A Topological Invariant for Modular Fusion Categories - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

A Topological Invariant for Modular Fusion Categories

Résumé

The modular data of a modular category C, consisting of the S-matrix and the T-matrix, is known to be a incomplete invariant of C. More generally, the invariants of framed links and knots defined by a modular category as part of a topological quantum field theory can be viewed as numerical invariants of the category. Among these invariants, we study the invariant defined by the Borromean link colored by three objects. Thus we obtain a tensor that we call B. We derive a formula for the Borromean tensor for the twisted Drinfeld doubles of finite groups. Along with T , it distinguishes the p non-equivalent modular categories of the form Z(Vec^ω_G) for G the non-abelian group of order pq, which are not distinguished by the modular data.
Fichier principal
Vignette du fichier
paper.pdf (548.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01810449 , version 1 (07-06-2018)
hal-01810449 , version 2 (10-09-2019)
hal-01810449 , version 3 (23-04-2021)

Identifiants

Citer

Ajinkya Kulkarni, Michaël Mignard, Peter Schauenburg. A Topological Invariant for Modular Fusion Categories. 2021. ⟨hal-01810449v3⟩
413 Consultations
171 Téléchargements

Altmetric

Partager

More