
HAL Id: hal-01770408
https://hal.science/hal-01770408v2

Preprint submitted on 1 Feb 2019 (v2), last revised 28 Nov 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Gröbner basis computation and polynomial
reduction for generic bivariate ideals

Joris van der Hoeven, Robin Larrieu

To cite this version:
Joris van der Hoeven, Robin Larrieu. Fast Gröbner basis computation and polynomial reduction for
generic bivariate ideals. 2019. �hal-01770408v2�

https://hal.science/hal-01770408v2
https://hal.archives-ouvertes.fr

Fast Gröbner basis computation and
polynomial reduction for generic bivariate ideals

JORIS VAN DER HOEVENa, ROBIN LARRIEUb

Laboratoire d'informatique de l'École polytechnique
LIX, UMR 7161 CNRS

Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
a. Email: vdhoeven@lix.polytechnique.fr
b. Email: larrieu@lix.polytechnique.fr

Preliminary version of January 28, 2019

Let A,B∈𝕂[X,Y] be two bivariate polynomials over an effective field 𝕂, and let G be the reduced
Gröbner basis of the ideal I ≔ ⟨A, B⟩ generated by A and B with respect to the usual degree lex-
icographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm
for the reduction of P∈ 𝕂[X, Y] modulo G, where “quasi-optimal” is meant in terms of the size
of the input A, B, P. Immediate applications are an ideal membership test and a multiplication
algorithm for the quotient algebra 𝔸≔ 𝕂[X, Y]/⟨A, B⟩, both in quasi-linear time. Moreover, we
show that G itself can be computed in quasi-linear time with respect to the output size.

KEYWORDS: polynomial reduction; Gröbner basis; complexity; algorithm
A.M.S. SUBJECT CLASSIFICATION: 13P10

1. INTRODUCTION

Gröbner bases are a powerful tool for solving systems of polynomial equations, or to compute
modulo polynomial ideals. The research area dedicated to their computation is very active, and
there is an abundant literature on efficient algorithms for this task. See for example [5, 6, 8] and
references therein. Although this problem requires exponential space in the worst case [22], it
is in fact tractable for many practical instances. For example, computer algebra systems often
implement one of Faugère's F4 or F5 algorithms [5, 6] that are very efficient if the system has
sufficient regularity. A polynomial complexity bound for the F5 algorithm was established in [1],
when counting the number of field operations in terms of the expected output size.

The F4 and F5 algorithms and all other currently known fast algorithms for Gröbner basis
computations rely on linear algebra, and it may seem surprising that quasi-optimal FFT-based
polynomial arithmetic is not used in this area. This can be seen as an illustration of how diffi-
cult it is to compute Gröbner bases, but there is another explanation: traditionally, Gröbner basis
algorithms consider a large number of variables and the degree of the generating polynomials
is kept small; but fast polynomial arithmetic works best in the opposite regime (a fixed number
of variables and large degrees). Even in this setting, it is not clear how to use FFT techniques for
Gröbner basis computation.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=13P10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=13P10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=13P10&submit=Search

Operation Our paper Previous best
Deglex Gröbner basis G O(R(m2)+R(nm)n log n)= Õ(|A,B,G|) O(n2R(nm))
Structure of 𝕂[X,Y]/⟨A,B⟩ O(R(m2)+M(nm) log n)= Õ(|A,B|) O(n2R(nm))
Reduction of P with deg P=d O(R(d2)+R(nm) log n)= Õ(|P|+D) O(R(d2)+nR(nm))
Multiplication in 𝕂[X,Y]/⟨A,B⟩ O(R(nm) log n)= Õ(D) O(nR(nm))

Table 1. Asymptotic complexities for various problems on the ideal ⟨A, B⟩, assuming n≔ deg A ⩽ m≔ deg B.
The notations M and R represent cost functions for multiplication and relaxed multiplication respectively (see
section 3). In the last two rows, for the computation of normal forms and multiplication in 𝕂[X,Y]/⟨A,B⟩, we
assume that the structure of 𝕂[X,Y]/⟨A, B⟩ has been precomputed using the algorithm from the second row.
Notice that the algorithm for fast reduction from the third line also yields an ideal membership test and an
algorithm to compute normal forms modulo ⟨A,B⟩.

As a first step, one may consider related problems, such as the reduction of multivariate poly-
nomials. Given a Gröbner basis G≔ (G0, …, Gn), we wish to reduce a polynomial P with respect
to G, that is find (Q0,…,Qn,R) such that P=Q0G0 +⋯+Qn Gn +R and R cannot be further reduced.
It was shown in [17] that reduction can be done in quasi-linear time with respect to the size of
the equation P=Q0 G0+⋯+Qn Gn+R. Using standard Gröbner basis techniques (see sections 2
and 6.2), this leads to the complexities announced in the last column of Table 1 for various other
operations.

Unfortunately, the equation P =Q0 G0 +⋯ +Qn Gn +R is in general much larger than the
intrinsic complexity of the problem, given by the size of P and the degree D of the ideal (which
is linked to the size of the generating polynomials). Recent work in the bivariate setting [18]
gave an asymptotically optimal reduction algorithm for a particular class of Gröbner bases. This
algorithm relies on a terse representation of G≔(G0,…,Gn) in Õ(D) space, where Õ stands for the
“soft Oh” notation (that hides poly-logarithmic factors) [12, Section 25.7]. Assuming that this rep-
resentation has been precomputed, the extended reduction can be performed in time Õ(|P|+D),
instead of the previous Õ(|P|+ |G|) where |G|=Θ(nD).

Instead of making regularity assumptions on the Gröbner basis itself, one may focus on the
generating polynomials. If the ideal is defined by generic polynomials given in total degree, then
the Gröbner basis presents a particular structure, as studied for example in [11, 10, 23]. This situ-
ation is often used as a benchmark for polynomial system solving: see the PoSSo problem [7]. In
this paper, we restrict ourselves to the bivariate case, as studied for example in [21].

In what follows, A,B∈𝕂[X,Y] are generic polynomials of degree n,m respectively. We denote
by ⟨A,B⟩ the ideal they generate, and we consider its Gröbner basis with respect to the graded lexi-
cographic order. Under these very particular assumptions, it turns out that determining a Gröbner
basis essentially boils down to a univariate gcd computation. More precisely, the computation
of the gcd of the two leading diagonals gives us the necessary information to define and compute
a concise representation for a Gröbner basis of ⟨A,B⟩. We show that the computation of a Gröbner
basis in this representation can be done in quasi-linear time Õ(D) and the same holds for the
reduction of a polynomial with respect to the Gröbner basis. Combining these two algorithms,
we obtain an ideal membership test P ∈? ⟨A, B⟩ in quasi-linear time Õ(|P|+D). Similarly, mul-
tiplications in the quotient algebra 𝔸 ≔ 𝕂[X,Y]/⟨A,B⟩ can be done with the same complexity.
Finally, we show that the reduced Gröbner basis in the classical sense can be computed in quasi-
linear time with respect to the output size Θ(Dmin(n, m)). Our complexity results are summa-
rized in Table 1.

2 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

The concept of a concise representation of Gröbner bases bears some similarities with the
terse representations from [18]. Nevertheless, under more restrictive assumptions, the results
in the present paper are considerably stronger: contrary to [18], our complexity bounds do not
rely on potentially expensive precomputations. In fact, we show how to compute a Gröbner basis
for ⟨A,B⟩ in quasi-linear time. See section 2.5 for more details on the differences with [18].

