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Abstract

Spectral features of the empirical moment matrix constitute
a resourceful tool for unveiling properties of a cloud of points,
among which, density, support and latent structures. It is al-
ready well known that the empirical moment matrix encodes
a great deal of subtle attributes of the underlying measure.
Starting from this object as base of observations we combine
ideas from statistics, real algebraic geometry, orthogonal poly-
nomials and approximation theory for opening new insights
relevant for Machine Learning (ML) problems with data sup-
ported on singular sets.

Refined concepts and results from real algebraic geometry
and approximation theory are empowering a simple tool (the
empirical moment matrix) for the task of solving non-trivial
questions in data analysis. We provide (1) theoretical valida-
tion, (2) numerical experiments and, (3) connections to real
world data as a validation of the stamina of the empirical
moment matrix approach.

Inference of low dimensional structures

Intrinsic dimension has a long history in signal processing ex-
pressing the idea that most empirical high dimensional signals
are actually structured and can be approximated by a small
number of entities [6, 24, 45, 52]. Dimension reduction in
data analysis has witnessed a considerable renewal of interest
in the early 2000’s with the advent of non linear low dimen-
sional structure estimation algorithms [46, 50, 4] and follow
up works [16, 34, 20]. Graph Laplacian based methods were
proposed in [5, 29] and intrinsic dimension estimation was
revisited in [35, 28]. In a manifold learning context the ques-
tions of finite sample efficiency were treated in [26, 25, 31, 1]
and a statistical test was proposed [23]. A spectral support
estimator was described in [54].

Getting access to topological properties of a data distri-
bution through computational topology is of rising interest
[43, 19, 11, 27]. This was cast in a statistical framework in
[12, 13, 10] and in a machine learning framework by [43, 44].

Classical real algebraic geometry [7] and its related compu-
tational tools [14] constitute a well established mathematical
branch dealing with varieties described by polynomials. Our
work streams from the potential of exploiting these results
with the specific aim at inferring latent structures. A funda-
mental view in modern algebraic geometry is to study a finite
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dimensional set S via duality, by investigating the algebra of
polynomial functions acting on S. We put at work the idea to
capture geometric characteristics of S from polynomials on a
cloud of points spread across S, essentially a spectral property
of the corresponding empirical moment matrix.

Christoffel-Darboux kernel

Given a positive, absolutely continuous, rapidly decaying
Borel measure µ on euclidean space, integration with respect
to µ defines a scalar product on the space of polynomials. The
reproducing kernel associated to the Hilbert space of polyno-
mials up to a given degree is called the Christoffel-Darboux
kernel [48] and is usually computed from a suitable orthonor-
mal family [49, 18]. This kernel only depends on the moments
of µ and has been intensively studied for more than a cen-
tury. It captures refined properties of the original measure
[42, 53] and allows to decode information concerning the sup-
port and the density of µ. The univariate case was treated in
[40, 41, 51], an application in an ergodic context is given in
[32].

In the multivariate setting, explicit computations is known
only for simple sets [8, 55, 9, 56] or under abstract assump-
tions [33]. As claimed in [37, 38], these tools constitute a
promising research direction for data analysis. For latent
structure inference, it is required to understand the proper-
ties of these objects in the singular setting, which is hardly
tackled in the literature.

Results

Under natural assumptions, we show that the space of poly-
nomials on a real algebraic set and the space of polynomials
on a large enough generic sample on the same set are essen-
tially the same spaces. As a result, global geometric proper-
ties of the support can be inferred with probability one from
only finite samples. This relies on the rigidity of the poly-
nomial setting, and constitutes a significant departure from
more classical forms of statistical inference which most often
hold non deterministically. We describe how the growth of the
rank empirical moment matrix is related to the dimension of
the support of the underlying measure.

Our second main result extends the weighted asymptotic
convergence of the Christoffel function to the density of the
underlying measure, cf. [33]. The work of [33] relies on the
variational formulation of the Christoffel function, still valid
in the singular case. Starting from simple assumptions, we
cover the cases of the sphere, the ellipsoids and canonical op-
erations of them, such as fibre products. The proof provides
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explicit convergence rates in supremum norm. All proof ar-
guments are postponed to the appendix.

Numerical experiments

We illustrate on simulations that the growth of the rank of
the empirical moment matrix is related to the dimensional-
ity of the support of the underlying measure. Connection
with the density is illustrated on three real world datasets
featuring symmetry and periodicity. We map them to higher
dimensional algebraic sets which captures naturally the cor-
responding symmetries and deploy the Christoffel function
machinery illustrating how this simple tool can be used to
estimate densities on the circle, the sphere and the bi-torus.
Experiment details are found in the appendix.

1 The absolutely continuous case

Henceforth we fix the dimension of the ambient euclidean
space to be p. For example, we will consider vectors in Rp
as well as p-variate polynomials with real coefficients.

1.1 Notations and definition

We denote by R[X] the algebra of p-variate polynomials with
real coefficients. For d ∈ N, Rd[X] stands for the set of p-
variate polynomials of degree less than or equal to d. We set
s(d) =

(
p+d
d

)
= dimRd[X].

Let vd(X) denotes the vector of monomials of degree less
than or equal to d. A polynomial P ∈ Rd[X] can be written
as P (X) = 〈p,vd(X)〉 for a given p ∈ Rs(d). For a posi-
tive Borel measure µ on Rp denote by supp(µ) its support,
i.e., the smallest closed subset whose complement has mesure
zero. We will only consider rapidly decaying measures, that
is measures whose all moments are finite.

Moment matrix For any d ∈ R, the moment matrix of µ,
with moment up to 2d, is given by

Mµ,d =

∫
Rp

vd(x)vd(x)T dµ(x)

where the integral is understood element-wise. Actually it
is useful to interpret the moment matrix as representing the
bilinear form on R[X], 〈·, ·〉µ : (P,Q) 7→

∫
PQdµ, restricted

to polynomials of degree up to d. Indeed, if p,q ∈ Rs(d) are
the vectors of coefficients of any two polynomials P and Q of
degree up to d, one has pTMµ,dq = 〈P,Q〉µ. This entails that
Mµ,d is positive semidefinite for all d ∈ N.

1.2 Christoffel-Darboux kernel and
Christoffel function

In this section we assume that the probability measure µ is
absolutely continuous with respect to Lebesgue measure on
Rp. Fix d a positive integer. In this case, the bilinear form
〈·, ·〉µ is positive definite on Rd[X] which is a finite dimen-
sional Hilbert space; we denote by ‖ · ‖µ the corresponding
norm. For any x ∈ Rp, the evaluation functional on Rd[X],
P 7→ P (x), is continuous with respect to ‖ · ‖µ. Hence Rd[X]

is a Reproducing Kernel Hilbert Space (RKHS), it admits
a unique reproducing kernel, κµ,d [2], called the Christoffel-
Darboux kernel [48]. The reproducing property and definition
of Mµ,d ensure that for any x,y ∈ Rp,

κµ,d(x,y) = vd(x)TM−1µ,dvd(y). (1)

The Christoffel function is defined as follows:

Λµ,d : x 7→ inf
P∈Rd[X]

{∫
P (z)2dµ(z), s.t. P (x) = 1

}
(2)

A well known crucial link between the Christoffel-Darboux
kernel and the Christoffel function is given for any x ∈ Rp,

κµ,d(x,x)Λµ,d(x) = 1. (3)

2 The singular case

Throughout this section µ denotes a Borel probability mea-
sure possessing all moments, not necessarily absolutely con-
tinuous with respect to Lebesgue measure.

