Unsupervised pedestrian trajectory reconstruction from IMU sensors - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Unsupervised pedestrian trajectory reconstruction from IMU sensors

Résumé

This paper presents a pedestrian navigation algorithm based on a foot-mounted 9DOF Inertial Measurement Unit, which provides accelerations, angular rates and magnet-ics along 3-axis during the motion. Most of algorithms used worldwide are based on stance detection to reduce the tremendous integration errors, from acceleration to displacement. As the crucial part is to detect stance phase precisely, we introduced a cyclic left-to-right style Hidden Markov Model that is able to appropriately model the periodic nature of signals. Stance detection is then made unsupervised by using a suited learning algorithm. Then, assisted by a simplified error-state Kalman filter, trajectory can be reconstructed. Experimental results show that the proposed algorithm can provide more accurate location, compared to competitive algorithms, w.r.t. ground-truth obtained from OpenStreet Map.
Fichier principal
Vignette du fichier
PedestrianNavig_TAIMA2018.pdf (1.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01786223 , version 1 (05-05-2018)

Identifiants

  • HAL Id : hal-01786223 , version 1

Citer

Stéphane Derrode, Haoyu Li, Lamia Benyoussef, Wojciech Pieczynski. Unsupervised pedestrian trajectory reconstruction from IMU sensors. TAIMA 2018: Traitement et Analyse de l'Information Méthodes et Applications, Apr 2018, Hammamet, Tunisia. ⟨hal-01786223⟩
317 Consultations
738 Téléchargements

Partager

More