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Abstract

Traffic modeling of large-scale urban networks is
a challenging task. In the literature, the network
is mainly assumed to be homogeneous. However,
in a large-scale scenario, it is unlikely that the
traffic network characteristics–such as speed limit,
number of lanes, or the network geometry–remain
constant throughout the network. Therefore,
we introduce a two dimensional macroscopic
model for large-scale traffic networks where the
fundamental diagram is space-dependent and
varies with respect to the area considered. We
simulate our model and compare the results with
those obtained by microsimulation.
Keywords: Macroscopic model, space dependent
flux function, large scale traffic modelling.

1 Introduction

Macroscopic models represent traffic states with average
quantities such as the density ρ, the number of
vehicles per space interval, or the average velocity
v. In the thirties, Greenshield [1] studied traffic with
empirical observations at a specific location on the road,
introducing a relation between the speed and density of
vehicles. This relation is called Fundamental Diagram
(FD) and is still commonly used nowadays. Twenty
years later, Lighthill, Whitham [2] and then Richards [3]
suggested a macroscopic model (LWR) which describes
dynamically the traffic evolution. A discrete and easy to
implement version, the Cell Transmission Model (CTM)
is introduced in [4]. This model performs well for traffic
modeling on a homogeneous road and has been validated
on highway [5]. However, even on a highway the road
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might be variant and parameters such as the number of
lanes or the speed limits may change. In these situations,
the flux function does not depend only on traffic density
but might also depend on space, [6], [7].

The need to model traffic in large scale urban area
appears with the development of urban areas. First
developed models (see [8] for the first one and [9] for
a review) are two dimensional continuum static models.
Then, in order to build a dynamical model for large urban
areas, researchers investigate the extension of the LWR on
network using models of junctions to give a representation
of the intersections ( [10], [11]). These models are difficult
to use in practice due to the big number of parameters to
calibrate. Furthermore, these models focus on a level of
details which might be not relevant for the study of large
scale networks. To meet the need of large scale modeling,
Geroliminis and Daganzo ( [12], [13]) investigate and show
the existence of a Macroscopic Fundamental Diagram
(MFD) which links the average flow produced in an
area with the average density on that area. Thanks
to this finding, accumulation models which describe the
evolution of the accumulation of vehicles in a zone (called
reservoir) with an Ordinary Differential Equation (ODE)
can be introduced. These kinds of models keep only few
information regarding the spatial distribution of vehicles,
and it might not be consistent if the traffic inflow changes
fast.

Finally, traffic in urban areas may be modeled with
two-dimensional continuous and dynamic models. A
review of some of these models is done in [14]. These
models represent the traffic density ρ as a variable over
a 2D-plane (x, y) ∈ Ω. Such models are based on
two-dimensional conservation law and take the following
general structure:

∂ρ(t, x, y)

∂t
+∇ · ~Φ(ρ(t, x, y)) = 0, ∀t ∈ R+,

ρ(0, x, y) = ρ0(x, y), ∀(x, y) ∈ R2

(1)

where ρ is the aggregated density and ~Φ the flow vector
defined as the product of the density ρ and velocity field
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vector ~v. This kind of two dimensional conservation
law is identically considered for macroscopic modeling
of pedestrians [15], [16], [17]. With the idea that for
large scale modelling, a dense enough road network
might be considered as a continuum, studies on two
dimensional modelling for traffic is developed [18], [19],
[20], [21], [22], [23]. Contrary to crowds which evolve in
general in a open space, traffic flow is in general on a
physical network. However, only few of the works on
two dimensional models use the network geometry to
parametrize their model. In [24], a flux direction per
zone is defined using microsimulation on the network.
In [23] and [25], the estimation of a continuous flux
direction field is suggested. In [26], [27] authors considers
a maximum speed that may depend on space, but these
parameters are postulated instead of being extracted from
the network. Furthermore, a maximum density that
depends on space has not been included into the previous
studies.