Structure of the paper. Section 2 gives a general overview, with the hypotheses and the main
ideas of our algorithm. In section 3, we recall the complexities for some fundamental operations
on polynomials. The structure and the computation of the concise representation are presented in
section 4, then the reduction algorithm is detailed in section 5. In section 6, we give the algorithms
for the ideal membership, multiplication in 𝕂[X, Y]/⟨A, B⟩ and the reduced Gröbner basis. For
convenience of the reader, sections 5 and 6 actually present simplified variants of our algorithms
with complexities that are slightly weaker than those in Table 1. In section 7, we detail the tech-
nical changes that are needed to obtain the announced results in full generality.

Notations and terminology. We assume that the reader is familiar with the theory of Gröbner
bases and refer to [12, 2] for basic expositions. We denote the set of monomials in r variables by
ℳ ≔ {X1

i1 ⋯ Xr
ir: i1, …, ir ∈ ℕ}. A monomial ordering ≺ on ℳ is a total ordering that is compatible

with multiplication. Given a polynomial in r variables P=∑M∈ℳ PMM∈𝕂[X1,…,Xr], its support
supp P is the finite set of monomials M∈ℳ with PM ≠0. If P≠0, then supp P admits a maximal
element for ≺ that is called its leading monomial and that we denote by lm(P). If M∈supp P, then
we say that PM M is a term in P. Given a tuple A=(A0,…,An) of polynomials in 𝕂[X1,…,Xr], we
say that P is reduced with respect to A if supp P contains no monomial that is a multiple of the
leading monomial of one of the Ai.

Unless stated otherwise, we will always work in the bivariate setting when r = 2, and use
X and Y as our main indeterminates instead of X1 and X2. In particular, ℳ ≔ {Xa Yb : a,b∈ℕ}.
Moreover, we only consider the usual degree lexicographic order with X≺Y, that is

Xa Yb ≺XuYv ⇔a+b<u+v or (a+b=u+v and b<v).

Acknowledgements. We thank Vincent Neiger for a remark that simplified Algorithm 6. We also
thank the anonymous referees for helpful comments and suggestions.

2. PRESENTATION OF THE SETTING

2.1. Reduced Gröbner bases
We consider an ideal I ⊂𝕂[X, Y] generated by two generic polynomials A,B of total degree n,m
and we assume n⩽m. Here the adjective “generic” should be understood as “no accidental can-
cellation occurs during the computation”. This is typically the case if A,B are chosen at random:
assuming that 𝕂 has sufficiently many elements, the probability of an accidental cancellation is
small. In this generic bivariate setting, a clever application of Buchberger's algorithm [3] gives the
reduced Gröbner basis Gred =(G0

red,…,Gn
red) of I with respect to ≺ as follows:

• Set G1
red ≔B rem A and G0

red ≔A rem G1
red.

• Gi
red ≔Spol(Gi−2

red,Gi−1
red) rem (G0

red,…,Gi−1
red) for i=2,…,n.

• For all i=0,…,n, divide Gi
red by its leading coefficient to make it monic.

It is well known [11] that the Gröbner stair has steps of height 1, so the algorithm stops when
i=n=deg A, or equivalently when the leading term of Gi

red is a power of X. It can also be checked
that the width of each step is 2, except for the first one that has width n − m+ 1. In other words,

JORIS VAN DER HOEVEN, ROBIN LARRIEU 3

the leading monomials lm(Gi
red) of the Gi

red are given by
lm(G0

red) = Yn (1)
lm(Gi

red) = Xm−n−1+2i Yn−i, i=1,…,n. (2)
There are n m monomials under the stairs; since the Bézout bound is reached for generic ideals,
this ensures that Gred is indeed a reduced Gröbner basis.

2.2. From Euclidean division to Gröbner bases
Let us now show how to construct another (non-reduced) Gröbner basis G=(G0,…,Gn) with even
simpler recurrence relations. These recurrence relations will be one ingredient of our fast reduc-
tion algorithm.

DEFINITION 1. For a polynomial P = ∑ Pi, j X i Y j ∈ 𝕂[X, Y] of total degree d, we define its dominant
diagonal Diag(P)∈𝕂[Z] by Diag(P)=∑j⩽d Pd− j, j Z j.

We have the trivial properties that Diag(XP)=Diag(P) and Diag(YP)=ZDiag(P). For generic
A and B, the diagonals Diag(A) and Diag(B) are also generic. Applying the Euclidean algorithm
to these diagonals, it follows that the successive remainders follow a “normal sequence”, i.e. their
degrees decrease by exactly one at each step.

Now consider the sequence G0,…,Gn with n=deg A defined by
G0 ≔ A (3)
G1 ≔ B rem A (4)
Gi ≔ Xdi Gi−2− (ui Y+vi X)Gi−1, i=2,…,n, (5)

where
ui Z+vi ≔ Diag(Gi−2) quo Diag(Gi−1), di ≔ {{{{{{{{{{{{{{{{{{{{{{{{ m−n+1 if i=2

2 if i>2 .

Let us first notice that the term XdiGi−2−uiYGi−1 corresponds to the S-polynomial of Gi−2 and Gi−1,
as in the classical Buchberger algorithm. Setting Di ≔Diag(Gi) for i=0,…,n, we next observe that

D1 = Diag(B) rem Diag(A)
Di = Di−2 rem Di−1, i=2,…,n,

so the diagonals are the successive remainders in the Euclidean algorithm and the corresponding
quotients indeed all have degree 1. By induction on i, we deduce:

LEMMA 2. The Gi as in (3–5) have the same leading monomials (1–2) as the Gi
red, so G≔ (G0, …, Gn) is

a Gröbner basis of ⟨A,B⟩ with respect to ≺.

COROLLARY 3. Any P∈𝕂[X,Y] has the same normal form with respect to G and Gred.

Remark 4. The genericity assumptions on A and B can also be made more precise now: on the
one hand, we need that deg Di =n− i for i=0,…,n and deg Gi =m+ i−1 for i=1,…,n. On the other
hand, we need X2 Gn−1 − (un Y + vn X) Gn to reduce to zero with respect to G, where un Z + vn ≔
Dn−1 quo Dn. This in particular provides us with an a posteriori sanity check for ensuring that the
genericity assumptions are indeed satisfied.

2.3. Examples
Example 5. Consider A≔Y+ aX+b and B≔Y4 +⋯, then we have G0=Y+ aX+b and G1 =B(X,
−aX−b)=cX4+⋯ for some c. The sequence stops here since n≔deg A=1. Notice that (G0,G1/c)
is actually the reduced Gröbner basis in this case.

4 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

G0
red G1

red G2
red G3

red G4
red G5

red

G11
redG10

redG9
redG8

redG6
red G7

red

G0

G6

G1 G2 G3 G4 G5

G7 G8 G9 G10 G11

Figure 1. The difference between the reduced Gröbner basis (above) and the non-reduced one obtained as
in (3–5) (below).

Example 6. Consider A = Y4 − 3 X Y3 + X2 Y2 − 3 X3 Y + 5 X4 + 3 Y3 + 2 X Y2 − 3 X2 Y − 4 X3 and B =
Y4+2XY3 −3X2Y2+4X3Y−3X4−5Y3 −3XY2+5X2 Y−5X3 over the field ℤ/11ℤ. The reader's
favourite computer algebra system gives the following reduced Gröbner basis:

G0
red = Y4 +3X2 Y2 −X3Y−2X4 −4Y3−XY2+4X2Y+2X3,

G1
red = XY3−3X2Y2−3X3Y+5X4 +5Y3−XY2−5X2Y+2X3,

G2
red = X3 Y2 −2X4 Y+4X5+3X2Y2 −5X3 Y−3X4+Y3 −3XY2−X2 Y−5X3,

G3
red = X5 Y−X6 −4X4 Y−4X5−5X2Y2 −3X3 Y−4X4+Y3 +5XY2−X2 Y+X3,

G4
red = X7 −5X6 −5X4 Y+2X5+5X2Y2 −X3Y−X4−3Y3−4XY2 +3X2 Y−3X3.

