Spectral analysis of moment data
Résumé
Spectral features of the empirical moment matrix constitute a resourceful tool for unveiling properties of a cloud of points, among which, density, support and latent structures. It is already well known that the empirical moment matrix encodes a great deal of subtle attributes of the underlying measure. Starting from this object as base of observations we combine ideas from statistics, real algebraic geometry, orthogonal poly-nomials and approximation theory for opening new insights relevant for Machine Learning (ML) problems with data supported on singular sets. Refined concepts and results from real algebraic geometry and approximation theory are empowering a simple tool (the empirical moment matrix) for the task of solving non-trivial questions in data analysis. We provide (1) theoretical validation , (2) numerical experiments and, (3) connections to real world data as a validation of the stamina of the empirical moment matrix approach.
Domaines
Machine Learning [stat.ML]
Fichier principal
unitSphere.pdf (1.74 Mo)
Télécharger le fichier
circlePerturb.pdf (230.77 Ko)
Télécharger le fichier
doubleStar.pdf (629.28 Ko)
Télécharger le fichier
rankFit.pdf (16.67 Ko)
Télécharger le fichier
shapes.png (31.38 Ko)
Télécharger le fichier
testDihedralGlycine.pdf (459.72 Ko)
Télécharger le fichier
testDragonfly.pdf (26.1 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|