) on (D,v).
Indeed, let d1 and d2 be in DC we have ∃S1, S2 ⊆ dr(C) such that d1 =

d
S1

and d2 =
d
S2. Thus:

d1 u d2 =
(l

S1

)
u
(l

S2

)
=

l(
S1 ∪ S2

)
∈ DC

since S1 ∪ S2 ⊆ dr(C).

Let us show now that (DC ,v) is also a kernel system (preserve join) on (D,v).
We have C = (Ck)1≤k≤p. Consider the following case of d1 and d2:

dj =

p∏
k=1

Ijk with Ijk = [ajk, b
j
k), j ∈ {1, 2} and ajk < bjk ∈ Ck

We have:

d1 t d2 =

p∏
k=1

[sup(a1k, a
2
k), inf(b1k, b

2
k))

Clearly, d1 t d2 ∈ DC , since the left bound sup(a1k, a
2
k) and the right bound

inf(b1k, b
2
k) remains in Ck for all k ∈ p. Note that if sup(a1k, a

2
k) > inf(b1k, b

2
k) for

at least one k ∈ {1..p}, then d1 t d2 = > = ∅ ∈ DC . The two remaining cases of
interval where we use +∞ and −∞ can be handled in, almost, the same way.

We conclude that (DC ,v) is a finite (complete) sub-lattice of (D,v) (since
any finite lattice is by definition complete).

The second part of the proposition is straight-forward since both posets
(DC1

,v) and (DC2
,v) are complete sub-lattice of the same complete lattice

(D,v) and DC1
⊆ DC2

(dr(C1) ≤ dr(C2) since C1 ≤ C2). ut

A.2 Proof of Proposition 2

Proof. Proposition 2 is a small result from Theorem 4.1 [8]. Since (Di,v) is a
complete sub-lattice of (D,v), then the mappings ψ∗i and ψ∗i defined below

ψ∗i (d) : D → D, d 7→ ψi(d) and ψ∗i (d) : D → D, d 7→ ψi(d)

are respectively join-preserving closure (thus extensive d v ψ∗i (d)) and meet-

preserving kernel (thus contractive ψ∗i (d) v d) operators on (D,v) such that
they ranges in DC (i.e. ψ∗i [D] = {ψ∗i (d) | d ∈ Di} = Di and ψ∗i [D] = Di). Note

that Di is the set of fix-points of both mappings according to Theorem 4.1 [8].
Recalling that ext is order-reversing concludes the proof ut

18 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

A.3 Proof of Proposition 3

Proof. Let f : Di → Di be a function. We want to show the following property:

(∀d ∈ D) d v f(ψi(d))⇐⇒ (∀c ∈ Di) corei(c) v f(c)

We start by implication (⇐=). Let d ∈ D, we have:

corei(ψi(d)) = ψi

(⊔{
x ∈ D | ψi(x) = ψi(d)

})
Clearly, we have d ∈

{
x ∈ D | ψi(x) = ψi(d)

}
by reflexivity of equality. Thus,

d v ⊔{x ∈ D | ψi(x) = ψi(d)
}

. By monotonicity and extensivity of ψi:

d v ψi(d) v ψi
(⊔{

x ∈ D | ψi(x) = ψi(d)
})

= corei(ψi(d))

Since from the hypothesis corei(ψi(d)) v f(ψi(d)), we conclude that d v f(ψi(d)).

It remains to show the other implication (⇐=). Let c ∈ Di and let be the set
Sc = {x ∈ D | ψi(x) = c}. Since, from the hypothesis, ∀x ∈ Sc : x v f(ψi(x)) =
f(c) then (f(c) is an upper bound of Sc and the join is the smallest upper bound
by definition): ⊔

Sc v f(c)

Since f(c) ∈ Di we have ψi(f(c)) = f(c). We obtain by monotonicity of ψi:

corei(c) = ψi

(⊔
Sc

)
v ψi(f(c)) = f(c)

This concludes the demonstration. ut

A.4 Proof of Theorem 1

Before giving the proof of the theorem, we formulate below the following three
Lemmas:

Lemma 1. The richer (Di,v) is, the more constraining are the surrounding
approximations. Formally: ∀d ∈ D : ψi(d) v ψi+1(d) v d v ψi+1(d) v ψi(d).

Generally speaking: ψi ◦ ψi+1 = ψi and ψi ◦ ψi+1 = ψi.

Proof. Without loss of generality, let i = 1. Let us show before that ψ1

(
ψ2(d)

)
=

ψ1(d) and ψ1

(
ψ2(d)

)
= ψ1(d) for all d ∈ D.