Computing the Gi as in (3–5), we obtain

G0 = Y4 −3XY3+X2 Y2 −3X3 Y+5X4+3Y3+2XY2 −3X2 Y−4X3,
G1 = 5XY3 −4X2 Y2 −4X3 Y+3X4+3Y3−5XY2 −3X2 Y−X3,
G2 = 4X3Y2+3X4Y+5X5 −5Y4 +4XY3−4X2Y2−5X3Y−4X4,
G3 = −X5 Y+X6 −2Y5 −3XY4+2X2Y3−X3 Y2 +4X4 Y+5X5,
G4 = X7 +3Y6 −4XY5+4X2Y4+3X3Y3+5X4Y2−X5 Y−2X6.

Notice that Gi and Gi
red have the same leading monomial, so G ≔ (G0, …, G4) is a Gröbner basis

as well. However, it is not reduced: G4 contains the term 3 Y6, which is divisible by the leading
monomial of G0 =Y4+⋯.

Example 7. Figure 1 shows a schematic representation of the behavior when A and B have
degree 11; this is the example that we will use in the rest of the paper. The black dots (•) rep-
resent the supports of the polynomials, while the larger white dots (◯) give the shapes of the
Gröbner stairs. Notice again that Gi and Gi

red have the same leading monomial.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 5

Remark 8. The second example already involves a lot of coefficients, even for the modest degree 4.
Such low degrees are not sufficient to convey the main ideas of our method. For this reason,
we are unable to produce meaningful examples for which all coefficients are given explicitly.
We therefore chose to present our running example (Example 7) in a more schematic form.

2.4. Key ingredients for our algorithms
The main obstruction for a quasi-linear reduction algorithm is the size of the Gröbner basis: if
both A and B have degree n, then the Gröbner basis requires Θ(n3) space, whereas the intrinsic
complexity of the problem is given by the size of A and B, that is only Θ(n2). To achieve Õ(n2)
complexity bounds, we cannot afford to explicitly store and manipulate the entire Gröbner basis,
so we must find a way to compress the relevant information. Our technique is based on the fol-
lowing three ingredients (more details are given in section 4):

• The first idea is to control the degrees of the quotients using a so-called dichotomic selection
strategy. When reducing a multivariate polynomial, its terms are reduced one after the
other against some basis element. There may be several possibilities to choose this basis
element and in this case, the usual strategy is to select the first valid choice; however, this
method gives quotients with roughly the same degree. On the contrary, with the strategy
detailed in section 4.1, most quotients are very small and only a few have a potentially high
degree.

• Secondly, the basis elements are truncated to an appropriate precision according to the degree
bounds established before. The goal is to keep as little information as possible and still be
able to perform the operation efficiently. Roughly speaking, if we know that deg Qi⩽𝛿, then
Qi depends only on the terms of Gi with degree at least deg Gi −𝛿 and the remaining terms
may be discarded. This constitutes the first part of the concise representation for a Gröbner
basis, defined more precisely in section 4.2.

• The third idea is to rewrite the equation P = Q0 G0 + ⋯ + Qn Gn + R to ensure that the final
result is correct despite the aforementioned truncations. This is done by keeping track of
the relations that exist among the Gi: recall that G contains far more coefficients than A
and B, so there must be some redundancy. A well chosen, sufficiently small subset of these
relations constitute the second part of the concise representation: see section 4.2.

2.5. Comparison with terse representations of vanilla Gröbner bases
As mentioned in the introduction, it was already shown in [18] that reduction is possible in quasi-
linear time with respect to a certain class of so-called vanilla Gröbner bases, through the use of
so-called terse representations of such Gröbner bases. While many of the techniques are similar,
there are also fundamental differences between the two settings. For the interested reader who
is familiar with [18], let us briefly outline these differences. Notice that this subsection can safely
be skipped.

The first difference concerns the kind of genericity assumptions that we make. In the case of
vanilla Gröbner bases, the following assumptions are made on the basis itself :

1. The shape of the Gröbner stairs must be regular: the monomials below it are the minimal
elements with respect to the monomial ordering to be considered.

2. Suitable relations exist among the basis elements (similar to the ones mentioned in the
third ingredient in section 2.4).

6 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

In the present paper, the genericity hypotheses are made on the two generators of the ideal. Whereas
various weighted degree orders can be considered for vanilla Gröbner bases, we crucially require
the degree lexicographic order in this paper.

The vanilla situation appears to be generic: for various types of generators and for various
term orders, if two generators are picked at random, then the Gröbner basis is vanilla. How-
ever, if two random generators are given for the usual total degree, then the deglex basis is not
vanilla, because the shape of the stairs does not match. This means the results from [18] do not
apply in the setting of this paper, and conversely the results of this paper do not apply for vanilla
Gröbner bases.

The concise representation from section 4.2 is also somewhat different from its terse analogue
for vanilla bases. Whereas we give an efficient quasi-linear algorithm for the computation of con-
cise representations, terse representations are only assumed to exist (by the vanilla hypothesis),
so we rather precompute them (using some algorithm that may not run in quasi-linear time). For
this reason, the algorithms in this paper run in quasi-linear time, whereas the reduction algorithm
from [18] only runs in quasi-linear time modulo suitable precomputations.

3. ALGORITHMIC PREREQUISITES

In this section, we quickly review some basic complexities for fundamental operations on polyno-
mials over a field 𝕂. Notice that results presented in this section are not specific to the bivariate
case. Running times will always be measured in terms of the required number of field operations
in 𝕂.

3.1. Polynomial multiplication
We denote byM(d) the cost of multiplying two dense univariate polynomials of degree d in 𝕂[X].
Over general fields 𝕂, one may take [25, 24, 4]

M(d) = O(d log d log log d).

In the case of fields of positive characteristic, one may even take [14, 15]

M(d) = O�d log d4log ∗d�
log∗ d = min�k∈ℕ:�log∘…k× ∘ log�(d)⩽1�.

We make the customary assumptions that Μ(d)/d is increasing and that M(2d)=O(M(d)), with
the usual implications, such as Μ(d)+Μ(e)�Μ(d+ e).

For multivariate polynomials, the cost of multiplication depends on the geometry of the sup-
port. The classical example involves dense “block” polynomials in 𝕂[X1,…,Xr] of degree <di
in each variable Xi. This case can be reduced to multiplication of univariate polynomials of
degree <2r−1d1 ⋯dr using the well known technique of Kronecker substitution [12, Section 8.4].
More generally, for polynomials such that the support of the product is included in an initial seg-
ment with d elements, it is possible to compute the product in time O(M(d)) [19]. Here an initial
segment of ℳ is a (finite) subset 𝒮 such that for any monomial M∈𝒮, all its divisors are again in 𝒮.

For the purpose of this paper, we need to consider dense polynomials P in 𝕂[X,Y] whose sup-
ports are contained in sets of the form Sl,h≔ {M∈ℳ: l⩽deg M⩽h}. Modulo the change of variables
Xa Yb →Th−a−b U b, such a polynomial can be rewritten as P(X,Y)= P̃(T,U), where the support
of P̃ is an initial segment with the same size as Sl,h. For a product of two polynomials of this
type with a support of size d, this means that the product can again be computed in time O(M(d)).