2.1 Departure from the regular case

Relations (6) and (8) do not need to hold in the singular case
as the bilinear form 〈·, ·〉µ may fail to be positive definite. In
this situation the definition of polynomial bases requires addi-
tional care and the RKHS interpretation is not valid over the
whole space Rp. There are essentially two ways to circumvent
this difficulty:

• Construct, using a quotient map, the space of polynomi-
als restricted on supp(µ), construct the kernel based on
this family and extend it to the whole euclidean space.

• Consider only the variational formulation as in the left
hand side of (7).

These are equivalent on the support of µ but do not lead the
same definition outside of the support. Identity (8) ceases to
hold in the singular case and both constructions provide a
valid extension outside of the support. We will focus on the
second choice and start by stating the following basic Lemma.

Lemma 1 Let p ∈ N∗, M ∈ Rp×p be symmetric semidefi-
nite and u ∈ Rp. Let M† denotes the Moore-Penrose pseudo
inverse, we have

inf
x∈Rp

{
xTMx; xTu = 1

}
=

{
1

uTM†u
, if projker(M)(u) = 0,

0, otherwise

2.2 Support of the measure

If Mµ,d does not have full rank, then this means that its sup-
port is contained in an algebraic set. We let V be the Zariski
closure of supp(µ), that is the smallest algebraic set which
contains supp(µ). It is well known that an algebraic set is
always equal to the common zero set of finitely many poly-
nomials. Note that in the present article we exclusively work
over the real field of coefficients, a setting which is more in-
tricate than that offered by an algebraically closed field (for
instance Hilbert’s Nullstellensatz is not valid in its original
form over a real field).

2



Lemma 2 Denote by I the set of polynomials P which satisfy∫
P 2dµ = 0. The set I coincides with the ideal of polynomials

vanishing on V .

We conclude this section by illustrating important relation
between the moment matrix and geometric properties of V .
The proof combines [39, Proposition 2] and relation between
Hilbert’s polynomial and dimension [14, Chapter 9]. An il-
lustration of the relation between the growth of the rank of
the moment matrix and the dimension of the underlying set
is given in Section D with numerical simulations.

Proposition 3 For all d ∈ N∗, rank(Mµ,d) = HF(d), where
HF denotes the Hilbert function of V and gives the dimension
of the space of polynomials of degree up to d on V . For d large
enough, rank(Mµ,d) is a polynomial in d whose degree is the
dimension of V and ker(Mµ,d) provides a basis generating the
ideal I.

2.3 Construction of the Christoffel-Darboux
kernel

We denote by L2
d(µ) the space of polynomials on V of degree

up to d with inner product and norm induced by µ denoted
by 〈·, ·〉µ and ‖ · ‖µ respectively. This can be constructed by
considering that two elements are equivalent if and only if they
agree on V . L2

d(µ) is the quotient space Rd[X]/(I ∩ Rd[X]),
and it can be easily checked that 〈·, ·〉µ is positive definite on
L2
d(µ) and hence induces a genuine scalar product.
As in the absolutely continuous setting, pointwise evalua-

tion is continuous with respect to ‖ · ‖µ and L2
d(µ) is a RKHS

[2]. The symetric reproducing kernel is defined for all x ∈ V ,
by κµ,d(·,x) ∈ L2

d(µ) such that for all P ∈ L2
d(µ),∫

P (y)κµ,d(y,x)dµ(y) = P (x).

We consider the variational formulation of the Christoffel
function in (7). Considering the restriction of Λµ,d to V
amounts to replace Rd[X] by L2

d(µ), so that for all z ∈ V

Λµ,d(z) = inf
P∈L2

d(µ)

{∫
(P (x))2 dµ(x) : P (z) = 1

}
. (4)

(8) still holds for all z ∈ V , Λµ,d(z)κµ,d(z, z) = 1.
By definition of the Zariski closure, a polynomial vanishing

on supp(µ) also vanishes on V and we deduce that:

{z ∈ Rp, Λµ,d(z) = 0} ∩ V = ∅. (5)

Therefore if z ∈ V then Λµ,d(z) > 0 and Lemma 1 ensures

that Λµ,d(z) = (vd(z)TM†µ,d vd(z))−1. Since V is algebraic,
it is the solution set of a finite number of polynomial equa-
tions. Let dV be the maximum degree of such equations.
Then for any d ≥ dV : V =

{
x ∈ Rd : Λµ,d(x) > 0

}
.

3 Finite sample approximation

Given a positive Borel measure µ one may consider a finite
sample {xi}ni=1 of independant random vectors drawn from µ
and replace µ by its empirical counterpart µn = 1

n

∑n
i=1 δxi

where δa denotes the Dirac measure at a. In this situation, for
i = 1, . . . , n, xi is a random variable, hence µn is a random
measure, Mµn,d is a random matrix, and the law of large
numbers states that for every fixed d, ‖Mµn,d −Mµ,d‖ → 0
almost surely. This entails that rank(Mµn,d) → rank(Mµ,d)
almost surely. Classical approches to strengthen this result
and provide quantitative estimates rely on concentration of
measure for matrices or operators. In the present section, we
investigate another direction and provide a different view of
this convergence phenomenon. Under suitable assumptions,
the rigidity of polynomials ensure that convergence of the rank
occurs almost surely for a finite sample size.

3.1 Assumptions and main result

Recall that µ is a Borel probability measure on Rp with all its
moments finite and V denote the Zariski closure of supp(µ).
An algebraic set is called irreducible if it is not the union of
two algebraic proper subsets. Given an algebraic set W , we
define a canonical area measure σW . Intuitively, an algebraic
set consists of a finite union of a smooth submanifolds of di-
mension pW ”glued” along a lower dimensional singular locus.
The area measure is constructed with geometric integration
theory techniques on the smooth part.

Construction of the area measure: Let W ⊂ Rp be an
irreducible real algebraic set of dimension pW . According to
Proposition 3.3.14, Proposition 3.3.10 and Definition 3.3.4 in
[7], there exists a lower dimensional algebraic subset Y of di-
mension strictly smaller than pW , such that the set Z = W \Y
can be seen as a pW dimensional smooth submanifold of Rp
(possibly not connected). There is a natural Euclidean pW
dimensional density on Z induced from the euclidean embed-
ding, see for example Section 7.3 in [17]. This defines integra-
tion of continuous functions on Z; then Riesz representation
theorem yields a regular positive Borel measure representing
this very integration linear functional. The resulting measure
is called the area measure of W and it is denoted in short by
σW .

Assumption 4 µ is a Borel measure on Rp with finite mo-
ments and V is the Zariski closure of supp(µ) endowed with
the area measure σV . They satisfy the following constraints:

1. V is an irreducible algebraic set,

2. µ is absolutely continuous with respect to σV .

Under this assumption one infers the following finite sample
stabilization result. The statement formalizes the intuition
that the set of polynomials on supp(µ) and the set of polyno-
mials on a finite sample coincide almost surely as long as the
sample size reaches the dimension of the space L2

d(µ).

Theorem 5 For all d ≥ 1 and all n ≥ rank(Mµ,d), it holds
almost surely that,

• rank(Mµn,d) = rank(Mµ,d),
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It is the combination of Theorem 18 and Proposition 16 which
shows that, in principle, it is possible to fully characterize al-
gebraic geometric properties of the Zariski closure of supp(µ)
from a finite sample, with probability one.

