Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals - Archive ouverte HAL
Article Dans Une Revue Applicable Algebra in Engineering, Communication and Computing Année : 2019

Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals

Résumé

Let A, B ∈ K[X, Y] be two bivariate polynomials over an effective field K, and let G be the reduced Gröbner basis of the ideal I ≔ ⟨A, B⟩ generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm for the reduction of P ∈ K[X, Y] modulo G, where "quasi-optimal" is meant in terms of the size of the input A, B, P. Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra A ≔ K[X, Y]/⟨A, B⟩, both in quasi-linear time. Moreover, we show that G itself can be computed in quasi-linear time with respect to the output size.
Fichier principal
Vignette du fichier
ggg.pdf (266.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01770408 , version 1 (19-04-2018)
hal-01770408 , version 2 (01-02-2019)
hal-01770408 , version 3 (28-11-2020)

Identifiants

Citer

Joris van der Hoeven, Robin Larrieu. Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals. Applicable Algebra in Engineering, Communication and Computing, 2019, 30, pp.509-539. ⟨10.1007/s00200-019-00389-9⟩. ⟨hal-01770408v3⟩
533 Consultations
1110 Téléchargements

Altmetric

Partager

More