Since D1 ⊆ D2 then for all x ∈ D1 and for all d ∈ D we have (since ψ2 and ψ2

come respectively from kernel and closure operators - See previous proof):

x v ψ2(d)⇔ x v d and ψ2(d) v x⇔ d v x

Anytime Subgroup Discovery in Numerical Domains with Guarantees 19

Thus:

ψ1

(
ψ2(d)

)
=
⊔{

x ∈ D1 | x v ψ2(d)
}

=
⊔{

x ∈ D1 | x v d
}

= ψ1(d)

ψ1

(
ψ2(d)

)
=

l{
x ∈ D1 | ψ2(d) v x

}
=

l{
x ∈ D1 | d v x

}
= ψ1(d)

The first part of the proposition is a straight-forward corollary of the first prop-
erties. Indeed, since ψ1 and ψ2 are respectively contractive and extensive, we
conclude:

ψ1(d) = ψ1

(
ψ2(d)

)
v ψ2(d) and ψ2(d) v ψ1

(
ψ2(d)

)
= ψ1(d)

Thus: ψ1(d) v ψ2(d) v d v ψ2(d) v ψ1(d). ut

Lemma 2. ∀d ∈ D : corei+1(ψi+1(d)) v corei(ψi(d)). That is, the core of the
upper approximation is less restrictive in richer spaces.

Proof. Without loss of generality, let i = 1. Let d ∈ D, we need to show that
core2(ψ2(d)) v core1(ψ1(d)). According to Lemma 1 we have ψ1 ◦ψ2 = ψ1, thus:{

x ∈ D | ψ2(x) = ψ2(d)
}
⊆
{
x ∈ D | ψ1(x) = ψ1(d)

}
Thus: ⊔{

x ∈ D | ψ2(x) = ψ2(d)
}
v
⊔{

x ∈ D | ψ1(x) = ψ1(d)
}

Since ψ2 is monotonic, we obtain:

ψ2

(⊔{
x ∈ D | ψ2(x) = ψ2(d)

})
v ψ2

(⊔{
x ∈ D | ψ1(x) = ψ1(d)

})
Since ψ1 is extensive and ψ1 ◦ ψ2 = ψ1, we obtain:

ψ2

(⊔{
x ∈ D | ψ2(x) = ψ2(d)

})
v ψ1

(⊔{
x ∈ D | ψ1(x) = ψ1(d)

})
We conclude that:

core2(ψ2(d)) v core1(ψ1(d))

This ends the demonstration. ut

Lemma 3. Using the same notation of Theorem 1,we have:

∀d ∈ D : φ(d) ≤ φ∗
(
tpr
(
ψi(d)

)
, fpr

(
corei

(
ψi(d)

)))
Proof. By application of Proposition 3 we have with c = ψi(d) ∈ Di:

c v d v corei(c)

20 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

Thus, since ext operator is order-reversing we obtain:

ext(corei(c)) ⊆ ext(d) ⊆ ext(c)

Thus, since tpr and fpr increase with the extent. We conclude that:

tpr(corei(c)) ≤ tpr(d) ≤ tpr(c)
fpr(corei(c)) ≤ fpr(d) ≤ fpr(c)

Since φ is an objective discriminant quality measure we conclude that:

φ(d) = φ∗(tpr(d), fpr(d)) ≤ φ∗(tpr(c), fpr(d)) ≤ φ∗(tpr(c), fpr(corei(c)))

This ends the demonstration. ut

Theorem 1 proof. Below the proof. Without loss of generality i = 1:

Proof. According to lemma 3 and by considering d a cotp pattern in int[℘(G+)],
we have:

φ(d) ≤ φ∗
(
tpr
(
ψ1(d)

)
, fpr

(
core1

(
ψ1(d)

)))
Since ψ1(d) is a cotp pattern induced by (D1,v), we have:

sup
int[℘(G+)]

φ(d) ≤ sup
c∈ψ1[int[℘(G+)]]

φ∗
(
tpr
(
c
)
, fpr

(
core1

(
c
)))

The set ψ1[int[℘(G+)]] represent the set of cotp patterns in D1, that is int1[S1]
(S1 represents the set of cotp extents induced by D1), we obtain:

sup
d∈int[℘(G+)]

φ(d) ≤ sup
c∈int1[S1]

φ∗
(
tpr
(
c
)
, fpr

(
core1

(
c
)))

Thus, since the left quantity is the same as supA∈R φ(A), we subtract from both
side the quantity supB∈S1 φ(B) = supc∈int1[S1] φ

∗(tpr(c), fpr(c)). Hence:

sup
A∈R

φ(A)− sup
B∈S1

φ(B) ≤ sup
c∈int1[S1]

[
φ∗
(
tpr
(
c
)
, fpr

(
core1(c))

)
− φ (c)

]
That is:

accuracyφ(S1) = sup
c∈int1[S1]

[
φ∗
(
tpr
(
c
)
, fpr

(
core1(c))

)
− φ∗ (tpr(c), fpr(c))