It is obvious that rank(Mµn,d) ≤ rank(Mµ,d). The main
idea of the proof is to show that rank deficiency implies that
{xi}ni=1 are in the zero locus of a polynomial P on V n not
vanishing everywhere on V n. We then use the fact that a
polynomial P vanishing in an euclidean neighborhood in V n

actually vanishe on the whole V n. This fact is deduced from
Rückert’s complex analytic Nullstellensatz [30, Proposition
1.1.29], which provides a local characterization of P . Com-
pletion of the local ring of rational functions allows to deduce
global properties of P [47]. The irreducibility hypothesis and
the definition of the area measure allow precisely to switch
from real to complex variables.

We remark that the assumptions on V and µ in 17 are
mandatory for the validity of the above theorem. Two simple
examples illustrate our claim.

Example Consider the following generative process in R2: x,
y and z are drawn independantly from the uniform measure
on [−1, 1]. If z ≤ 0, return (0, y), otherwise return (x, 0).

The underlying measure µ is the “uniform” measure on
the set

{
(x, y) ∈ [−1, 1]2; xy = 0

}
and hence we have V ={

(x, y) ∈ R2; xy = 0
}

. Draw an independent sample from
µ, {(xi, yi)}ni=1, the event yi = 0 for i = 1, . . . , n oc-
curs with probability 1/2n. Hence there is a nonzero prob-
ability that our sample actually belong to the set Ṽ ={

(x, y) ∈ R2; y = 0
}

. This will result in rank(Mµn,d) <
rank(Mµ,d). Since this event holds with non zero probabil-
ity, this shows that Theorem 18 may not hold for any value
of n if V is not irreducilble.

Example Similarly, absolute continuity is necessary. Con-
sider for example a mixture between an absolutely continu-
ous measure and a dirac. There is a non zero probability that
the sample only contains a singleton which will induce a rank
deficiency in the moment matrix.

4 Reference measure with uniform
asymptotic behavior

This section describes an asymptotic relation between the
Christoffel function and the density associated with the un-
derlying measure. The proof is mostly adapted from [33, The-
orem 1.1], we provide explicit details and use a simplified set
of assumptions which allows us to deal with singular measures.

4.1 Main assumptions and examples

Our main hypothesis is related to a special property of a ref-
erence measure whose existence is assumed.

Assumption 6 Let Z be a compact subset of Rp and assume
that there exists a reference Borel probability measure λ whose
support is Z and a polynomial function N : R+ 7→ R∗+ such
that

lim
d→∞

sup
z∈Z
|N(d)Λλ,d(z)− 1| = 0.

Remark The constant 1 is arbitrary and could be replaced
by a continuous and strictly positive function of z.

The principal example that fits Assumption 21 is the p − 1
dimensional sphere in Rp, denoted Sp−1. The dimension N(d)
of the vector space of polynomials over Sp−1 is given by:(

p+ d− 1

p− 1

)
+

(
p+ d− 2

p− 1

)
=

(
1 +

2d

p− 1

)(
d+ p− 2

p− 2

)
which grows with d like 2dp−1

p−1 for a fixed value of p. As a
function of d it is exactly the Hilbert polynomial associated
with the real algebraic set Sp−1. Here we may choose for
λ the rotation invariant probability measure on Sp−1 (as
normalized area measure). In this case Λλ,d(z) = 1

N(d) for

all z ∈ Sp−1 and all d by rotational invariance of both the
sphere and the Christoffel function.

The case of the sphere is important because it helps con-
struct many more situations which satisfy Assumption 21:

• Product of spheres with products of area measures: the
bi-torus in R4 with the corresponding area measure.

• Affine transformations of such sets with the push forward
of the reference measure with respect to the affine map;
for instance the ellipsoid,

or rational embeddings of the sphere in higher dimensional
space, to mention only a few natural choice of admissible op-
erations.

4.2 Main result

Given a reference measure λ as in Assumption 21, and another
measure µ ∼ λ (i.e. λ � µ and µ � λ), one can describe a
precise relation with the underlying density.

Theorem 7 Let Z and λ satisfy Assumption 21. Let µ be
a borel probability measure on Rp, absolutely continuous with
respect to λ, with density f : : Z → R∗+ which is continuous
and positive. Then:

lim
d→∞

sup
x∈Z
|N(d)Λµ,d(x)− f(x)| = 0.

In the case of the sphere, Assumption 21 does not hold only
in the limit and from the proof of Theorem 22 we are able to
obtain explicit quantitative bounds and a convergence rate,
which to the best of our knowledge is the first estimate of this
type for the Christoffel function.

Corollary 8 Let f : Rp → R+ be Lipschitz on the unit ball
with 0 < c ≤ f ≤ C < +∞ on Sp−1 and assume that µ has
density f with respect to the uniform measure on the sphere.
Then we have supx∈Sp−1 |N(d)Λµ,d(x)− f(x)| = O(d1/4).

5 Numerical experiments

5.1 Rank of the moment matrix

We illustrate Proposition 16 by the following numerical ex-
periment:
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Figure 1: Relation between the rank of the moment matrix and the corresponding degree bound. For different sets, the dots
represent the measured rank and the curve is the degree-two interpolation. On the left, the raw relation, we see that the cube
has the highest rank. The same plot is in log log scale in the middle. The difference between measured rank and estimated
degree-two interpolation is hardly visible. On the right, we represent the residuals between degree-two interpolation and
measured ranks. The degree-rank relation is well interpolated for two dimensional sets while this is not the case for the cube.

• Sample 20000 points on a chosen set Ω ⊂ R3, from a
density with respect to the area measure on Ω.

• For d = 5, . . . , 12, compute the rank of the empirical
moment matrix.

• Fit a degree-2 regression polynomial interpolating the re-
lation between the degree and the rank.

We choose four different subsets of R3: unit cube, unit sphere,
TV screen, torus. The first one is 3-dimensional while all the
others are 2-dimensional. From Proposition 16, in the first
case it is expected that the computed rank grows like a third
degree polynomial while for the remaining cases, it should
grow like a quadratic. Hence the interpolation of the rank-
degree relation should be of good quality for the last three
cases and not for the first case. This is what we observed, see
Figure 5.

5.2 Density estimation on an algebraic set

We present multivariate datasets whose topological character-
istics suggest to map them to algebraic sets capturing symme-
tries. Practitioners have developed density estimation tools
which mostly rely on the ability to compute a distance like
divergence between two points which respects the topology of
the data. As we next show, a unifying and generic approach
allows to treat all these cases using the same computational
tool: the empirical Christoffel function.

The first step consists in mapping the data of interest on an
algebraic set whose topology reflects the intrinsic topology of
the data, namely: the circle for periodic data, the sphere for
celestial data, and the torus for bi-periodic data. Then, we
evaluate the empirical Christoffel function on the chosen set
and use it as a proxy to density. We use the pseudo-inverse
of the empirical moment matrix.

The Christoffel function highly depends on the geometry
of the boundary of the support. The algebraic sets consid-
ered here do not have boundaries (as manifolds) and isotropy
properties ensure that the Christoffel function associated to
the uniform measure on these sets is constant.

5.3 Dragonfly orientation: the circle

The dataset was described in [3] and consists of measure-
ments of the orientation of 214 dragonflys with respect to the
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Figure 2: Dragon fly orientation with respect to the sun, on
the torus. The curves represent the empirical Christoffel func-
tion and the dots are observations.
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Figure 3: Each point represents the observation of a double
star on the celestial sphere, associated to longitude and lati-
tude. The level sets represent the empirical Christoffel func-
tions on the sphere in R3 (degree 8). The highlighted band
corresponds to the Milky Way.

azimuth of the sun. The orientation is an angle which has
a periodicity and as such is naturally mapped to the circle.
The dataset and the corresponding Christoffel function are
displayed in Figure 2. As the degree increases, the Christoffel
function captures regions densely populated by observations
and regions without any observation. As was already observed
in [3], dragonflies tend to sit in a direction perpendicular to
the sun.

