2D-LWR in large-scale network with space dependent fundamental diagram - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

2D-LWR in large-scale network with space dependent fundamental diagram

Stéphane Mollier
  • Fonction : Auteur
  • PersonId : 1025014
Maria Laura Delle Monache

Résumé

Traffic modeling of large-scale urban networks is a challenging task. In the literature, the network is mainly assumed to be homogeneous. However, in a large-scale scenario, it is unlikely that the traffic network characteristics–such as speed limit, number of lanes, or the network geometry–remain constant throughout the network. Therefore, we introduce a two dimensional macroscopic model for large-scale traffic networks where the fundamental diagram is space-dependent and varies with respect to the area considered. We simulate our model and compare the results with those obtained by microsimulation.
Fichier principal
Vignette du fichier
Mollier_DelleMonache_Canudas_preprint_ITSC.pdf (1.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01866959 , version 1 (03-09-2018)

Identifiants

  • HAL Id : hal-01866959 , version 1

Citer

Stéphane Mollier, Maria Laura Delle Monache, Carlos Canudas de Wit. 2D-LWR in large-scale network with space dependent fundamental diagram. ITSC 2018 - 21st IEEE International Conference on Intelligent Transportation Systems, Nov 2018, Maui, United States. pp.1-8. ⟨hal-01866959⟩
154 Consultations
502 Téléchargements

Partager

More