The contribution of this paper is to introduce a
two dimensional model with space dependent flux and
to suggest methods for the estimation of the model
parameters which characterize the space dependency.
The organization of the paper is as follows. In Section
2, the model is introduced. Then in Section 3, the
estimation of space dependent parameters are described.
Finally in Section 4, the numerical method is presented
and the results of simulations are compared with a
microsimulator (Aimsun).

2 Model construction

2.1 1D LWR with space dependent flux
function

The first macroscopic models for traffic developed by
Lighthill, Whitham and independently Richards (LWR
models) are inspired from fluid dynamic model. These
models are based on the conservation of mass and are
described by a partial differential equation. In the
classical LWR model in one dimension, the flux function Φ
depends only on the density ρ with a relation given by the
fundamental diagram (FD). An extension of this model
considers a flux function that depends also on space:

∂ρ(t, x)

∂t
+
∂Φ(x, ρ(t, x))

∂x
= 0, (t, x) ∈ R+ × R

ρ(0, x) = ρ0(x). x ∈ R
(2)

A space dependent flux might represent the variation
of the speed limit along the road or a change of the
number of lanes which involve a change of the maximum
density. This results to a fundamental diagram that may
change along the road modeled. An example of parameter
variations for the fundamental diagram is shown in Figure
1.

Figure 1: Variations of the parameters of the FD

This new definition of the flux function Φ involves a
new formulation of the Riemann problem as it have been
fully studied in [7].

∂ρ

∂t
+
∂Φl(x, ρ)

∂x
= 0, ρ(0, x) = ρl, x < 0

∂ρ

∂t
+
∂Φr(x, ρ)

∂x
= 0, ρ(0, x) = ρr, x > 0

(3)

where Φl and Φr are two expressions for the flux function,
respectively in the left and in right part of the domain,
and ρl and ρr are the given initial conditions for the
density. The solution of this problem has several new
features such as the creation of stationary waves. An
example of these solutions with this kind of waves is given
in Figure 2.

Figure 2: Solution of the Riemann problem described in
(3) at different times

At the position of the flux discontinuity, we can see
a stationary wave. On the left side, there is a shock
wave moving backward whereas on the right side, we see
a rarefaction wave. The numerical simulation in Figure
2 is done with the same demand-supply formulation that
the one given in Section 4.1 and give the theoretical result
expected in [7].
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2.2 Description of 2D LWR model

In this section, we suggest an extension of the model
introduced in [23], [25] including a space dependent flux
function. This extension is even more relevant than in
the one dimensional case for at least two reasons:

� As a large scale network is considered, the hypothesis
that the traffic parameters (maximum density and
speed limit) for all these roads are identical does not
hold.

� In a two-dimensional representation of traffic, the
maximum density not only depends on the number
of lanes but can also depend on the concentration of
roads in a specific area.

The following model is considered:
∂ρ

∂t
(t, x, y) +∇ · ~Φ(x, y, ρ) = 0, ∀t ∈ R+,

ρ(0, x, y) = ρ0(x, y). ∀(x, y) ∈ R2
(4)

where the flux function can be expressed as the product
between velocity and density:

~Φ(x, y, ρ) = ρ · ~v(x, y, ρ) (5)

and the velocity field ~v(x, y, ρ) is given by

~v(x, y, ρ) = v(x, y, ρ)︸ ︷︷ ︸
magnitude

· ~dθ(x, y)︸ ︷︷ ︸
direction

, (6)

with v(x, y, ρ) : R2 × [0, ρm(x, y)] → [0, vm(x, y)]. ρm
and vm denote respectively the maximum density and
maximum speed. The magnitude is given by a space
dependent fundamental diagram:

v(x, y, ρ) = vm(x, y)

(
1− exp

(
α
(

1− ρm(x, y)

ρ

)))
(7)

The parameter α is chosen constant equal to 0.4 such
that the ratio between the critical density ρc and the
maximum density ρm remains constant. The shape of
the fundamental diagram at a given space position (x, y)
can be seen in Figure 3.

ρ

v

vm(x, y)

0 ρm(x, y)

(a) Relation velocity
density

ρ

Φ

Φm(x, y)

0 ρc(x, y) ρm(x, y)

(b) Relation flux density:
FD

Figure 3: Speed and flow vs. density.