5.4 Double stars: the sphere

We reproduce the experiment performed in [15]. The dataset
is provided by the European Space agency and was aquired
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by Hipparcos satelite [21]. The data consists of the position of
12176 double stars on the celestial sphere described by spher-
ical coordinates. Double stars are of interest in astronomy
because of their connection with the formation of evolution
of single stars. A natural question is that of the uniformity
of the distribution of these double stars on the celestial map.
The dataset and corresponding Christoffel function are dis-
played in Figure 3 using equirectangular projection. Firstly
we note that the displayed level lines nicely capture the geom-
etry of the sphere without distortion at the poles. Secondly
the Christoffel function allows to detect a higher density re-
gion which corresponds to the Milky Way.

5.5 Amino-acid dihedral angles: the bi-torus

We reproduce the manipulations performed in [36]. Proteins
are amino acid chains which 3D structure can be described
by φ and ψ backbone dihedral angle of amino acid residues.
The 3D structure of a protein is extremely relevant as it re-
lates to the molecular and biological function of a protein.
Ramachandran plots consist of a scatter plot of these angles
for different amino acids and allow to visualize energetically
allowed configuration for each amino acid.

It is worth emphasizing that being able to describe typical
regions in Ramachandran plots is of great relevance as a tool
for protein structure validation [36]. Since the data consist of
angles, it has a bi-periodic structure and therefore naturally
maps to the bi-Torus in R4. A Ramachandran plot for 7705
Glycine amino acids as well as the corresponding Christoffel
function estimate is displayed in Figure 4. The Christoffel
function is able to identify highly populated areas and its
level set nicely fit the specific geometry of the torus. We refer
the reader to [36] for more details about this dataset.

6 Discussion: perturbation of the
moment matrix

We import real algebraic geometry and approximation the-
ory results as tools to infer qualitative, topological properties
from datasets. This is intrinsically connected to the notion of
algebraic sets and allows to leverage more rigidity than pro-
vided by usual smoothness assumptions. This is suited for
data restricted to algebraic sets.

However, in a singular situation, we are faced with a nu-
merical instability issue. Aside from exact real arithmetic
computation, the notion of rank in finite precision arithmetic
is actually ill-defined which makes the singularity assump-
tion questionable. We believe that the objects considered in
this paper have sufficient stability properties to treat “near-
singular” cases. We describe an heuristic argument, while
more quantitative results is subject of future work.

Lemma 9 For a given m ∈ N, let A,M ∈ Rm×m be symmet-
ric semidefinite. Then, for any v ∈ Rm (uniformly on any
compact)

lim
l→0+

inf
x∈Rm

{
xT (M + lA)x s.t.x ∈ Rp, xTv = 1

}
= inf

{
xTMx s.t.x ∈ Rm, xTv = 1

}
.
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Figure 4: Each point represents two dihedral angles for a
Glycine amino acid. These angles are used to describe the
global three dimensional shape of a protein. They live on the
bitorus. The level sets are those of the empirical Christoffel
functions evaluated on the sphere in R4. The degree is 4.

By Lemma 23, the Christoffel function associated with a slight
perturbation of the moment matrix is very close to the actual
Christoffel function. This justifies the variational formulation
(4) as it can be seen as the limit of perturbations of µ making
it non singular. By continuity of eigenvalues an appropriate
thresholding scheme should lead to a correct evaluation of the
rank of the moment matrix.

An important application of Lemma 23 is the addidtion
of noise. Consider the following random process y = x + ε,
where x is distributed according to µ and ε is independent
small noise. Measuring the impact of ε on the moments of
y compared to moments of x will help using our tools in
the “close to singular” case. Understanding of the singular
situation is a key to investigate robust variants suited to more
general and practical manifold learning situations.
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A Introduction

This appendix contains supplementary information for the paper Spectral analysis of moment data. Section
B provides additional details regarding the notations and constructions employed in the main text. In
Section C, we describe proof arguments for all the results presented in the main text. More details about
the numerical simulations are given in Section D. More details about the final discussion are given in Section
E. Throughout this note, we repeat important elements from the main text.

B Polynomials and the moment matrix

In this section µ denotes a positive Borel measure on Rp with finite moments and for any d ∈ N, Mµ,d

denotes its moment matrix with moments of degree up to 2d. As a matter of fact we will soon restrict our
attention to probability measures, which is a minor constraint to impose on the constructs below.

Henceforth we fix the dimension of the ambient euclidean space to be p. For example, vectors in Rp as
well as p-variate polynomials with real coefficients. We denote by X the tuple of p variables X1, . . . , Xp

which appear in mathematical expressions involving polynomials. Monomials from the canonical basis of
p-variate polynomials are identified with their exponents in Np: specifically α = (αi)i=1...p ∈ Np is associated
to the monomial Xα := Xα1

1 Xα2
2 . . . X

αp
p of degree deg(α) :=

∑p
i=1 αi = |α|. The notations <gl and ≤gl

stand for the graded lexicographic order, a well ordering over p-variate monomials. This amounts to, first,
use the canonical order on the degree and, second, break ties in monomials with the same degree using the
lexicographic order with X1 = a,X2 = b . . . For example, the monomials in two variables X1, X2, of degree
less than or equal to 3 listed in this order are given by: 1, X1, X2, X

2
1 , X1X2, X

2
2 , X

3
1 , X

2
1X2, X1X

2
2 , X

3
2 .

We focus here on the graded lexicographic order to provide a concrete example, but any ordering compatible
with the degree would work similarly.

By definition Npd is the set {α ∈ Np; deg(α) ≤ d}, while R[X] is the algebra of p-variate polynomials with
real coefficients. The degree of a polynomial is the highest of the degrees of its monomials with nonzero
coefficients1. The notation deg(·) applies a polynomial as well as to an element of Np. For d ∈ N, Rd[X]
stands for the set of p-variate polynomials of degree less than or equal to d. We set s(d) =

(
p+d
d

)
= dimRd[X];

this is of course the number of monomials of degree less than or equal to d.

From now on vd(X) denotes the vector of monomials of degree less or equal to d (sorted using ≤gl),
i.e., vd(X) := (Xα)α∈Npd

∈ Rd[X]s(d). With this notation, one can write a polynomial P ∈ Rd[X] as

P (X) = 〈p,vd(X)〉 for some real vector of coefficients p = (pα)α∈Npd
∈ Rs(d) ordered using ≤gl. Given

x = (xi)i=1...p ∈ Rp, P (x) denotes the evaluation of P with respect to the assignments X1 = x1, X2 =
x2, . . . Xp = xp. Given a Borel probability measure µ and α ∈ Np, yα(µ) denotes the moment α of µ,
i.e., yα(µ) =

∫
Rp xαdµ(x). Throughout the paper we will only consider rapidly decaying measures, that is

measure whose all moments are finite. For a positive Borel measure µ on Rp denote by supp(µ) its support,
i.e., the smallest closed set Ω ⊂ Rp such that µ(Rp \Ω) = 0.