JORIS VAN DER HOEVEN, ROBIN LARRIEU 7

3.2. Relaxed multiplication
For the above polynomial multiplication algorithms, we assume that the input polynomials are
entirely given from the outset. In specific settings, the input polynomials may be only partially
known at some point, and it can be interesting to anticipate the computation of the partial output.
This is particularly true when working with (truncated) formal power series f = f0 + f1 z + ⋯ ∈
𝕂[[z]] instead of polynomials, where it is common that the coefficients are given as a stream.

In this so-called “relaxed” (or “online”) computation model, the coefficient (f g)d of a pro-
duct of two series f ,g∈𝕂[[z]] must be output as soon as f0, …, fd and g0, …, gd are known. This
model has the advantage that subsequent coefficients fd+1, fd+2, … and gd+1,gd+2,… are allowed
to depend on the result (f g)d. This often allows us to solve equations involving power series f
by rewriting them into recursive equations of the form f = Ψ(f), with the property that the coeffi-
cient Ψ(f)d+1 only depends on earlier coefficients f0,…, fd for all d. For instance, in order to invert
a power series of the form 1+ zg with g∈𝕂[[z]], we may take Ψ(f)=1− z fg. Similarly, if 𝕂 has
characteristic zero, then the exponential of a power series g∈𝕂[[z]] with g0=0 can be computed
by taking Ψ(f)=1+∫ f g′.

From a complexity point of view, let R(d) denote the cost of the relaxed multiplication of two
polynomials of degree <d. The relaxed model prevents us from directly using fast “zealous” mul-
tiplication algorithms from the previous section that are typically based on FFT-multiplication.
Fortunately, it was shown in [16, 9] that

R(d)=O(M(d) log d). (6)

This relaxed multiplication algorithm admits the advantage that it may use any zealous multipli-
cation as a black box. Through the direct use of FFT-based techniques, the following bound has
also been established in [20]:

R(d)=d log deO� loglogd� �.

We make the same classical assumptions (R(d)/d is increasing andR(2d)=O(R(d))) as for classical
multiplication; this implies in particular that R(d)+R(e)⩽R(d+ e). It is also natural to assume
that M(d)⩽R(2d), since ordinary multiplications can be done in a relaxed manner.

3.3. Polynomial reduction
Let us now consider a Gröbner basis of an ideal in 𝕂[X1, …, Xr], or, more generally, an auto-
reduced tuple A= (A0, …, An) of polynomials in 𝕂[X1,…, Xr]. Then for any P ∈𝕂[X1, …,Xr], we
may compute a relation

P=Q0 A0+⋯+Qn An +R

such that R is reduced with respect to A. We call (Q0, …, Qn, R) an extended reduction of P with
respect to A.

The computation of such an extended reduction is a good example of a problem that can be
solved efficiently using relaxed multiplication and recursive equations. For a multivariate poly-
nomial T with dense support of any of the types discussed in section 3.1, let |T| denote a bound for
the size of its support. With R(d) as in (6), it has been shown1 in [17] that the quotients Q0,…,Qn
and the remainder R can be computed in time

R(|Q0A0|)+⋯+R(|QnAn|)+O(|R|). (7)

1. The results from [17] actually apply for more general types of supports, but this will not be needed in this paper.

8 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

This implies in particular that the extended reduction can be computed in quasi-linear time in the
size of the equation P= Q0 A0 +⋯+ Qn An +R. However, as pointed out in the introduction, this
equation is in general much larger than the input polynomial P.

Extended reductions (Q0,…,Qn,R) are far from being unique (only R is unique, and only if A
is a Gröbner basis). The algorithm from [17] for the computation of an extended reduction relies
on a selection strategy that uniquely determines the quotients. More precisely, for every monomial
M∈ℳ , we define the set ℐM ≔{i∈{0,…,n}: lm(Ai) |M}; then we need a rule to chose a particular
index iM ∈ℐM (assuming ℐM is non-empty). The initial formulation [17] used the simplest such
strategy by taking iM = min ℐM, but the complexity bound (7) holds for any selection strategy.
Now the total size of all quotients Q0,…,Qn may be much larger than the size of P for a general
selection strategy. As already mentioned in section 2.4, one of the key ingredients of the fast
reduction algorithm in this paper is the careful design of a “dichotomic selection strategy” that
enables us to control the degrees of the quotients.

Remark 9. The notion of selection strategy is somewhat similar to the concept of involutive division
introduced for the theory of involutive bases [13], although our definition is more permissive.

4. CONCISE GRÖBNER BASES

The ideal ⟨A, B⟩ has a degree D≔ n m and both the reduced Gröbner basis Gred and the Gröbner
basis G defined by (3–5) take space Θ(nD). The aim of this section is to present an alternative, so-
called concise representation for G that only takes space Õ(D) and that can be computed in quasi-
linear time Õ(D) from the generators A and B. We will say that G is a concise Gröbner basis, when
using this representation. In the next section, we will see that the reduction of a polynomial with
respect to a concise Gröbner basis can also be done in quasi-linear time.

4.1. The dichotomic selection strategy

Consider the extended reduction of a polynomial P with respect to our Gröbner basis G:

P=Q0G0 +⋯+QnGn+R.

Recall from section 3.3 that the remainder R is unique, but that the quotients Q0,…,Qn may depend
on the particular “selection strategy” that we use for our reduction.

For each monomial M∈ℳ, the selection strategy should specify the index i= iM such that M
will be reduced against Gi (we set iM = −1 if there is no suitable index). Such a selection strategy
naturally extends to terms 𝜏 = c M and determines a pair ΦG(𝜏) = (iM, 𝜏/lt(GiM)) if iM ≠ −1 and
ΦG(𝜏) = (−1, 𝜏) otherwise (here we wrote lt(GiM) for the leading term of GiM). Intuitively, if
ΦG(𝜏)=(i,𝜏′), then the term 𝜏 is reduced against Gi and leads to the term 𝜏′ in Qi. The case
i= −1 corresponds to monomials that are already in normal form with respect to G, which leads
to the term 𝜏 in the remainder R.

Now for the design of fast reduction algorithms, it is essential to control the degrees of the
quotients Qi. This motivates the introduction of the following dichotomic selection strategy. Recall
that the 2-adic valuation of an integer i is the largest 𝜆 ∈ ℕ such that 2𝜆 divides i; we will write
𝜆=val2(i). The idea is to reduce each monomial preferably against one end of the Gröbner basis

JORIS VAN DER HOEVEN, ROBIN LARRIEU 9

0

2
4

6
8

n

Figure 2. The dichotomic selection strategy for deg A=deg B=11. Monomials falling in each area are reduced
against the corresponding basis element. Monomials marked by an asterisk () are already reduced.

(G0 or Gn), or the Gi such that i has the highest 2-adic valuation. More precisely, the selection
strategy is determined by the following function ΦG on terms:

ΦG(𝜏)≔

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{
{ (0,𝜏/lt(G0)) if lt(G0) divides 𝜏

(n,𝜏/lt(Gn)) if lt(Gn) divides 𝜏 (and lt(G0) does not)
(i,𝜏/lt(Gi)) if lt(Gi) divides 𝜏 with val2(i) maximal
(−1,𝜏) if no lt(Gi) divides 𝜏

Notice that this definition is non-ambiguous: there is only one index i with val2(i) maximal such
that lt(Gi) divides 𝜏. Indeed, if i< j have the same valuation 𝜆, then there is some k with i< k< j
and val2(k)>𝜆. Moreover, if lt(Gi) and lt(Gj) both divide 𝜏, then so does lt(Gk).