The definition and estimation of ~dθ, vm and ρm will be
respectively presented in the Section 3.2, 3.3 and 3.4.

3 Network considered and
parameters estimation

3.1 Study case

For simulation and test purposes, the network considered
is a 10 × 10 or 1km square Manhattan grid with the
position of the nodes slightly distorted with a white noise
(of standard deviation 30m) in order to have a less regular
network. We assume that all the roads considered are
one way and globally oriented towards the North-East
direction. As we are interested in studying the space
dependency of the flux function, we consider an area in
the middle of the network with low concentration of roads
such that the maximum density in this zone is lower. This
could represent a physical bottleneck for people willing
to go from West to East. Furthermore, we set the speed
limits on all road equal to 30 km/h (which is reasonable
for roads in the city center) except for one main arterial
set to 50km/h such that the maximum speed over the
network is not constant. This network is represented in
Figure 4.

Figure 4: Network considered for simulation. The main
arterial is represented in green.

3.2 Velocity direction field

In this section, we recall the estimation method
introduced in [23], [25]. We denote by q ∈ {1, .., Q}
the different roads of the network. The spatial path
of each road is described by a parametric curve Ψq :
s ∈ [0, smax] → (Ψq

1(s),Ψq
2(s)) ∈ R2. The variable s ∈

[0, smax] allows to progress along the road curvature from
an intersection to the next one. Let ~τ q(Ψq(s)) be the unit
tangent vector of the road q at position (Ψq

1(s),Ψq
2(s)).

The estimation of the unit vector ~dθ is done by a spatial
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interpolation method called Inverse Distance Weighting:

~dθ(x, y) =

Q∑
q=1

∫
s∈[0,smax]

w(l(x, y, s)) ~τ q(Ψq(s))ds

∣∣∣∣∣∣ Q∑
q=1

∫
s∈[0,smax]

w(l(x, y, s)) ~τ q(Ψq(s))ds
∣∣∣∣∣∣ (8)

where l : (x, y, s) → ‖(x, y) − (Ψq(s))‖ is the distance
from the point (x, y) to the road. The weight function
w : R+ → R+ should be a decreasing function of the
distance.

w : X → e−βX with β > 0,

the parameter β represents the sensitivity of the function
to the distance.

For the considered network, the velocity field is
estimated with a parameter β equal to 20. An estimation
of the velocity field with a larger mesh can be seen in
Figure 5.

Figure 5: Interpolation of velocity field ~dθ(x, y) using the
network geometry

3.3 Reconstruction of a two dimensional
density from individual vehicles
and estimation of space dependent
maximum density

In this section, we recall a method to reconstruct a two
dimensional density from the observation of individual
vehicles on the spirit of [25] using the Kernel Density
Estimation (KDE) method. The idea is that each
individual vehicle have a contribution to the global
density estimation with a Gaussian kernel centered in the
vehicle position. Let (xnk , y

n
k )k∈[1·K(n)] be the position

of vehicles within the network at time tn. Then we can
reconstruct the density at this time over the network as

follows:

ρ̃n(x, y) =

K(n)∑
k=1

G2d

((
x

y

)
−

(
xnk

ynk

))
(9)

with

G2d(x, y) =
e
−
x2 + y2

2d20

2πd20
s.t.

∫∫
R2

G2d(x, y) dx dy = 1,

d0 is a parameters that control the range of the Gaussian
function. We set d0 equal to 50m. This method allows
to reconstruct a two dimensional density either from real
data (GPS probes) or from a microsimulator (for instance
Aimsun).