Moment matrix The moment matrix of µ, Md(µ), is a matrix indexed by monomials of degree at most
d ordered with respect to ≤gl. For α, β ∈ Npd, the corresponding entry in Md(µ) is defined by Md(µ)α,β :=
yα+β(µ), the moment

∫
xα+βdµ of µ. For example, in the case p = 2, letting yα = yα(µ) for α ∈ N2

4, one
finds:

M2(µ) :

1 X1 X2 X2
1 X1X2 X2

2

1 1 y10 y01 y20 y11 y02
X1 y10 y20 y11 y30 y21 y12
X2 y01 y11 y02 y21 y12 y03
X2

1 y20 y30 y21 y40 y31 y22
X1X2 y11 y21 y12 y31 y22 y13
X2

2 y02 y12 y03 y22 y13 y04

.

1For the null polynomial, we use the convention that its degree is 0.
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The matrix Md(µ) is positive semidefinite for all d ∈ N. Indeed, for any p ∈ Rs(d), let P ∈ Rd[X] be
the polynomial with vector of coefficients p; then pTMd(µ)p =

∫
Rp P (x)2dµ(x) ≥ 0. We also have the

identity Md(µ) =
∫
Rp vd(x)vd(x)T dµ(x) where the integral is understood element-wise. Actually it is useful

to interpret the moment matrix as representing the bilinear form

〈·, ·〉µ : R[X]× R[X] 7→ R

(P,Q) 7→
∫
Rp
P (x)Q(x)dµ(x),

restricted to polynomials of degree up to d. Indeed, if p,q ∈ Rs(d) are the vectors of coefficients of any two
polynomials P and Q of degree up to d, one has pTMd(µ)q = 〈P,Q〉µ

C Proofs

C.1 Christoffel-Darboux kernel in the absolutely continuous case

Recall the definition of the Christoffel-Darboux kernel and the Christoffel function

κµ,d(x,y) = vd(x)TM−1µ,dvd(y). (6)

Λµ,d : x 7→ inf
P∈Rd[X]

{∫
(P (z))2dµ(z), s.t. P (x) = 1

}
(7)

Lemma 10 For any x ∈ Rp, we have

κµ,d(x,x)Λµ,d(x) = 1, (8)

and the solution of (7) is given by P ∗ : x 7→ κµ,d(z,x)
κµ,d(z,z)

.

Proof We give a short proof for completeness. For any P feasible for (7), we have
∫
P (x)κµ,d(z,x)dµ(x) =

P (z) = 1. Cauchy-Schwartz inequality leads

1 ≤
∫

(P (x))2dµ(x)

∫
(κµ,d(z,y))2dµ(y) = κµ,d(z, z)

∫
(P (x))2dµ(x).

Choosing P = P ∗, we obtain equality in the above inequality which proves the desired result. �

C.2 Support of the measure

The following alternate definition of the closed support of a measure is useful in the sequel.

Definition 11 A point x belongs to supp(µ) if and only if, for any open neighborhood, N of x, µ(N) > 0.

We denote by I the set of polynomials P which satisfy
∫
P 2dµ = 0. We let V be the Zariski closure of

supp(µ), that is the smallest algebraic set which contains supp(µ).

Lemma 12 The set I coincides with the ideal of polynomials vanishing on V .

Proof First, P ∈ I entails that P vanishes on supp(µ) by continuity of P . If P did not vanish on V , then
one would construct a strictly smaller algebraic subset of V containing supp(µ) which is contradictory.
Conversely, let P ∈ Rd[X] vanish on V , then P vanishes on supp(µ) and P (x)2 = 0 for all x ∈ supp(µ) and
therefore

∫
P 2dµ = 0, which in turn implies P ∈ I. �

10



C.3 Rank of the moment matrix

We introduce the following notion of genericity, borrowed from [39]. For any d ∈ N, let Id := I ∩ Rd[x] be
the intersection of the ideal I with the vector space of polynomials of degree at most d.

Definition 13 For any fixed d ∈ N, denote by Kd the set

Kd =
{
M ∈ Rs(d)×s(d), M11 = 1, M � 0, pTMp = 0, ∀p ∈ Id

}
.

A matrix T ∈ Rs(t)×s(t) is called generic if T ∈ Kd and rank(T ) ≥ rank(M) for all M ∈ Kd.

Lemma 14 For any d ∈ N∗, Mµ,d is generic.

Proof First, for any polynomial P of degree at most d, with coefficient vector p, we have pTMµ,dp =
∫
P 2dµ.

This quantity vanishes for P ∈ Id and hence Mµ,d ∈ Kd. Choose M ∈ Kd and p ∈ Rs(d) such that
Mµ,dp = 0. We have that pTMµ,dp =

∫
P 2dµ = 0 so that P ∈ Id and hence Mp = 0. We have shown that

ker(Mµ,d) ⊂ ker(M) so that rank(Mµ,d) ≥ rank(M). �

We introduce the Hilbert function and the Hilbert polynomial. We refer the reader to [14, Chapter 9] for a
general presentation.

Definition 15 The Hilbert Function of I is defined by

HF: N 7→ N
t 7→ dimRt[x]/It.

For large values of t, HF is a polynomial.

Intuitively, the Hilbert function associates to d the dimension of the space of polynomials of degree up to
d on supp(µ). This space is constructed using a natural quotient map. More details are given in the main
text.

The following proposition combines [39, Proposition 2] and relation between Hilbert’s polynomial and
dimension [14, Chapter 9].

Proposition 16 For all d ∈ N∗, rank(Mµ,d) = HF(d). For d large enough, rank(Mµ,d) is a polynomial in
d whose degree is the dimension of V and ker(Mµ,d) provides a basis for I.

C.4 Finite sample approximation

Recall that for any d ∈ N∗, L2
d(µ) is identified with Rd[x]/Id, two polynomials are considered equivalent if

they agree on V . (L2
d(µ), 〈·, ·〉µ) is a finite dimensional RKHS which reproducing kernel is symmetric positive

definite and defined for all x ∈ V , by κµ,d(·,x) ∈ L2
d(µ) such that for all P ∈ L2

d(µ),∫
P (y)κµ,d(y,x)dµ(y) = P (x).

For any x ∈ V , κµ,d(·,x) is a polynomial and, by symmetry, κµ,d is itself a polynomial on V 2 which satisfies
κµ,d(x,x) > 0 for all x ∈ V . Furthermore, we have L2

d(µ) = span {κµ,d(·,x), x ∈ supp(µ)}. This space being
finite dimensional, there exists N(d) ≤ s(d) such that one can find a basis e1, . . . , eN(d) ∈ supp(µ) with

L2
d(µ) = span {κµ,d(·, ei), i = 1, . . . , N(d)} . (9)

Furthermore, let {Pi}N(d)
i=1 be an orthonormal basis of L2

d(µ). Then the identity
∫
κµ,d(x, y)Pi(y)dµ(y) =

Pi(x), for all x ∈ V and all i, yields:

κµ,d(x,y) =

N(d)∑
i=1

Pi(x)Pj(y), ∀x,y ∈ V. (10)
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Assumption 17 µ is a Borel measure on Rp with finite moments and V is the Zariski closure of supp(µ)
endowed with the area measure σV . They satisfy the following constraints:

1. V is an irreducible algebraic set,

2. µ is absolutely continuous with respect to the area measure σV .

The following statement formalizes the intuition that the set of polynomials on supp(µ) and the set of
polynomials on a finite sample coincide almost surely as long as the sample size reaches the dimension of
the set of polynomials.

Theorem 18 For all d ≥ 1 and all n ≥ rank(Mµ,d), it holds almost surely that,

• rank(Mµn,d) = rank(Mµ,d),

•
{
P ∈ Rd[X];

∑n
i=1(P (xi))

2 = 0
}

= Id.