]
It remains to show that accuracy is “order-reversing”. From Lemma 1 and
Lemma 2 we have for all d ∈ D:

ψ1(d) v ψ2(d) v d v core2(ψ2(d)) v core1(ψ1(d))

Anytime Subgroup Discovery in Numerical Domains with Guarantees 21

Thus, by the property of the discriminant to the positive quality measure φ we
have for all d ∈ D:

φ∗
(
tpr
(
ψ2(d)

)
, fpr

(
core2

(
ψ2(d)

)))
≤ φ∗

(
tpr
(
ψ1(d)

)
, fpr

(
core1

(
ψ1(d)

)))
Particularly, for c ∈ D2 (c is a fix-point for ψ2) we have:

φ∗
(
tpr
(
c
)
, fpr

(
core2

(
c
)))

≤ φ∗
(
tpr
(
ψ1(c)

)
, fpr

(
core1

(
ψ1(c)

)))
We conclude that:

sup
c∈int2[S2]

φ∗
(
tpr
(
c
)
, fpr

(
core2(c)

))
≤ sup
c∈int1[S1]

φ∗
(
tpr
(
c
)
, fpr

(
core1(c)

))
On the other hand, since D1 ⊆ D2, we have:

− sup
c∈D2

φ(c) ≤ − sup
c∈D1

φ(c)

that is:

− sup
c∈int2[S2]

φ(c) ≤ − sup
c∈int1[S1]

φ(c)

We conclude that:

accuracyφ(S2) ≤ accuracyφ(S1)

This concludes the demonstration. ut

A.5 Proof of Theorem 2

Before giving a demonstration to the theorem, below a necessary lemma:

Lemma 4. Using the same notation of Theorem 2, we have:

∀d ∈ int[℘(G+)] : inf
c∈inti[Si]

(|ext(d)∆ext(c)|
|G|

)
≤ |ext(ψi(d))| − |ext(core+i (ψi(d)))|

2 · |G|

Proof. Since the upper approximations (which is a cotp in Pi and thus is in
inti[Si]) and the closure of the positive of the core (it is in inti[Si]) are already
good approximations for d (but not necessarily the bests), let u = ψi(d), we have
ext(d) ⊆ ext(u). On the other hand, since d v corei(u) v core+i (u) (Proposi-
tion 3), we have ext(core+i (u)) ⊆ ext(d). Thus, we have |ext(d)∆ext(u)| =
|ext(u)| − |ext(d)| and in the other hand |ext(d)∆ext(core+i (u))| = |ext(d)| −
|ext(core+i (u))|. We obtain:

inf
c∈inti[Si]

|ext(d)∆ext(c)| ≤ |ext(u)| − |ext(d)|

inf
c∈inti[Si]

|ext(d)∆ext(c)| ≤ |ext(d)| − |ext(core+i (u))|

22 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

We conclude:

2× inf
c∈inti[Si]

|ext(d)∆ext(c)| ≤ |ext(u)| − |ext(core+i (u))|

Since |G| is a constant, we obtain (with u = ψi(d)):

inf
c∈inti[Si]

(|ext(d)∆ext(c)|
|G|

)
≤ |ext(u)| − |ext(core+i (u))|

2 · |G|
This ends the demonstration. ut
Theorem 2 proof. Without loss of generality, let i = 1.

Proof. According to Lemma 4, we have for a relevant (thus cotp) extent A ∈ R
(int1(A) ∈ int1[℘(G+)]] and thus int1(A) ∈ int1[S1]):

inf
B∈S1

(|A∆B|
|G|

)
≤ |ext(int1(A))| − |ext(core+1 (int1(A)))|

2 · |G|
We conclude thus:

sup
A∈R

inf
B∈S1

(|A∆B|
|G|

)
≤ sup
c∈int1[S1]

|ext(c)| − |ext(core+1 (c))|
2 · |G|

That is to say:

specificity(S1) = sup
c∈int1[S1]

|ext(c)| − |ext(core+1 (c))|
2 · |G|

It remains to show that specificity is also order reversing. From Lemma 1
and Lemma 2 we have for all d ∈ D:

ψ1(d) v ψ2(d) v d v core2(ψ2(d)) v core1(ψ1(d))

We can conclude directly using Lemma 4 (recall that ext is an order reversing)
that for all d ∈ D:

|ext(ψ2(d))| − |ext(core2(ψ2(d)))|
2 · |G| ≤ |ext(ψ1(d))| − |ext(core1(ψ1(d)))|

2 · |G|
Particularity, for c ∈ D2 (c is a fix-point for ψ2) we obtain:

|ext(c)| − |ext(core2(c))|
2 · |G| ≤ |ext(ψ1(c))| − |ext(core1(ψ1(c)))|

2 · |G|
We conclude that:

sup
c∈int2[S2]

|ext(c)| − |ext(core+2 (c))|
2 · |G| ≤ sup

c∈int1[S1]

|ext(c)| − |ext(core+1 (c))|
2 · |G|

In other word:

specificity(S2) ≤ specificity(S1)

This conclude the demonstration. ut

Anytime Subgroup Discovery in Numerical Domains with Guarantees 23

B Additional Experiments

This section provides additional materials on the performed empirical study
to evaluate the effectiveness our proposed method. For the purpose of repro-
ducibility, we maintain a companion page10 which includes all scripts utilized
for experiments. For MCTS4DM scripts please refer to its corresponding compan-
ion page11.