With these notions, we are now able to describe
the method to estimate the space dependent maximum
density ρm : Ω→ R+. Let us now consider that we have a
fully congested network. We set the headway between two
consecutive vehicles equal to 6m which is a rough estimate
of the value obtained from real traffic data in urban
area [13]. Then, we assume that in every road and each
6m there is a vehicle. We denote by (xk, yk)k∈{1,··· ,Kmax}
the position of all these vehicles. Thus, we estimate the
maximal density of the network as follows:

ρm(x, y) =

Kmax∑
k=1

G2d

((
x

y

)
−

(
xk

yk

))
. (10)

The estimated maximum density obtained with this
method can be shown in Figure 6. For the color scale

Figure 6: Estimation of the maximum density ρm(x, y)
over the 2D-plane using the proposed method for a
parameter d0 set to 50m

to represent the density, we define:

ρmax = max
(x,y)∈R2

ρm(x, y). (11)
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We can notice that in the central area of the network, a
lower concentration of roads involves a lower estimation
of the maximum density. To avoid issue on the
reconstruction near the boundary, we considered an
extension of the network just for the estimation of the
maximum density (see Figure 6 in comparison with Figure
4).

3.4 Reconstruction of space dependent
maximum speed

For the estimation of the maximum speed, we use an
interpolation method as in Section 3.2. We keep the
same notation with q ∈ {1, · · · , Q} the different roads
and Ψq : s ∈ [0, smax] → (Ψq

1(s),Ψq
2(s)) ∈ R2 the

parametric curves that describes the paths of each road.
Let vq(Ψq(s)) be the speed limit of the road q at position
(Ψq

1(s),Ψq
2(s)). The estimation of maximum velocity over

the 2D-plane vm is done by the spatial interpolation
method:

vm(x, y) =

Q∑
q=1

∫
s∈[0,smax]

w(l(x, y, s))vq(Ψq(s))ds

∣∣∣∣∣∣ Q∑
q=1

∫
s∈[0,smax]

w(l(x, y, s))ds
∣∣∣∣∣∣ (12)

where l : (x, y, s) → ‖(x, y) − (Ψq(s))‖ is the distance
from the point (x,y) to the road and where

w : X → e−βX with β > 0.

The estimated maximum velocity field can be seen in
Figure 7. A path with a higher maximum speed is

Figure 7: Interpolation of the maximum speed vm(x, y)
from the speed limit of the roads

described along the arterial road as expected. For the
interpolation of the maximum speed vm, an important
remark is that the estimation does not depend on the
road concentration but only on the the value of the speed
limit of the neighbouring roads.

4 Simulation results

4.1 Numerical method

Numerical methods for conservation laws are well studied
in the literature [7], [28], [29]. Here, an extrapolation
of the well know Cell Transmission Model (CTM) [4]
which includes space dependency of the flux is considered.
Then, the two dimensional aspect is considered by using
dimensional splitting. Let (Ci,j)(i,j)∈[1..I]×[1..J] be the cell
space discretization and (xi, yj) be the coordinates of each
cell center. Applying the method given in section 3.2, we
can define a flux direction for each cell

~dθ(xi, yj) =

{
cos(θi,j)

sin(θi,j)
(13)

Let us define the density in the cells with
(ρi,j)(i,j)∈[1..I]×[1..J], then the numerical flux is defined at
cell interfaces with the notation Fi+ 1

2 ,j
= F (ρi,j , ρi+1,j)

and the function F is defined as follows:

Fi+ 1
2 ,j

=

{
min(Di,j , Si+1,j) if cos(θi+ 1

2 ,j
) ≥ 0

min(Si,j , Di+1,j) if cos(θi+ 1
2 ,j

) < 0
(14)

Here θi,j is the angle (see (13)) of the unit vector direction

of the flux ~dθ(xi, yj) defined in Section 3.2 at cell Ci,j , and

cos(θi+ 1
2 ,j

) is defined equal to
cos(θi+1,j)+cos(θi,j)

2 . Di,j and
Si,j are respectively the demand and supply function of
the cell Ci,j which could be defined as follows:

Di,j =

{
Φ(xi, yj , ρi,j), if ρi,j ≤ ρc(xi, yj)
Φm(xi, yj), if ρi,j > ρc(xi, yj)

(15)

Si,j =

{
Φm(xi, yj), if ρi,j ≤ ρc(xi, yj)
Φ(xi, yj , ρi,j), if ρi,j > ρc(xi, yj)

(16)

with the flux Φ(xi, yj , ρi,j) = ρi,j · v(xi, yj , ρi,j) and his
maximum Φm(xi, yj) = ρc(xi, yj) · v(xi, yj , ρcrit(xi, yj)).
The velocity function v is the one defined in Section 2.2
with the parameters ρm and vm estimated respectively in
Section 3.3 and 3.4. ρc(xi, yj) is the corresponding critical
density for a maximum density ρm(xi, yj). The vertical
flux Fi,j+ 1

2
is defined analogously.