This dichotomic selection strategy is illustrated in Figure 2. Again, the white dots (◯) repre-
sent the leading term of each basis element. The asterisks () below the stairs denote monomials
that are already in normal form with respect to G (i.e. the canonical basis of 𝔸 ≔ 𝕂[X, Y]/I).
Finally, the areas above the stairs are the sets of terms that will be reduced against each given basis
element: the area labelled with the number i contains the monomials that are reduced against Gi.
With this selection strategy, most quotients have a very small degree:

LEMMA 10. Let (i,𝜏 ′)≔ΦG(𝜏). If 0< i<n, then deg(𝜏′)<3×2val2(i)−1.

Proof. Let cXa Yb ≔𝜏′ and ℓ≔2val2(i). Recall that lm(G0)=Yn and for 0< i⩽n, we have lm(Gi)=
Xm−n−1+2iYn−i. Then we observe that b<ℓ: otherwise lt(Gi−ℓ) would divide 𝜏, whereas val2(i−ℓ)>
val2(i). A similar reasoning with Gi+ℓ (or Gn, whenever i+ℓ>n) shows that a<2ℓ. □

4.2. Concise representations of Gröbner bases
In section 2, we defined the basis G using the recurrence relation Gk+2 = Uk Gk + Vk Gk+1 for
k=0,…,n−2. From this, it is easy to deduce higher order recurrence relations Gk+ℓ = Uk,ℓ Gk +
Vk,ℓ Gk+1 for any k and ℓ with k+ℓ⩽n. It is convenient to write such recurrences in matrix form

((((((((((((Gk+ℓ
Gk+ℓ+1))))))))))))=Mk,ℓ((((((((((((Gk

Gk+1)))))))))))), (8)

10 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

where, by convention, Gn+1≔0 to avoid case distinction. This presentation has the advantage that
the Mk,ℓ can be computed from one another using Mk,ℓ+t = Mk+ℓ,t Mk,ℓ. Moreover, the size of the
coefficients of the Mk,ℓ can be controlled as a function of k, ℓ. Notice that similar matrices appear
in the half gcd algorithm [12, Chapter 11], which is the fastest known method for the computation
of gcds.

DEFINITION 11. For k=2,…,n, let ukZ+vk ≔Dk−2 quo Dk−1 be the successive quotients in the Euclidean
algorithm for the dominant diagonals D0 ≔Diag(G0) and D1 ≔ Diag(G1) (as in section 2). For each k, ℓ
with k+ℓ⩽n, define the matrix Mk,ℓ by

M0,1 ≔ ((((((((((((((
0 1

Xm−n+1 −u2Y−v2 X)))))))))))))),

Mk,1 ≔ ((((((((((((((
0 1

X2 −uk+2Y−vk+2 X)))))))))))))), for 0<k<n−1,

Mn−1,1 ≔ ((((((((((((0 1
0 0)))))))))))),

Mk,ℓ+1 ≔ Mk+ℓ,1 Mk,ℓ.

PROPOSITION 12. Let the matrices Mk,ℓ be as in Definition 11. For all i,k with i+ k⩽n, we then have

((((((((((((Gk+ℓ
Gk+ℓ+1))))))))))))=Mk,ℓ((((((((((((Gk

Gk+1)))))))))))).

Also, Mk,ℓ+t=Mk+ℓ,tMk,ℓ for all k, ℓ, t with k+ℓ+ t⩽n.
Now consider the polynomials Uk,ℓ,Vk,ℓ, Ũk,ℓ, Ṽk,ℓ such that

Mk,ℓ=((((((((((((((
Uk,ℓ Vk,ℓ
Ũk,ℓ Ṽk,ℓ)))))))))))))).

With the convention that the zero polynomial is homogeneous of any degree, we have

• For all i, Vk,ℓ is homogeneous of degree ℓ−1 and Ṽk,ℓ is homogeneous of degree ℓ.

• U0,ℓ is homogeneous of degree m−n−1+ℓ and Ũ0,ℓ is homogeneous of degree m−n+ℓ.

• For all i⩾1, Uk,ℓ is homogeneous of degree ℓ and Ũk,ℓ is homogeneous of degree ℓ+1.

Proof. This is immediate, by induction on ℓ, while using the formula Mk,ℓ+1 =Mk+ℓ,1 Mk,ℓ. □

During extended reductions, we have already explained how the dichotomic selection strategy
allows us to control the degrees of the quotients. In addition, we will gradually rewrite the linear
combination Q0 G0 + ⋯ + Qn Gn using our recurrence relations in such a way that we only need
a limited number of head terms of each Gi during the evaluation. More precisely, the lower the
degree bound for Qi, the less terms of Gi will be needed. Let us now examine more precisely
how many terms of each Gi should be known.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 11

G9
G10

G11
#

G7
#

G3
#

G6
#

G2
#G1

#

G5
#

G8
#

G4
#

G0
#

+ the matrix M0,2

+ the matrix M4,2+ the matrix M0,4

+ the matrix M0,8 + the matrix M8,2

Figure 3. The concise representation of the Gröbner basis when deg A=deg B=11.

DEFINITION 13. Given a polynomial P ∈𝕂[X, Y], we define its upper truncation with precision p as
the polynomial 𝜋p

#(P) such that

• 𝜋p
#(P)∈⟨X,Y⟩degP−p;

• deg(P−𝜋p
#(P))<deg P−p.

In other words, P and 𝜋p
#(P) have the same terms of degree at least deg P − p, but all terms of 𝜋p

#(P)
of degree less than deg P−p are zero.

With the dichotomic selection strategy, we have deg Qi <3×2val2(i) for 0< i<n, so it is natural
to compute Gi with the same precision. However, the rewriting rules among the Gi involve two
consecutive elements, so that G2 j and G2 j+1 need to be known with the same precision. This moti-
vates the following definition:

DEFINITION 14. The concise representation of G=(G0,…,Gn) consists of the following data:

• The sequence of truncated elements G0
#,…,Gn

#, where

Gi
≔ Gi (i=0,1,n)

Gi
≔ 𝜋p(i)

(Gi), p(i)≔3×2max(val2(i),val2(i−1)) (i=2,…,n−1)

• The collection of rewriting matrices

ℳ𝜆 ≔(M0,2𝜆,M2𝜆,2𝜆,…,M2𝜆q,r), 𝜆=0,…,⌈log2 n⌉,

with q≔(n−1) quo 2𝜆, r≔(n−1) rem 2𝜆+1, and the matrices Mk,ℓ as in Definition 11.

An example of a concise representation is given in Figure 3. Notice that the truncated poly-
nomial G2

contains much fewer terms than the corresponding G2 (as seen in Figure 1). Notice
also that the rewriting matrices allow to express some elements in terms of others known with
higher precision: for example G6 and G7 are expressed in terms of G4 and G5, themselves written
as a function of G0 and G1.

12 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

The concise representation requires quasi-linear space with respect to the degree of the ideal:

PROPOSITION 15. The concise representation requires space O(nm log n).

Proof. It is easy to see that Gi has degree at most n+ i⩽2n in the variable Y, and at most m+ i⩽2m
in the variable X and in total degree. Then for i = 0, 1, n, each non-truncated element Gi

≔ Gi
takes O(n m) space. Similarly, for i = 2, …, n − 1, each truncated element Gi

requires O(m p(i))
space. For 𝜆=1,…,⌈log2 n⌉, there are roughly 2n/2𝜆 indices i such that max(val2(i),val2(i−1))=
𝜆, so all elements together require O(mn log n) space.

