Two Effective Properties of $\omega$-Rational Functions - Archive ouverte HAL
Article Dans Une Revue International Journal of Foundations of Computer Science Année : 2021

Two Effective Properties of $\omega$-Rational Functions

Résumé

We prove two new effective properties of rational functions over infinite words which are realized by finite state B\"uchi transducers. Firstly, for each such function $F: \Sigma^\omega \rightarrow \Gamma^\omega$, one can construct a deterministic B\"uchi automaton $\mathcal{A}$ accepting a dense ${\bf \Pi}^0_2$-subset of $\Sigma^\omega$ such that the restriction of $F$ to $L(\mathcal{A})$ is continuous. Secondly, we give a new proof of the decidability of the first Baire class for synchronous $\omega$-rational functions from which we get an extension of this result involving the notion of Wadge classes of regular $\omega$-languages.
Fichier principal
Vignette du fichier
IJFCS-revised-Two-Effective-properties-rational-functions.pdf (369.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01870467 , version 1 (07-09-2018)
hal-01870467 , version 2 (16-10-2019)
hal-01870467 , version 3 (13-07-2020)
hal-01870467 , version 4 (06-10-2021)

Identifiants

Citer

Olivier Finkel. Two Effective Properties of $\omega$-Rational Functions. International Journal of Foundations of Computer Science, 2021, 32 (7), pp.901-920. ⟨10.1142/S0129054121500283⟩. ⟨hal-01870467v4⟩
247 Consultations
135 Téléchargements

Altmetric

Partager

More