Note that, for some datasets (CMC and AUTOS), we observe that the ex-
haustive algorithm execution ends before RefineAndMine guarantees the re-
trieval of the optimal solution (i.e. second milestone), this stems from the fact
that we considered mainly ordinal attributes (i.e. having a small number of dif-

Dataset num rows intervals class α Dataset num rows intervals class α

ABALONE 02 M 2 4177 56× 106 M 0.37 CREDITA 02 + 2 666 1× 109 + 0.45
ABALONE 03 M 3 4177 74× 109 M 0.37 CREDITA 03 + 3 666 11× 1012 + 0.45
ABALONE 04 M 4 4177 220× 1015 M 0.37 CREDITA 04 + 4 666 3× 1015 + 0.45
ABALONE 05 M 5 4177 252× 1021 M 0.37 GLASS 02 1 2 214 161× 106 1 0.33
AUTOS 05 0 5 199 46× 1012 0 0.32 GLASS 04 1 4 214 5× 1015 1 0.33
AUTOS 06 0 6 199 786× 1015 0 0.32 GLASS 06 1 4 214 97× 1021 1 0.33
BREAST 07 4 7 683 1× 1012 4 0.35 HABERMAN 03 2 3 306 47× 106 2 0.26
BREAST 09 4 9 683 3× 1015 4 0.35 SONAR 03 R 3 208 4× 1012 R 0.47
CMC 05 1 4 1473 7× 106 1 0.43 SONAR 04 R 4 208 78× 1015 R 0.47
CMC 06 1 5 1473 21× 106 1 0.43 SONAR 05 R 5 208 1× 1021 R 0.47

Table 2: Benchmark datasets and their characteristics: number of numerical attributes,
number of rows, number of all possible intervals, the considered class and its prevalence

QualityBound Quality ExhaustiveTime ConfirmationTime BestFoundTime

10−2 10−1 100 101 102

Time (s) - ABALONE 02 M

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103 104

Time (s) - ABALONE 03 M

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−1 100 101 102 103 104

Time (s) - ABALONE 04 M

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−1 100 101 102 103 104

Time (s) - ABALONE 05 M

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102

Time (s) - AUTOS 05 0

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−1 100 101 102 103

Time (s) - AUTOS 06 0

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

Fig. 7: Evolution over time of top pattern quality and its bounding guarantee provided
by RefineAndMine (Part I).

10https://github.com/Adnene93/RefineAndMine
11https://github.com/guillaume-bosc/MCTS4DM

https://github.com/Adnene93/RefineAndMine
https://github.com/guillaume-bosc/MCTS4DM

24 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

ferent values) in the above datasets. Hence involving a small number of relevant
cuts making the exhaustive algorithm already a good option, since the latter
makes use of the preprocessing phase computing the relevant cuts.

QualityBound Quality ExhaustiveTime ConfirmationTime BestFoundTime

100 101 102 103 104

Time (s) - BREAST 07 4

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

101 102 103 104

Time (s) - BREAST 08 4

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

101 102 103 104

Time (s) - BREAST 09 4

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102

Time (s) - CMC 04 1

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102

Time (s) - CMC 05 1

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−1 100 101 102 103

Time (s) - CMC 06 1

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−3 10−2 10−1 100 101 102 103

Time (s) - CREDITA 02 +

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103 104

Time (s) - CREDITA 03 +

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103 104

Time (s) - CREDITA 04 +

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−3 10−2 10−1 100 101

Time (s) - GLASS 02 1

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103

Time (s) - GLASS 04 1

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−1 100 101 102 103 104

Time (s) - GLASS 06 1

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−3 10−2 10−1 100

Time (s) - HABERMAN 02 2

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101

Time (s) - HABERMAN 03 2

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103

Time (s) - SONAR 03 R

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

10−2 10−1 100 101 102 103 104

Time (s) - SONAR 04 R

0.00
0.25
0.50
0.75
1.00

Q
u

al
it

y

Fig. 8: Evolution over time of top pattern quality and its bounding guarantee provided
by RefineAndMine (Part II).