There are ⌈n/2𝜆⌉ elements in ℳ𝜆, each consisting of four homogeneous polynomials of
degree roughly 2𝜆 (by Proposition 12), except for M0,2𝜆 that has two polynomial entries of degree
roughly 2𝜆 and two entries of degree roughly m − n + 2𝜆. Hence ℳ𝜆 requires O(m) space and
the collection of all ℳ𝜆 takes O(m log n) space. □

4.3. Computing concise Gröbner bases
The definition of the concise representation as above is constructive, but the order of the compu-
tation must be carefully chosen to achieve the desired quasi-linear complexity. First, by exploiting
the recurrence relations Mk,ℓ+t = Mk+ℓ,t Mk,ℓ, it is easy to compute ℳ𝜆+1 from ℳ𝜆 using the fol-
lowing auxiliary function:

Algorithm 1
Input: ℳ𝜆 as in Definition 14.
Output: ℳ𝜆+1 as in Definition 14.
1 Set L≔#ℳ𝜆.
2 For each i<L quo 2:
3 Set (ℳ𝜆+1)i ≔(ℳ𝜆)2i+1(ℳ𝜆)2i.
4 If L rem 2=1:
5 Set (ℳ𝜆+1)Lquo2≔(ℳ𝜆)L−1.
6 Return ℳ𝜆+1.

LEMMA 16. Algorithm 1 is correct and takes time O(M(m)).

Proof. Recall that Mk,ℓ+t = Mk+ℓ,t Mk,ℓ for all k, ℓ, t with k+ ℓ + t ⩽n. In particular, taking ℓ = t = 2𝜆

shows that (ℳ𝜆+1)i =(ℳ𝜆)2i+1(ℳ𝜆)2i if 2 i+1<L−1. Concerning the last element of ℳ𝜆+1 (that is,
j=L quo 2−1 if L is even, j=L quo 2 otherwise), define

q ≔ (n−1) quo 2𝜆,
r ≔ (n−1) rem 2𝜆+1,

q′ ≔ (n−1) quo 2𝜆+1,
r′ ≔ (n−1) rem 2𝜆+1+1.

If L rem 2=0, then q is odd, that is q′=(q−1)/2 and r′= r+2𝜆, so that M2𝜆+1q′,r′ =M2𝜆q,rM2𝜆(q−1),2𝜆

is indeed the product of the last two elements of ℳ𝜆. Conversely if L rem 2=1, then q′=q/2 and
r′= r so that ℳ𝜆 and ℳ𝜆+1 have the same last element.

The complexity bound is obtained with the same argument as for Proposition 15. □

JORIS VAN DER HOEVEN, ROBIN LARRIEU 13

The algorithm to compute the concise representation can be decomposed into three steps. First
a Euclidean algorithm gives recurrence relations of order 1. We next deduce higher order rela-
tions using the above algorithm. Finally, one has to compute the truncated basis elements Gi

#.
Starting with those of highest precision avoids computing unnecessary terms, so that quasi-linear
complexity can be achieved.

Algorithm 2
Input: (A,B), two generic bivariate polynomials of total degrees n and m with n⩽m.
Output: (G#,ℳ), the concise representation of a Gröbner basis of I ≔⟨A,B⟩ with respect to ≺.

1 Set G0
#≔A and G1

≔B rem A.
2 Set D0 ≔Diag(G0

#) and D1≔Diag(G1
#).

3 For i=2,…,n:
4 Set Di ≔Di−2 rem Di−1 and ui Z+vi ≔Di−2 quo Di−1. // Fail if the quotient has degree >1
5 If i=2, then set di ≔m−n+1, otherwise set di ≔2.

6 Set Mi−2,1≔((((((((((((((
0 1

Xdi −ui Y−vi X)))))))))))))).

7 Set Mn−1,1≔((((((((((((0 1
0 0)))))))))))) and ℳ0 ≔(M0,1,…,Mn−1,1).

8 For 𝜆=0,…, ⌈log2 n⌉−1:
9 Compute ℳ𝜆+1 from ℳ𝜆 using Algorithm 1.

10 Compute ((((((((((((((Gn
#

0))))))))))))))≔M0,n((((((((((((((G0
#

G1
)))))))))))))). // use ℳ ⌈log2n⌉=(M0,n)

11 For 𝜆=⌈log2 n⌉−1,…,1:
12 For each j=2,…,n−1 with j rem 2𝜆+1=2𝜆, set // Use ℳ𝜆=(M0,2𝜆,M2𝜆,2𝜆,…)

13 (((((((((((((((((
Gj

#

Gj+1
)))))))))))))))))≔𝜋3×2𝜆

#

(((((((((((((((((
((
(
(Mj−2𝜆,2𝜆(((((((((((((((((

((
(
(Gj−2𝜆

#

Gj−2𝜆+1
)))))))))))))))))

))
)
)
)))))))))))))))))
))
)
).

14 Return G#≔(G0
#,…,Gn

#) and (ℳ0,…,ℳ ⌈log2n⌉).

THEOREM 17. Algorithm 2 is correct and takes time O(R(m2)+M(nm) log(n))

Proof. The reduction G1
≔ B rem A can be done in a relaxed way in time O(R(m2)). The first

loop (lines 3-6) is clearly correct and each step requires O(M(n)) operations. Alternatively, the
successive quotients can all be computed with the fast “half gcd” algorithm (see for example [12,
Chapter 11]) using O(M(n) log n) operations.

In the last loop on 𝜆 (lines 11-13), since the precision decreases at each step and since there is
no accidental cancellation, the invariant

(((((((((((((((((
Gj

#

Gj+1
)))))))))))))))))=𝜋3×2𝜆

((((((((((((((
Gj

Gj+1)))))))))))))) for all j with j rem 2𝜆+1 =2𝜆

holds. Indeed, regarding upper truncations, it is clear that 𝜋u
#(PQ)=𝜋u

#(𝜋v
#(P)Q) as soon as u⩽v.

Then we have

𝜋3×2𝜆
#

(((((((((((((((((
((
(
(Mi−2𝜆,2𝜆 (((((((((((((((((

((
(
(Gj−2𝜆

#

Gj−2𝜆+1
)))))))))))))))))

))
)
)
)))))))))))))))))
))
)
)=𝜋3×2𝜆

((((((((((((((Mj−2𝜆,2𝜆 ((((((((((((((
Gj−2𝜆

Gj−2𝜆+1)))))))))))))))))))))))))))),

14 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

which proves the correctness. Let us now evaluate the complexity of this loop. For each index j
such that j rem 2𝜆+1 = 2𝜆, we have to estimate the support of Gk

and Gk+1
(where k ≔ j− 2𝜆). For

j=2𝜆, Gk
and Gk+1

are completely known, with a support of size O(mn). In all other cases Gk
and

Gk+1
are upper truncations, with a support of size O(m 2𝜆). Consequently, each iteration of the

loop requires O(M(nm)) operations. □

5. FAST REDUCTION WITH RESPECT TO CONCISE GRÖBNER BASES

In this section, we show how to use the concise representation to compute an extended reduction
with quasi-optimal complexity. Recall that the major obstruction for such a result was that the
equation

P=Q0G0+⋯+QnGn+R. (9)

is much larger than the intrinsic complexity of the problem (i.e. the size of A, B, P). On the
one hand, the concise representation solves this issue by providing essential information about
G=(G0,…,Gn) using much less space. On the other hand, it is really nontrivial to use it efficiently
in a reduction because the fast relaxed algorithm from [17] cannot be used in a blackbox manner.
For this reason, the core of the algorithm is completely different to what is found in [18], although
some of the techniques are similar.

5.1. Revisiting the relaxed reduction algorithm

Although the fast relaxed algorithm from [17] cannot be used as a blackbox, our algorithm is
based on the same principle so it seems important to give an overview of how it works. In fact, our
algorithm mimics the behavior of the relaxed reduction algorithm, without the need to expand G.
In this section we aim to give the intuition of the classical relaxed reduction, so that it is pos-
sible to understand how we exploit the properties of the concise representation later in section 5.3.