We begin by a technical Lemma which is a consequence of the reproducing kernel construction and its relation
to orthogonal polynomials.

Lemma 19 Let v1, . . . ,vn ∈ V and let µn be the empirical average
∑n
i=1 δvi . Then:

rank
(

(κµ,d(vi,vj))i,j=1...n

)
= rank (Mµn,d) .

Proof This is a consequence of equation (10). Let {Pi}N(d)
i=1 be an orthonormal basis of L2

d(µ). For each
i = 1, . . . , N(d) we choose Qi ∈ Rd[X] to be one element in the equivalence class of Pi. The family

{Qi}N(d)
i=1 must be independent in Rd[X] otherwise this would contradict independence of {Pi}N(d)

i=1 in L2
d(µ).

This independent family can be extended to a basis of Rd[X] which we denote by {Qi}s(d)i=1 . Consider

the matrix D = (Qj(vi))i=1...n, j=1...s(d). Then rank
(

(K(vi,vj))i,j=1...n

)
= rank(DDT ) from (10) and

rank (Mµn,d) = rank(DTD) since the rank of the moment matrix does not depend on the choice of
polynomial basis in Rd[X]. Both ranks are the same which is the desired result. �

Now let V N(d) be the cartesian product space V × · · · × V︸ ︷︷ ︸
N(d) times

. It is irreducible [7, Theorem 2.8.3] and its area

measure is the product measure σ = ⊗N(d)
i=1 σV . The determinantal function:

F : V N(d) 7→ R

(x1, . . . ,xn) 7→ det
(

(K(xi,xj))i,j=1,...,N(d)

)
is a polynomial function which is not identically zero on V N(d), since by (9), F (e1, . . . , eN(d)) > 0. The
following observation, of some independent interest, is in order.

Lemma 20 Let W be an irreducible real algebraic set with corresponding area measure σW and P be a
polynomial on W . The following are equivalent

(i) σW ({z ∈W : P (z) = 0}) > 0.

(ii) P vanishes on W .
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Proof The implication (ii) to (i) is trivial since σW is supported on W . Let us assume that (i) is true and
deduce (ii). This is classicaly formulated in the language of sheafs, we adopt a more elementary language
and describe details for completeness. The main idea of the proof is to reduce the statement to Rückert’s
complex analytic Nullstellensatz [30, Proposition 1.1.29] which characterizes the class of analytic functions
vanishing locally on the zero set of a family of analytic functions. The first point is precisely of local nature
and the Nullstellensatz combined with properties of analytic functions allow to deduce properties of P which
extend globally [47]. The irreducibility hypothesis and the definition of the area measure allow precisely to
switch from real to complex variables.

First, let P1, . . . , Pk generate the ideal I of polynomials vanishing on W . Since W is irreducible, I is a
prime ideal and W = {x ∈ Rp, Pi(x) = 0, i = 1, . . . , k} (see propositions 3.3.14 and 3.3.16 in [7]). Point
(i) entails that there exists x0 ∈ W and U1 an Euclidean neighborhood of x0 in Rp such that W ∩ U1 is

an analytic submanifold, or more precisely the Jacobian matrix
(
∂Pi
∂Xj

)
i=1...k, j=1...p

has rank k on U1, and

furthermore, P (x) = 0 for all x ∈W ∩ U1.
Consider the analytic complex manifold Z = {z ∈ Cp, Pi(z) = 0, i = 1, . . . , k} and the polynomial map

G : (X1, . . . , Xp) 7→ (P1(X1, . . . , Xp), . . . , Pk(X1, . . . , Xp), Xk+1, . . . , Xp).

This map is locally invertible around x0 in Cp and its inverse is analytic. The function (H : Xk+1, . . . , Xp) 7→
P (G−1(0, . . . , 0, Xk+1, . . . , Xp) is analytic and vanishes in an Euclidan neighborhood, of (x0,k+1, . . . , x0,p),
the last k coordinates of x0, in Rk. Hence, it can be identified with the constant null function on U1. This
shows that H vanishes in an Euclidean neighborhood of (x0,k+1, . . . , x0,p) in Ck.

This proves that there exists a Euclidean neighborhood of x0 in Cp, U2, such that P vanishes on Z ∩ U2.
At this point we can invoke the complex analytic Nullstellensatz [30, Proposition 1.1.29], to obtain k analytic
functions, O1, . . . , Ok, on U2, and an integer m ≥ 1, such that, for all z ∈ U2, we have

(P (z))m =

k∑
i=1

Pi(z)Oi(z). (11)

We can now use powerful result related to completion of local rings. Combining Corollary 1 of Proposition
4 and Proposition 22 in [47] we obtain that identity (11) still holds with the constraint that Oi, i =
1, . . . , k, are rational functions. In other words, reducing to common denominator, there exists an Euclidean
neighobourhood of x0, U3, and k complex polynomials Q1, . . . , Qk and a complex polynomial Q such that
Q does not vanish on U3, and

Q(z)(P (z))m =

k∑
i=1

Pi(z)Qi(z). (12)

From this we deduce that identity (12) still holds by restricting to real variables and real polynomials. Now
since the ideal I is prime and Q 6∈ I (since Q(x0) 6= 0), we deduce that P ∈ I, that is, P vanishes on W .
This is what we wanted to prove. �

We may now proceed to the proof of the rank stabilization result from Theorem 18. First, since V is
irreducible, V N(d) is also irreducible [7, Theorem 2.8.3]. Since F is a polynomial which does not vanish
everywhere on V N(d), we deduce from Lemma 20 that

σ
({

x1, . . . ,xN(d) ∈ V N(d) : F (x1, . . . ,xN(d)) = 0
})

=

∫
V N(d)

I
[
F (x1, . . . ,xN(d)) = 0

]
dσ(x1, . . . ,xN(d))

= 0. (13)

Noticing that rank(Mµ,d) = N(d), the result follows because µ is absolutely continuous with respect to σV

and hence ⊗N(d)
i=1 µ is absolutely continuous with respect to σ so that, combining Lemma 19 and (13) with
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the i.i.d. assumption, yields:

P (rank (Mµn,d < N(d))) = P
(
F (x1, . . . , xN(d)) = 0

)
=

∫
V N(d)

I
[
F (x1, . . . , xN(d)) = 0

]
dµ(x1) . . . dµ(xN(d)) = 0.

This proves the first point. The second point is a consequence of the first point since the existence of a
polynomial vanishing on the sample but not on the whole V would induce a rank deficiency in the empirical
moment matrix and this occurs with zero probability.

C.5 Reference measure with uniform asymptotic behavior

Although the proof is mostly adapted from [33, Theorem 1.1], we provide explicit details and use a simplified
set of assumptions which allows us to deal with singular measures. Our main hypothesis is related to a
special property of a reference measure whose existence is assumed.

Assumption 21 Let Z be a compact subset of Rp and assume that there exists a reference Borel probability
measure λ whose support is Z and a polynomial function N : R+ 7→ R∗+ such that

lim
d→∞

sup
z∈Z
|N(d)Λλ,d(z)− 1| = 0.

Theorem 22 Let Z and λ satisfy Assumption 21. Let µ be a borel probability measure on Rp, absolutely
continuous with respect to λ, with density f : Z → R∗+ which is continuous and positive. Then:

lim
d→∞

sup
x∈Z
|N(d)Λµ,d(x)− f(x)| = 0.

Proof Our arguments, mostly inspired from [33], are adapted to our setting. In addition, we provide some
novel quantitative details. We split the proof into two parts. The second part is essentially a repetition of
arguments similar to those used in the first part.