Anytime Subgroup Discovery in Numerical Domains with Guarantees 25

SpecificityBound Specificity Diversity ExhaustiveTime

10−3 10−2 10−1 100 101 102

Time (s) - ABALONE 2 M

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−2 10−1 100 101 102

Time (s) - AUTOS 5 0

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−1 100 101 102 103

Time (s) - AUTOS 6 0

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−1 100 101 102

Time (s) - BREAST 6 4

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

100 101 102 103

Time (s) - BREAST 7 4

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−2 10−1 100 101

Time (s) - CMC 4 1

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−2 10−1 100 101 102

Time (s) - CMC 5 1

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−2 10−1 100 101 102

Time (s) - CMC 6 1

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−2 10−1 100 101 102 103

Time (s) - CREDITA 2 +

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−3 10−2 10−1 100 101

Time (s) - GLASS 2 1

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−2 10−1 100 101 102

Time (s) - GLASS 3 1

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−1 100 101 102 103

Time (s) - GLASS 4 1

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−3 10−2 10−1 100

Time (s) - HABERMAN 2 2

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−3 10−2 10−1 100 101

Time (s) - HABERMAN 3 2

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

10−3 10−2 10−1 100 101 102 103

Time (s) - SONAR 3 R

0.00
0.25
0.50
0.75
1.00

S
p

ec
/D

iv

Fig. 9: Efficiency of RefineAndMine in terms of retrieving a diverse patterns set.

26 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

R&M Guarantee MCTS Quality R&M Quality MCTS Diversity R&M Diversity

10−3 10−2 10−1 100 101

Time (s) - HABERMAN 2 2

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

10−2 10−1 100 101 102 103

Time (s) - HABERMAN 3 2

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

10−1 100 101 102 103

Time (s) - ABALONE 2 M

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

10−2 10−1 100 101 102 103 104

Time (s) - CREDITA 2 +

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

10−2 10−1 100 101 102 103

Time (s) - GLASS 2 1

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

10−2 10−1 100 101 102 103 104

Time (s) - GLASS 4 1

0.00
0.25
0.50
0.75
1.00

M
et

ri
cs

Fig. 10: Comparative experiments between RefineAndMine (R&M) and MCTS4DM

Anytime Subgroup Discovery in Numerical Domains with Guarantees 27

C Preliminary Notions on Order Theory

This appendix, largely inspired by [28] and [10] books, gives basic definitions and
results from order theory. For any set P , ℘(P) denotes the powerset of P . For a
function f : E → F ,the image of set A ⊆ E is denoted f [A] = {f(a) | a ∈ A}.

C.1 Basic definitions

Definition 2 (Poset). A partial order on a non-empty set P is a binary relation
≤ on P that is reflexive (∀x ∈ P : x ≤ x), transitive (∀x, y, z ∈ P : x ≤ y, y ≤
z ⇒ x ≤ z), and antisymmetric (∀x, y ∈ P : x ≤ y and y ≤ x ⇒ x = y). The
pair (P,≤) is called a partially ordered set or poset. Two elements x and y
from P are said to be comparable if x ≤ y or y ≤ x. Otherwise, they are said
to be incomparable and we denote x ‖ y.

Note 1. In what follows (P,≤) denotes a poset and S ⊆ P denotes an arbitrary
subset of P .

Definition 3 (Direct neighbor). Let a, b ∈ P , element a is said to be direct
lower neighboor of element b (dually, element b is called direct upper neighboor
of element a) and we write a ≺ b iff:

a < b and 6 ∃c ∈ P : a < c < b

Note that < is simply the relation ≤ from which we omit reflexivity (i.e. a <
b⇔ a ≤ b, a 6= b).

Note 2. Any finite poset (P,≤) can be represented by a line diagram (Hasse
diagram) where:

– Elements of P are represented by small symbols in the plane.

– If a, b ∈ P and a ≺ b (a lower neighboor of b), the symbol corresponding to
a is depicted below the symbol corresponding to b (order is read bottom-up)
and a segment of line is drawn between them.

Fig. 11 (1) depicts the Hasse diagram of the poset (℘({a, b, c}),⊆).

Definition 4 (Upper and Lower bound). Let p be an element in P . p is
said to be an upper bound of S if ∀s ∈ S : s ≤ p. Dually, p is said to be a
lower bound of S if ∀s ∈ S : p ≤ s. The set of all upper (resp. lower) bounds
of S in P is denoted by Su (resp. S`). They are given by:

Su = {p ∈ P | (∀s ∈ S) s ≤ p} S` = {p ∈ P | (∀s ∈ S) p ≤ s}

Note that, particularly, ∅` = ∅u = P .

28 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

Definition 5 (Smallest and Greatest element). An element s∗ ∈ S is said
to be the smallest element in S iff

∀s ∈ S : s∗ ≤ s
Dually, An element s∗ ∈ S is said to be the greatest element in S iff

∀s ∈ S : s ≤ s∗

The smallest and the greatest elements in S are unique if they exist.