Roughly speaking, we will see Q0, …, Qn, R as streams of coefficients, and we rewrite equa-
tion (9) in an equivalent recursive form

(Q0,…,Qn,R)=ΨP,G(Q0,…,Qn,R)

where the i-th coefficient in each stream depends only of the coefficients 0 to i− 1 of the streams
(and possibly P and G). In this case, it is possible to compute these streams iteratively using
relaxed multiplications.

For example, let f (x),g(x) be univariate polynomials with deg f >deg g, and assume to sim-
plify that g is monic. We wish to find q(x),r(x) such that f =gq+r and deg g>deg r. This can also
we written as

xdegg q+ r= f −�g−xdegg�q,

and we notice that the term of degree k in q is the term of degree k+deg g in f −�g−xdegg�q, that
depends only on qk+1, qk+2,…, qdegq. This means the equation is indeed recursive if the stream of
coefficients starts with the terms of highest degree.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 15

In a more intuitive way, consider the naive schoolbook algorithm: at each step, set

q≔q+ fk+deggxk and f ≔ f − fk+degg xk g.

We can also think of it as “at each step, cancel the leading term in f by adding 𝛼xk to the quotient,
then add a compensating −𝛼 t(x) to f for the next terms”, where t(x)≔g(x)− lt(g) is the tail of g.
The algorithm from [17] is the multivariate generalization of this idea: we evaluate the polyno-
mial

P−Q0 T0 −⋯−QnTn with Ti ≔Gi − lt(Gi)

using relaxed multiplications, and this raises a stream of coefficients from which Q0,…,Qn,R can
be reconstructed. Note that it is necessary to use Ti instead of Gi for the equation to be recursive.

5.2. Exploiting the concise representation

The concise representation contains only truncated variants Gi
of the Gi. We can set Ti

≔ Gi
−

lt(Gi
#), then we observe that the formula

P−Q0T0
#−⋯−Qn Tn

#

is much smaller than the formula

P−Q0T0−⋯−Qn Tn

so that relaxed multiplications will compute the former polynomial much faster. However, since
the terms of lower degree are dropped, the two streams of coefficients will diverge at some point.
To avoid this, we will progressively rewrite equation (9) before this happens. More precisely, as
soon as the quotient Qj is known, the product Qj Gj is replaced by some Sk Gk + Sk+1 Gk+1, where
Gk,Gk+1 are known with precision larger than Gj.

Remark 18. As in [18], we use truncated elements to speed-up the computation, followed by
substitutions to maintain the correctness of the result. However, there are major differences in
how these ingredients are used.

The concise representation contains the necessary information to perform these substitutions
in the form of recurrence relations among the Gk: for any indices k, ℓ with k+ℓ⩽n, we have

((((((((((((Gk+ℓ
Gk+ℓ+1))))))))))))=Mk,ℓ((((((((((((Gk

Gk+1)))))))))))). (10)

For the correctness of the algorithm, we will need the following result:

LEMMA 19. Let G0, …, Gn be a Gröbner basis and let the matrices Mi,k be as in Definition 11 (for all
indices k, ℓ such that k+ℓ⩽n). Given quotients Qj,Qj+1 with j≔ k+ℓ, define

(Sk,Sk+1)≔(Qj,Qj+1)Mk,ℓ.

Then we have

Sk Gk +Sk+1 Gk+1=Qj Gj +Qj+1Gj+1. (11)

16 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

Assume now that 𝜆 is such that Qj,Qj+1 have degree less than 3×2𝜆−1−1 and ℓ<2𝜆. Then:

• If k>0, then Sk,Sk+1 have degree less than 3×2𝜆 −1 and can be computed in time O(M(4𝜆)).

• If k = 0, then deg(Sk) <m − n + 3 × 2𝜆, deg(Sk+1) < 3 ×2𝜆 − 1 and they can be computed in time
O(M((m−n)2𝜆 +4𝜆)).

Proof. Equation (11) is an immediate consequence of the recurrence relations (10) among the Gk.
Similarly, the bounds on deg Sk are consequences of the degree bounds from Proposition 12. □

5.3. Reduction algorithm

We can now adapt the extended reduction algorithm from [17] to perform these replacements
during the computation.

Algorithm 3
Input: (P,G#,ℳ), where P is a bivariate polynomial of degree d, and (G#,ℳ) is the concise repre-
sentation of a Gröbner basis G (as in Definition 14).
Output: (Q0,…,Qn,R), the extended reduction of P with respect to G.
1 Set (Q0,…,Qn)≔(0,…,0)
2 Set (S0,…,Sn)≔(0,…,0) // new quotients after substitutions as in Lemma 19
3 Set Psubs≔P and ℐ ≔{i⩽n:deg(Gi)⩽d}∪{n} // ℐ: active indices for relaxed multiplications
4 For i=0,…,n, set Ti

#≔Gi
− lt(Gi

#).
5 For d′=d,…,0:
6 𝒥 ≔{i∈ℐ:(i=0)∨(i=n)∨(d′<deg(Gi)+3×2val2(i))} // keep only the indices with Qi ≠0
7 For a=0,…,d′:
8 Let 𝜏 be the term of Xa Yd′−a in Psubs −∑i∈𝒥 Qi Ti

#, computed in a relaxed manner.

9 Let (i,𝜏′)≔ΦG(𝜏).
10 If i<0, then update R+=𝜏′, else update Qi ≔Qi +𝜏′.
11 For all j (in decreasing order) such that d′=deg(Gj): // See Remark 20
12 If j<n, then update Sj +=Qj and ℐ ≔ℐ ∖{j} and Psubs −=Qj Gj

#

13 If 1< j<n and 𝜆≔val2(j)>0, then:
14 Set k≔ j−2𝜆.
15 Set (Δk,Δk+1)≔(Sj,Sj+1)Mk,2𝜆.
16 Update (Sk,Sk+1)+=(Δk,Δk+1).
17 Update Psubs−=Δk Gk

+Δk+1 Gk+1
−Sj Gj

−Sj+1 Gj+1
#

18 Set (Sj,Sj+1)≔(0,0).
19 Return (Q0,…,Qn,R)

Remark 20. Recall that G0 has degree n and Gi has degree m+ i−1 for i⩾1. Therefore, the loop in
lines 11-18 on j such that d′=deg(Gj) is trivial: the set of such j contains at most 1 element, except
when d′=n=m, in which case there are 2 elements 0 and 1.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 17

a) b)

Figure 4. Summary of the reduction algorithm.

The reduction algorithm consists of two main tasks presented in Figure 4. First one has to
reduce terms one after the other and update the quotients accordingly (loop in lines 7-10). For
example in Figure 4.a), the current term to be reduced is t ≔ 𝛼 X14 Y6, marked by a square; it is
reduced against G6 (with lt(G6)= 𝛽X11 Y5) because of the dichotomic selection strategy, then we
update the quotient Q6 += 𝛼/𝛽 X3 Y to cancel this term. During the next step of the loop, the
term to be reduced is 𝛾 X15 Y5 marked by a diamond; this time it is reduced against G8 which
implies an update of Q8. For the second task, one has to rewrite the equation to maintain sufficient
precision (loop in lines 11-18); this is possible because a new quotient is now entirely known. In
our example on Figure 4.b), we just completed the computation of Q10, so we find S8,S9 such that

Q10 G10=S8 G8 +S9 G9

and we perform the replacement in equation (9); this is represented by the grey arrows in the
picture.

Remark 21. Actually, if we just completed the computation of Qj with j odd, then we wait for the
computation of Qj−1 to perform both replacements (test in line 13) because it is more practical.