One direction By Assumption 21, Z is compact and so denote by D the finite diameter of Z. Fix an
arbitrary d ∈ N∗ and set:

εd = sup
x,y∈Z, ‖x−y‖≤D/

√
d

|f(x)− f(y)|, (14)

which is well-defined because f is continuous on the compact set Z and hence uniformly continuous on Z,
which ensures that the supremum is finite. Furthermore, εd → 0 as d→∞.

Next, fix an arbitrary x0 ∈ Z and choose Pd−bd3/4c realizing the infimum for Λλ,d−bd3/4c(x0) (b·c denotes

the floor integer part). Set Q2bd3/4/2c : y 7→ Q((y − x0)/D) where Q is given by Lemma 25 with δ = 1/
√
d

and of degree at most 2bd3/4/2c. Then:

2bd3/4/2c ≤ bd3/4c,

and hence, the polynomial P = Pd−bd3/4cQ2bd3/4/2c is of degree at most d and satisfies
P (x0) = 1

|P | ≤ |Pd−bd3/4c| on Z

P 2 ≤ 22−
√
d/2 supx∈Z Pd−bd3/4c(x)2 on Z \BD/√d(x0),

(15)

where the first identity is because P is a product of polynomial whose value at x0 is 1, the last two identities
follow by maximizing both terms of the product, using Lemma 25 and the fact that 1 − δbd3/4/2c ≤
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1 − d3/4/(2
√
δ) + 1/

√
δ ≤ 2 −

√
d/2. P is feasible and provide an upper bound for the computation of

the Christoffel function of µ. We obtain:

Λµ,d(x0)

(i)

≤
∫
Z

(P (x))2dµ(x)

(ii)

≤
∫
Z∩B(x0,D/

√
d)

(Pd−bd3/4c(x))2fdλ(x) + 22−
√
d/2 sup

x∈Z
Pd−bd3/4c(x)2

∫
Z\B(x0,D/

√
d)

dµ(x)

(iii)

≤ (f(x0) + εd)

∫
Z∩B(x0,D/

√
d)

(Pd−bd3/4c(x))2dλ(x)

+ 22−
√
d/2 sup

z∈Z

(
Λλ,d−bd3/4(z)c

)−1 ∫
Z

(Pd−bd3/4c(x))2dλ(x)

(iv)

≤
(
f(x0) + εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)∫
Z

(Pd−bd3/4c(x))2dλ(x)

=

(
f(x0) + εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)
Λλ,d−bd3/4c(x0).

where (i) is because P (x0) = 1, (ii) follows by decomposition of the integral over two domains and the
uniform bounds in (15), (iii) follows by combining (14), Lemma 24 and the fact that µ is a probability
measure on Z, (iv) follows by extending the domain of the first integral and the last identity is due to the
choice of Pd−[d3/4] and Lemma 24. Therefore:

Λµ,d(x0)N(d)− f(x0)

≤
(
f(x0) + εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)
Λλ,d−bd3/4c(x0)N(d)− f(x0)

≤
(
εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)
Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)

+ f(x0)

(
Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)
− 1

)
≤

(
εd + 22−

√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1)
Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)

+ C

(
Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)
− 1

)
(16)

where C = supx∈Z f(x). Now the upper bound in (16) does not depend on x0 and goes to 0 as d→∞ since
as d→∞,

εd → 0,

22−
√
d/2 sup

z∈Z

(
Λλ,d−bd3/4c(z)

)−1 ∼ 22−
√
d/2N(d− bd3/4c)→ 0,

Λλ,d−bd3/4c(x0)N(d− bd3/4c) N(d)

N(d− bd3/4/2c)
→ 1,

where the first limit is obtained by uniform continuity, the second limit comes from N being a polynomial
(by Assumption 21), and the last one also follows from Assumption 21. As a result:

lim sup
d→∞

sup
x∈Z

Λµ,d(x)N(d)− f(x) ≤ 0, (17)

which concludes the first part of the proof.
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The other direction: To obtain the opposite direction inequality, we permute the role of µ and λ which
corresponds to a density f̃ = 1/f which remains positive and continuous on Z. We repeat similar arguments,
fix an arbitrary d ∈ N∗ and set

εd = sup
x,y∈Z, ‖x−y‖≤D/

√
d

|1/f(x)− 1/f(y)| , (18)

which again is well-defined because f is positive and continuous on the compact set Z and so 1/f is uniformly
continuous on Z, which ensures that the supremum is finite. Furthermore, εd → 0 as d→∞.

Fix an arbitrary x0 ∈ Z and choose Pd realizing the infimum for Λµ,d(x0). The polynomial Q2bd3/4/2c : y 7→
Q((y − x0)/D) is the same as in the first part of the proof. The polynomial P = PdQ2bd3/4/2c is of degree

at most d+ bd3/4c and satisfies
P (x0) = 1

|P | ≤ |Pd| on Z

P 2 ≤ 22−
√
d/2 supx∈Z Pd(x)2 on Z \BD/√d(x0).

(19)

As P is feasible one may compute an upper bound for the Christoffel function associated with λ, by:

Λλ,d+bd3/4/2c(x0)

(i)

≤
∫
Z

(P (x))2dλ(x)

(ii)

≤
∫
Z∩B(x0,D/

√
d)

(Pd(x))2

f(x)
dµ(x) + 22−

√
d/2 sup

x∈Z
Pd(x)2

∫
Z\B(x0,D/

√
d)

dλ

(iii)

≤ (1/f(x0) + εd)

∫
Z∩B(x0,D/

√
d)

(Pd(x))2dµ(x) + 22−
√
d/2 sup

z∈Z
(Λµ,d(z))

−1
∫
Z

(Pd(x))2dµ(x)

(iv)

≤
(

1/f(x0) + εd + 22−
√
d/2 sup

z∈Z
(Λµ,d(z))

−1
)∫

Z

(Pd(x))2dµ(x)

=

(
1/f(x0) + εd + 22−

√
d/2 sup

z∈Z
(Λµ,d(z))

−1
)

Λµ,d(x0).

The inequality (i) follows P (x0) = 1, (ii) follows by decomposition of the integral over two domains and
the uniform bounds in (15), (iii) follows by combining (18), Lemma 24 and the fact that λ is a probability
measure on Z, (iv) follows by extending the domain of the first integral and the last identity is due to the
choice of Pd and Lemma 24.

Hence we have,

1

Λµ,d(x0)N(d)
− 1

f(x0)

≤
(

1

f(x0)
+ εd + 22−

√
d/2 sup

z∈Z
(Λµ,d(z))

−1
)

1

Λλ,d+bd3/4c(x0)N(d)
− 1

f(x0)

≤
(
εd + 22−

√
d/2 sup

z∈Z
(Λµ,d(z))

−1
)

1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)

+
1

f(x0)

(
1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)
− 1

)

≤
(
εd + C22−

√
d/2 sup

z∈Z
(Λλ,d(z))

−1
)

1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)

+ C

(
1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)
− 1

)
(20)
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where C = supz∈Z 1/f(z). We have used the fact that for all x ∈ Z, infz∈Z f(z)Λλ,d(x) ≤ Λµ,d(x) and hence

supz∈Z (Λµ,d(z))
−1 ≤ C supz∈Z (Λλ,d(z))

−1
, to obtain the last identity. Now the upper bound in (20) does

not depend on x0 and goes to 0 as d→∞ since as d→∞,

εd → 0,

22−
√
d/2 sup

z∈Z
(Λλ,d(z))

−1 ∼ 22−
√
d/2N(d)→ 0,

1

Λλ,d+bd3/4c(x0)N(d+ bd3/4c)
N(d+ bd3/4c)

N(d)
→ 1.