Definition 6 (Supremum and infimum). If the set of upper bounds Su has
it smallest element it is called the supremum or the join of S and it is denoted
by sup(S) or

∨
S (=

∧
Su). Dually, if the set of lower bounds S` has the greatest

element, it is called the infimum or the meet of S and it is denoted by inf(S)
or
∧
S (=

∨
S`).

Definition 7 (Lattice). A poset (P,≤) is said to be a meet-semilattice (resp.
join-semilattice) if for all x, y ∈ P the infimum (resp. supremum) of {x, y}
exists in P . A poset P is said to be a lattice if it is both meet-semilattice
and join-semilattice. A lattice (P,≤) is said to be complete if for any subset
S ⊆ P has it meet

∧
S and a join

∨
S in P (including the empty set).

Note 3. Any finite lattice is by definition complete. Moreover, any complete
lattice (P,≤) is bounded. That is the bottom element

∧
P =

∨ ∅ = ⊥ and∨
P =

∧ ∅ = > exists in P . Note also that for a, b ∈ P with (P,≤) a lattice,
∧{a, b} = a∧ b and ∨{a, b} = a∨ b are seen as associative, commutative and
idempotent binary operator (i.e. lattice are seen also as algebraic structures).

Note 4. For any (finite or infinite) set E, the poset (℘(E),⊆) is a complete
lattice and it is called the Boolean lattice. The meet is the set intersec-
tion while the join is the set union. For instance, Fig. 11 (1) depicts the
Hasse diagram of the boolean lattice (℘({a, b, c}),⊆). We have {{a, c}, {a, b}}` =
{∅, {a}} and {{a, c}, {a, b}}u = {{a, b, c}}. Therefore

∧{{a, c}, {a, b}} = {a}
while

∨{{a, c}, {a, b}} = {a, b, c}.

C.2 Closure and Kernel Systems

For any subset S ⊆ P , (S,≤) forms a sub-poset of (P,≤) (where the relation-
ship ≤ is restricted in S). However, not any sub-poset (S,≤) keeps properties
of it parent poset (P,≤). That is, a sub-poset of a lattice could be arbitrary
(not a lattice). Moreover, even if (S,≤) is a complete lattice. It could have dif-
ferent meet and join than its parent poset. Fig. 11 shows three examples of
sub-poset of the boolean lattice (℘({a, b, c, d}),⊆) (from the second left to the
right). The second (2) is a sub-poset that is clearly neither a meet-semilattice
nor a join-semilattice. The third (3) is a sub-poset that is a lattice, however
the new meet and the new join are different from set intersection and set union.
Indeed, {a, b} ∧ {b, c} = ∅ and {a, b} ∨ {b, c} = {a, b, c, d}. Finally, the forth
(4) sub-poset inherit both meet and join. We say that such the sub-poset is a
sub-lattice.

Anytime Subgroup Discovery in Numerical Domains with Guarantees 29

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}(1)

∅

{b} {c}

{a, b, c} {b, c, d}

{a, b, c, d}(2)

∅

{a, b} {b, c}

{a, b, c, d}(3)

∅

{b}

{b, d}

{a, b, d} {b, c, d}

{a, b, c, d}(4)

Fig. 11: From left to right Hasse diagram of: the lattice (P({a, b, c}),⊆) (1), subposet
of (P({a, b, c, d}),⊆) that is not a lattice (2), subposet of (P({a, b, c, d}),⊆) that is
a lattice (3), sublattice of (P({a, b, c, d}),⊆) (4).

Definition 8 (Closure and Kernel System). Let (P,≤) be a complete
lattice such that its meet is

∧
P and its join is

∨
P . Let S ⊆ P be a subset.

Poset (S,≤) is said to be a:

– Closure system or a meet-structure on (P,≤) iff:

∀A ⊆ S :
∧
P

A ∈ S

Poset (S,≤) is a complete lattice where the meet and the join are given
by:

∀A ⊆ S :
∨
S

A =
∧
P

{
s ∈ S | (∀a ∈ A) a ≤ s

} ∧
S

A =
∧
P

A >P ∈ S

– Kernel system or a join-structure on (P,≤) iff:

∀A ⊆ S :
∨
P

A ∈ S

Poset (S,≤) is a complete lattice where the meet and the join are given
by:

∀A ⊆ S :
∧
S

A =
∨
P

{
s ∈ S | (∀a ∈ A) s ≤ a

} ∨
S

A =
∨
P

A ⊥P ∈ S

– Complete sublattice of (P,≤) if it is both closure and kernel system. That
is both arbitrary meets and arbitrary joins are preserved. Note that top and
bottom elements of P (>P ,⊥P) are also in S.