Let ∆t be the time step, and ∆x and ∆y the space
discretization with respect to the x-axis and the y-axis.
Then the global scheme for the computation of the model
can be defined with the dimensional splitting as follows:

ρ∗i,j = ρni,j −
∆t

∆x

(
cos(θi+ 1

2 ,j
)Fni+ 1

2 ,j
− cos(θi− 1

2 ,j
)Fni− 1

2 ,j

)
,

(17)

ρn+1
i,j = ρ∗i,j −

∆t

∆y

(
sin(θi,j+ 1

2
)F ∗i,j+ 1

2
− sin(θi,j− 1

2
)F ∗i,j− 1

2

)
,

(18)
where the variables are:

� ρni,j, ρ
n+1
i,j are the discrete density at time tn and tn+1
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� ρ∗i,j is an intermediate value used only for
computation

� ∆x, ∆y, ∆t are space and time step discretization

� Fn
i+ 1

2 ,j
is the flux at the cell interface

� cos(θi+ 1
2 ,j

) and sin(θi,j+ 1
2
) are the contribution of the

flow direction.

4.2 Simulation results

The validation of the model is done by comparing the
model prediction and the one given by the microsimulator
Aimsun. To this aim, a simulation for the same network
and scenario is run for the two. In order to be able
to compare these results, a two-dimensional density
is reconstructed from the vehicles’ trajectories of the
Aimsun simulation using the method described in Section
3.3.

4.2.1 Scenario description

The scenario considered represents a dissipation of
a congestion. In the microsimulator, an important
concentration of vehicles is artificially generated in the
South-East of the network and set as an initial condition
for the simulation. The split ratio at each intersection is
equal to 50 % except for the roads across the bottleneck
of the network where vehicles have 70 % split ratio. With
the method described in Section 3.3 and also in [25],
a two-dimensional density is reconstructed and given as
initial condition of the 2D model. Then, the two models
are run independently assuming that there is no inflows
in both cases. The 2D model provides a propagation
of density whereas the microsimulator describes the
evolution of each vehicle’s trajectory. At each time step
(which has been synchronized), the results of the models
can be compared by reconstructing a 2D density from
the vehicles’ position of the Aimsun Simulation. The
network characteristics defined for the microsimulator are
identical to those considered for the estimation of the
model parameters. Thus, the minimum headway between
vehicles is set to 6m and the road speed limits are set
equal to 30 or 50km/h.

4.2.2 Results of the comparison with the
microsimulator

We simulate the scenario described above. The
comparison between the results of the two models can
be seen in Figure 8. A first remark is that in the
microsimulator the congestion does not propagate across
the bottleneck and remain in the left side of the network.
This phenomena is also captured by the two-dimensional
model where a discontinuity in the density appears next
to the network bottleneck. It is a stationary wave, a
classical feature that can be seen when considering space

Figure 8: Comparison between the 2D model with
space dependent flux function (left) and the 2D density
reconstructed from the microsimulator (right) for a
scenario of congestion dissipation. The blue squares
represent vehicles of the microsimulation. A video
of the simulation is available on https://youtu.be/

qWNnnpFJZeQ.

dependent flux function. Another remark is that we
choose to show the comparison with absolute value of the
density where the scale is given by the maximum over the
space of the maximum density. This choice could give an
impression that the network is only slightly congested.
Another possibility might be to represent the relative
density with respect to the maximum density estimated
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on each space position. However, it might be difficult to
interpret the motion and location of the vehicles within
the network.

Conclusion

This paper investigated the extension of a two
dimensional model with space dependency in the flux
function, i.e. with a varying fundamental diagram. A
methodology for the estimation of the main parameters
such as the maximum density and the free flow speed were
suggested. Results of the model were compared with the
results of the microsimulator Aimsun.
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