Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals

Résumé

Let A, B ∈ K[X, Y] be two bivariate polynomials over an effective field K, and let G be the reduced Gröbner basis of the ideal I ≔ ⟨A, B⟩ generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm for the reduction of P ∈ K[X, Y] modulo G, where "quasi-optimal" is meant in terms of the size of the input A, B, P. Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra A ≔ K[X, Y]/⟨A, B⟩, both in quasi-linear time. Moreover, we show that G itself can be computed in quasi-linear time with respect to the output size.
Fichier principal
Vignette du fichier
ggg.pdf (621.53 Ko) Télécharger le fichier
implementation.zip (26.7 Ko) Télécharger le fichier
Format Autre
Origine Fichiers produits par l'(les) auteur(s)
Commentaire proof-of-concept implementation
Loading...

Dates et versions

hal-01770408 , version 1 (19-04-2018)
hal-01770408 , version 2 (01-02-2019)
hal-01770408 , version 3 (28-11-2020)

Identifiants

Citer

Joris van der Hoeven, Robin Larrieu. Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals. 2019. ⟨hal-01770408v2⟩

Collections

UNIV-PARIS-SACLAY
533 Consultations
1110 Téléchargements

Altmetric

Partager

More