Note 5. Reconsider Fig. 11 (1) where now (℘({a, b, c},⊆)) is seen as a sub-
poset of (℘({a, b, c, d},⊆)). Clearly, for almost all subsets S ⊆ ℘({a, b, c} the
intersection and the union are preserved. However, the (℘({a, b, c},⊆)) cannot
be seen as a closure system in (℘({a, b, c, d},⊆)). Indeed, > = {a, b, c, d} 6∈
℘({a, b, c}). Thus, (℘({a, b, c},⊆)) is only a kernel system in (℘({a, b, c, d},⊆))
but not a sub-lattice.

30 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

Definition 9 (Mapping properties in a poset). A function f : P → P is
said to be:

– Extensive. if (∀a ∈ P) a ≤ f(a).
– Contractive. if (∀a ∈ P) f(a) ≤ a.
– Monotonic. if (∀a, b ∈ P) a ≤ b⇒ f(a) ≤ f(b).
– Idempotent. if (∀a ∈ P) f

(
f(a)

)
= f(a).

The set of fix-points of a function f is given by {a ∈ P | f(a) = a}. A function f is
said to be a closure operator if it is extensive, monotonic and idempotent.
Dually, it is said to be a kernel operator if it is contractive, monotonic and
idempotent.

Note 6. Note that there is a strong relationship between closure (resp. kernel)
systems and closure (resp. kernel) operators. For instance, if f is closure (resp.
kernel) operator in a complete lattice (P,≤) then (f [P],≤) is a closure (resp.
kernel) system in (P,≤). Moreover, f [P] is the set of fix-points of f , that
is f [P] = {p = f(p) | p ∈ P} (if f is a closure operator, elements of f [P] are
called closed elements). On the other hand, one can always associates a closure
operator to a closure system (S,≤). Indeed, the function

φ : P → P, P 7→ φ(p) =
∧
{s ∈ S | p ≤ s}

is a closure operator in (P,≤) with φ[P] = S. Dually, one can also associates a
kernel operator to a kernel system (S,≤). The function

ψ : P → P, P 7→ ψ(p) =
∨
{s ∈ S | s ≤ p}

is a kernel operator in (P,≤) with ψ[P] = S.

There is an elegant theorem (see theorem 3) when (S,≤) is a complete sub-
lattice of (P,≤). This theorem is the base one we use in the current paper.

Theorem 3 (Theorem 4.1 in [8]). Let (P,≤) be a complete lattice and let
(S,≤) be a complete sub-lattice of (P,≤). Let be the two functions:

φ : P → P, P 7→ φ(p) =
∧
{s ∈ S | p ≤ s}

ψ : P → P, P 7→ ψ(p) =
∨
{s ∈ S | s ≤ p}

Operators φ and ψ are respectively join-preserving closure operator and
meet-preserving kernel operator. That is, for all A ⊆ P , we have:

φ
(∨

A
)

=
∨
φ [A] ψ

(∧
A
)

=
∧
ψ [A]

Moreover, the set of fix-points is S = φ[P] = ψ[P].

Note 7. Please note that the closure (resp. kernel) operator is, still, not nec-
essarily meet-preserving (resp. join-preserving). For instance consider the com-
plete sub-lattice of (℘({a, b, c, d}),⊆) depicted in Fig. 11 (4). One can show
that the associated closure operator is not meet-preserving. Indeed, we have
φ({a, b}) = {a, b, d} and φ({b, c}) = {b, c, d}, but:

φ({a, b} ∩ {b, c}) = φ({b}) = {b} 6= {b, d} = {a, b, d} ∩ {b, c, d} = φ({a, b}) ∩ φ({b, c})

Anytime Subgroup Discovery in Numerical Domains with Guarantees 31

D Complete lattice of p-dimensional hyper-rectangles

Definition 10. An interval I ⊆ R is a convex subset of R, that is:

∀x, y ∈ I, ∀z ∈ R : x ≤ z ≤ y =⇒ z ∈ I

The partially ordered set (poset) of all intervals in R is denoted (C(R),⊆) [10]
and is a closure-system in (℘(R),⊆). That is, the intersection

⋂
of arbitrary

set of intervals is an interval in C(R).

The poset (C(R),⊆) of intervals is a complete lattice where the meet
∧

is
set intersection

⋂
while the join

∨
is the convex hull of there union, formally:

∀S ⊆ C(R) :
∧
S ,

⋂
S∨

S =
⋂{

X ∈ C(R) |
⋃
S ⊆ X

}
= ch

(⋃
S
)

There is different types of intervals in C(R). For example: (−∞, a], (−∞, a),
(a, b), [a, b], [a, b),... with a, b ∈ R. Note that the top (greatest) element of
(C(R),⊆) is R while the bottom (smallest) element is ∅. For two intervals [a1, b1]
and [a2, b2] in (C(R),⊆) with a < b, we have:

[a1, b1] ∧ [a2, b2] = [sup(a1, a2), inf(b1, b2)]

[a1, b1] ∨ [a2, b2] = [inf(a1, a2), sup(b1, b2)]

With sup and inf refer to the greatest and smallest element in R wrt. natural
order ≤. This computation of ∧ and ∨ is generalizable for other types of intervals.

