Longest increasing paths with gaps - Archive ouverte HAL
Article Dans Une Revue ALEA : Latin American Journal of Probability and Mathematical Statistics Année : 2019

Longest increasing paths with gaps

Résumé

We study a variant of the continuous and discrete Ulam-Hammersley problems. We obtain the limiting behaviour of the maximal length of an increasing path through a Poisson point process (or a Bernoulli point process) with the restriction that there must be minimal gaps between abscissae and ordinates of successive points of the path. We also establish that, as in the classical Ulam-Hammersley problem, the fluctuations around the mean are given by the Tracy-Widom distribution.
Fichier principal
Vignette du fichier
SubsequenceWithGapsHAL.pdf (570.48 Ko) Télécharger le fichier

Dates et versions

hal-01796897 , version 1 (22-05-2018)
hal-01796897 , version 2 (25-02-2019)

Identifiants

Citer

Anne-Laure Basdevant, Lucas Gerin. Longest increasing paths with gaps. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2019, 16 (2), pp.1141. ⟨10.30757/alea.v16-43⟩. ⟨hal-01796897v1⟩
256 Consultations
139 Téléchargements

Altmetric

Partager

More