The first limit is obtained by uniform continuity, the second limit follows from N being polynomial (by
Assumption 21) and the last one also follows from Assumption 21. Therefore:

lim sup
d→∞

sup
x∈Z

1

Λµ,d(x)N(d)
− 1

f(x)
≤ 0, (21)

from which we deduce that

lim inf
d→∞

inf
x∈Z

Λµ,d(x)Nd(Z)− f(x) ≥ 0. (22)

Combining (17) and (22) concludes the proof. �

Remark In the case of the sphere, Assumption 21 does not hold only in the limit and from the proof of
Theorem 22 we are able to obtain explicit quantitative bounds and a convergence rate. Suppose f : Rp → R+

with 0 < c ≤ f ≤ C on Sp−1 and that µ has density f with respect to the uniform measure on the sphere.
In addition, assume that f is L-Lipschitz on the unit ball for some L > 0. Then equation (16) simplifies to:

Λµ,d(x0)N(d)− f(x0) ≤
(

2L√
d

+ 22−
√
d/2N(d)

)
N(d)

N(d− bd3/4/2c)
+ C

(
N(d)

N(d− bd3/4/2c)
− 1

)

and equation (20)

Λµ,d(x0)N(d)− f(x0) ≥ −C2

(
2L√
d

+
22−
√
d/2

c
N(d)

)
N(d+ bd3/4c)

N(d)
+
C2

c

(
N(d+ bd3/4c)

N(d)
− 1

)
.

As a result we obtain the overall convergence rate O(d1/4), which to the best of our knowledge is the first
estimate of this type in this context. We leave for future research the task of improving this rate.

D Numerical experiments

D.1 Rank of the moment matrix

We choose four different subsets of R3:

• The unit cube {x, y, z, |x| ≤ 1, |y| ≤ 1, |z| ≤ 1}.

• The 3 dimensional unit sphere
{
x, y, z, x2 + y2 + z2 = 1

}
.

• The 3 dimensional TV screen
{
x, y, z, x6 + y6 + z6 − 2x2y2z2 = 1

}
.

• The 3 dimensional torus
{
x, y, z,

(
x2 + y2 + z2 + 9

16 −
1
16

)2 − 9
16 (x2 + y2) = 0

}
.

Among the above sets the first one is three dimensional while all the others are 2-dimensional. The 2-
dimensional sets are displayed in Figure 5. For each set, we sample 20000 points on it and compute the rank
of the empirical moment matrix for different values of the degree. To perform this computation, we threshold
the singular values of the design matrix consisting in the expansion of each data point in the multivariate
Tchebychev polynomial basis.
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Figure 5: A visualization of the 2 dimensional surfaces considered in this example, the sphere, the torus and
the TV screen.

D.2 Density estimation on algebraic sets

The following quantities are used in the litteratures as divergences combined with density estimation tech-
niques for the examples treated in the main article.

• The quantity cos(θ1 − θ2) where θ1 and θ2 are angular coordinates of two points on the circle.

• The dot product on the sphere which generalizes the previous situation to larger dimensions, used in
[15].

• The quantity cos
(√

(φ1 − φ2)2 + (ψ1 − ψ2)2
)

where φ1, φ2, ψ1, ψ2 are angles which correspond to points

on the torus in R4, used in [36].

E Perturbation of the moment matrix

The following Lemma describes the effect of small positive semidefinite perturbations of the moment matrix
on the the Christoffel function.

Lemma 23 For a given m ∈ N, let A,M ∈ Rm×m be symmetric semidefinite. Then, for any v ∈ Rm
(uniformly on any compact)

lim
l→0+

inf
x∈Rm

{
xT (M + lA)x s.t.x ∈ Rp, xTv = 1

}
= inf

{
xTMx s.t.x ∈ Rm, xTv = 1

}
.

Proof Since A is positive semidefinite, the left-hand side must be greater than the right-hand side. In
addition, the infimum in the right-hand side is attained at some x∗ which can be used in the right-hand
side to show the result. �

An important example of application of Lemma 23 is the case of a convolution, which corresponds to the
addidtion of noise. Consider the following random process

y = x + ε (23)

where x is distributed according to µ and ε is some independent noise, assumed to be small. This corresponds
to a convolution of the law of x and that of ε. If ‖ε‖∞ is bounded by a small δ, for a given d ∈ N, is it possible
to measure the difference between moments of y and moments of x as a function of ε. The motivation for
studying (23) is from manifold learning or manifold identification, where one considers a cloud of points
which is not supported on an algebraic set because of additive small noise, but possibly very close to an
algebraic set. For illustration purpose, in Figure 6 one observes how the level sets tend to concentrate as the
perturbation gets smaller.
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Figure 6: Small perturbation (23) of a set of points on the circle. The perturbation tends to 0 and the level
sets of the Christoffel function tend to converge to the circle as predicted by Lemma 23.
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F Appendix: Technical Lemmas

We begin with the following simple Lemma.

Lemma 24 Let µ be a Borel probability measure on Rp and S its support which is assumed to be a bouded
subset of Rp. Then for any d ∈ N∗ and for any P ∈ Rd[X],

sup
x∈S
|P (x)|2 ≤ sup

z∈S
Λ−1µ,d(z)

∫
(P (x))2dµ(x).

Proof For any x ∈ S and P ∈ Rd[X], we have

Λµ,d(x) ≤
∫

(P (z))2dµ(z)

P (x)2

and

P (x)2 ≤
∫

(P (z))2dµ(z)

Λµ,d(x)
.

The result follows by considering the suppremum over S on both sides. �

The following Lemma is a quantitative adaptation of [33, Lemma 2.1]

Lemma 25 For any d ∈ N∗ and any δ ∈ (0, 1), there exists a p-variate polynomial of degree 2d, Q, such
that

Q(0) = 1 ; −1 ≤ Q ≤ 1, on B ; |Q| ≤ 21−δd on B \Bδ(0).

Proof Let R be the univariate polynomial of degree 2d, defined by

R : t→ Td(1 + δ2 − t2)

Td(1 + δ2)
,

where Td is the usual Chebyshev polynomial. We have

R(0) = 1. (24)

Furthermore, for t ∈ [−1, 1], we have 0 ≤ 1 + δ2 − t2 ≤ 1 + δ2. Td has absolute value less than 1 on [−1, 1]
and is inceasing on [1,∞) with Td(1) = 1, so for t ∈ [−1, 1],

−1 ≤ R(t) ≤ 1. (25)

For |t| ∈ [δ, 1], we have δ2 ≤ 1 + δ2 − t2 ≤ 1, so

|R(t)| ≤ 1

Td(1 + δ2)
. (26)

Let us bound the last quantity. Recall that for t ≥ 1, we have the following explicit expresion

Td(t) =
1

2

((
t+
√
t2 − 1

)d
+
(
t+
√
t2 − 1

)−d)
.

We have 1 + δ2 +
√

(1 + δ2)2 − 1 ≥ 1 +
√

2δ, which leads to

Td(1 + δ2) ≥ 1

2

(
1 +
√

2δ
)d

(27)

=
1

2
exp

(
log
(

1 +
√

2δ
)
d
)

≥ 1

2
exp

(
log(1 +

√
2)δd

)
≥ 2δd−1,

where we have used concavity of the log and the fact that 1 +
√

2 ≥ 2. It follows by combining (24), (25),
(26) and (27), that Q : y→ R(‖y‖2) satisfies the claimed properties. �
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