Definition 11. Let p ∈ N∗, an p-dimensional hyper-rectangle H ⊆ Rp is the
result of the product of m intervals in C(R). Formally:

H =

p∏
k=1

Ik with ∀k ∈ {1..m} : Ik ∈ C(R)

The set Hp denotes the set of all possible m-dimensional hyper-rectangles in Rp.
The poset (Hp,⊆) is again a closure-system in (℘(Rp),⊆).

The fact of (Hp,⊆) is a complete lattice which meet is set-intersection is
“inherited” 12 from the direct product of m complete lattice (C(R),⊆) (the
direct product of m complete lattice is a complete lattice [10, p. 130]). We have:

∀S ⊆ Hp :
∧
S ,

⋂
S∨

S =
⋂{

X ∈ Hp |
⋃
S ⊆ X

}
12In fact, one can use an order-embedding f : (C(R)p,≤) ↪−→ (℘(Rp),⊆) (where ≤

is the product order [28, p. 3]) such that f((Ik)1≤k≤p) =
∏p

k=1 Ik to build properly
the complete lattice f [C(R)p] = Hp.

32 Aimene Belfodil, Adnene Belfodil, and Mehdi Kaytoue

Thus, the meet
∧

and the join
∨

are formed component-wise. For instance, for
hyper-rectangles Hj =

∏p
k=1 I

j
k with j ∈ {1, 2} and Ijk = [ajk, b

j
k] we have:

H1 ∧H2 =

p∏
k=1

(
I1k ∧ I2k

)
=

p∏
k=1

[sup(a1k, a
2
k), inf(b1k, b

2
k)]

H1 ∨H2 =

p∏
k=1

(
I1k ∨ I2k

)
=

p∏
k=1

[inf(a1k, a
2
k), sup(b1k, b

2
k)]

Clearly, ∅ and Rp are respectively bottom and top element in (Hp,⊆).

Remark 1. In this paper, we deal with the dual lattice of (Hp,⊆) denoted

(Hp,v). The order v is given by the inverse order ⊇ while the meet
d

,
∨

and the join
⊔

,
∧

are inverted. The top element become > , ∅ while the
bottom element become ⊥ , Rp.

Anytime Subgroup Discovery in Numerical Domains with Guarantees 33

E Closed Interval Pattern Mining

Algorithm 2 describe the closed interval pattern mining algorithm as proposed
in [19]. We slightly change the method to compute the closed on the positives
(cotp for short) intervals patterns. Please refer to [20,19] for more details.

Algorithm 2: MinIntChange

Input: (G,M) a numerical datasets with {G+,G−} partition of G and |M| = p
C = (Ck)1≤k≤p cut points sets per dimension

Output: cotp patterns c ∈ DC verifying d v c
1 procedure MinIntChangeC(d, i, f)
2 yield(d) // yield cotp pattern

3 for j ∈ {i, ..., p} do
4 fstart ← 0 if j > i else f
5 for fnew ∈ {fstart, 1} do
6 dnew ← minChangeC(d,j,fnew)
7 c ← intC

(
{g ∈ ext(dnew) ∩ G+ | M(g) ∈ d}

)
8 if c 6= > and (∀k ∈ {1, ..., j − 1}) c.Ik = d.Ik then
9 MinIntChangeC(c,j,fnew)

10 function minChangeC(d, j, f)
11 dnew ← d // d =

∏
1≤i≤k[ak, bk) ∈ DC

12 if f = 0 then
13 dnew.Ij ← [next(aj , Cj), bj) // next(aj , Cj) = inf{c ∈ Cj | aj < c}
14 else
15 dnew.Ij ← [aj , prev(bj , Cj)

)
// prev(bj , Cj) = sup{c ∈ Cj | c < bj}

16 return dnew // dnew.Ij could be empty (i.e. dnew = > = ∅)
17 function intC(S)
18 for k ∈ 1, ..., p do

19 ak ← sup
{
c ∈ C | c ≤ inf{mk(g) | g ∈ S}

}
// sup(∅) = −∞

20 bk ← inf
{
c ∈ C | c > sup{mk(g) | g ∈ S}

}
// inf(∅) = +∞

21 d.Ik ← [ak, bk) if ak ∈ C else (−∞, bk)

22 return d

23 MinIntChange(d, 1, 0) // Start by a minLeftChange on the 1st attribute

	Anytime Subgroup Discovery in Numerical Domains with Guarantees

