The Automatic Baire Property and some Effective Properties of $\omega$-Rational Functions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

The Automatic Baire Property and some Effective Properties of $\omega$-Rational Functions

Olivier Finkel
  • Fonction : Auteur
  • PersonId : 924907

Résumé

We prove that $\omega$-regular languages accepted by B\"uchi or Muller automata satisfy an effective automata-theoretic version of the Baire property. Then we use this result to obtain a new effective property of rational functions over infinite words which are realized by finite state B\"uchi transducers: for each such function $F: \Sigma^\omega \rightarrow \Gamma^\omega$, one can construct a deterministic B\"uchi automaton $\mathcal{A}$ accepting a dense ${\bf \Pi}^0_2$-subset of $\Sigma^\omega$ such that the restriction of $F$ to $L(\mathcal{A})$ is continuous. We also give a new proof of the decidability of the first Baire class for synchronous $\omega$-rational functions from which we get an extension of this result.
Fichier principal
Vignette du fichier
Extended-journal-version-Effective-properties-rational-functions.pdf (379.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01870467 , version 1 (07-09-2018)
hal-01870467 , version 2 (16-10-2019)
hal-01870467 , version 3 (13-07-2020)
hal-01870467 , version 4 (06-10-2021)

Identifiants

  • HAL Id : hal-01870467 , version 3

Citer

Olivier Finkel. The Automatic Baire Property and some Effective Properties of $\omega$-Rational Functions. 2020. ⟨hal-01870467v3⟩
247 Consultations
135 Téléchargements

Partager

More