THEOREM 22. Algorithm 3 is correct and runs in time

O(R(d2)+R(nm) log n+M(nm) log2 n).

Proof. Let us first explain why the relaxed strategy can indeed be used. We regard the quo-
tients Qi as streams of coefficients. These coefficients are produced by the updates Qi≔Qi+𝜏′ and
consumed in the relaxed evaluation of the products Qi Ti

#. Since our reduction process is essen-
tially based on the same recursive functional equation as in [17], the production of coefficients
always occurs before their consumption.

We will show that Algorithm 3 computes the same result as the traditional relaxed reduction
algorithm from [17], because the term 𝜏 that is considered at each step is the same in both cases.
More precisely, we must show that for each d′, at the start of each iteration of the loop on a (line 7),
we have

(((((((((((((((((Psubs − �
i∈𝒥

Qi Ti
#

)))))))))))))))))a,d′−a

=((((((((((((((P−�
i⩽n

Qi Ti))))))))))))))a,d′−a

(12)

where Ti ≔Gi − lt(Gi) is the non-truncated analogous of Ti
#. Informally, equation (12) means that

Algorithm 3 (left-hand side) and the algorithm from [17] (right-hand side) produce the same
streams of coefficients; hence the correctness of [17] implies the correctness of Algorithm 3.

18 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

Let us start with the description of a few invariants at the start of the main loop on d′:

I1. Psubs=P−∑i⩽n Si Gi
#.

I2. ∑i⩽n Si Gi =∑i∉ℐ Qi Gi.

I3. deg(Si) and deg(Si+1) are at most 3×2val2(i) −1 for all even i∈{1,…,n−1}.

I4. For some i0 ⩽n+1, we have ℐ ={0,…, i0−1}∪{n}.

I5. With i0 as above, if i=n or i> i0 or (i⩾ i0 with i0 even), then Si =0.

Invariant I1 is immediate. Invariants I2 and I3 follow from Lemma 19, using deg(Qi)<3×2val2(i)−1
by Lemma 10. For invariant I4, we recall that deg(Gi′)⩽deg(Gi′+1) for all i′<n. Finally, invariant I5
is preserved by the loop on lines 11-18: whenever j is removed from ℐ , Sj and Sj+1 are set to
0 if j is even.

Let us now prove the main claim (12). Notice first that if 0< i<n and i∈ℐ , then deg(Gi)⩽d′.
Recall also that deg(Qi)<3×2val2(i)−1 for 0< i<n. This means deg(QiGi)<d′ for i∈ℐ ∖𝒥 . Since
by definition

G0
=G0,Gn

=Gn,and Gi
#=𝜋3×2val2(i)

(Gi) for 0< i<n,

we deduce that

(((((((((((((((((�
i∈𝒥

Qi Ti
#

)))))))))))))))))a,d′−a

=((((((((((((�
i∈ℐ

Qi Ti
#))))))))))))a,d′−a

=((((((((((((�
i∈ℐ

Qi Ti))))))))))))a,d′−a
.

To complete the proof (by invariant I1), we show that

((((((((((((((�
i⩽n

Si Gi
#))))))))))))))a,d′−a

=((((((((((((((�
i⩽n

Si Gi))))))))))))))a,d′−a

=((((((((((((((�
i∉ℐ

Qi Gi))))))))))))))a,d′−a

=((((((((((((((�
i∉ℐ

Qi Ti))))))))))))))a,d′−a

.

For the first identity, we contend that Si Gi and Si Gi
have the same terms of degree d′ because

of invariants I3 and I5. This is clear if Si =0, or if i⩽1 since G0=G0
and G1=G1

#. Assume therefore
that i>1 and Si ≠0. By invariant I5, the index i0 ≔min {i∈ℕ, i∉ℐ} verifies i⩽ i0<n, hence i0 was
removed from ℐ during a previous iteration of the loop on d′. Since deg(Gi′+1)=deg(Gi′)+1 for
all 0 < i′ < n, this actually happened during the previous iteration (with d′ + 1 instead of d′). It
follows that deg(Gi)⩽d′+1=deg(Gi0). By definition of Gi

and invariant I3, the polynomials SiGi
and SiGi

have the same terms of degree at least deg(Gi)−3×2val2(i)+deg(Si) if i is even, or at least
deg(Gi)−3×2val2(i−1)+deg(Si) if i is odd. In both cases, this degree bound is ⩽d′.

The second identity follows immediately from invariant I2. The last identity follows from the
implication i∉ℐ ⇒d′<deg(Gi), so that Qi Gi and Qi Ti have the same terms of degree d′.

For the complexity, relaxed multiplications are used to compute the coefficients of the Qi Ti
#,

whose support is a subset of the support of Qi Gi
#. Then the relaxed multiplications take time

R(|Q0G0
#|)+⋯+R(|QnGn

#|)=O(R(d2)+R(nm) log n).

It remains to evaluate the cost of the zealous multiplications during the rewriting steps. To avoid
case distinctions, given an even index k∈{0,…,n−1}, let val2(k) be defined as

val2(k)≔{{{{{{{{{{{{{{{{{{{{{{{{ ⌈log2 n⌉ if k=0
val2(k) otherwise.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 19

Then for every such index k and for every 𝜆 < val2(k), there is an update of Sk, Sk+1, of
cost O(M(4𝜆)), followed by the evaluation of the products Sk Gk

and Sk+1 Gk+1
, which takes

O�M�m2val2(k)�� operations. This leads to a total of O�M�m2val2(k)� log2 n� operations. Summing
over all k, we get a total cost of O(M(nm) log2 n) for all rewriting steps. □

6. APPLICATIONS

Under some regularity assumptions, we provided a quasi-linear algorithm for polynomial reduc-
tion, but unlike in [18], it does not rely on expensive precomputations. This leads to significant
improvements in the asymptotic complexity for various problems. To illustrate the gain, let us
assume to simplify that n=m, and neglect logarithmic factors. Then, ideal membership test and
modular multiplication are essentially quadratic in n. Also, computing the reduced Gröbner basis
has cubic complexity. In all these examples, the bound is intrinsically optimal, and corresponds
to a speed-up by a factor n compared to the best previously known algorithms.

6.1. Ideal membership
From any fast algorithms for Gröbner basis computation and (multivariate) polynomial reduc-
tion, it is immediate to construct an ideal membership test:

Algorithm 4
Input: (A,B,P), bivariate polynomials of degrees n, m, and d with n⩽m and A,B generic.
Output: true if P∈⟨A,B⟩, false otherwise.

1 Let (G#, ℳ) be the concise representation of the Gröbner basis G of ⟨A, B⟩ with respect to ≺,
computed using Algorithm 2.

2 Let (Q0,…,Qn,R) be an extended reduction of P modulo G, computed using Algorithm 3.
3 Return true if R=0, false otherwise.

THEOREM 23. Algorithm 4 is correct and takes time O(R(m2 +d2)+R(nm) log n+M(nm) log2 n).

6.2. Multiplication in the quotient algebra
We designed a practical representation of the quotient algebra 𝔸≔𝕂[X,Y]/⟨A,B⟩ that does not
need more space (up to logarithmic factors) than the algebra itself, while still allowing for efficient
computation. The main difference with the terse representation from [18] is that said representa-
tion is easy to compute, so that multiplication in 𝔸 can be done in quasi-linear time, including the
cost for the precomputation:

Algorithm 5
Input: (A,B,P,Q), bivariate polynomials, with A,B generic of degrees n⩽m and P,Q∈𝔸 of degree
at most m+n (typically in normal form).
Output: PQ∈𝔸 in normal form.

1 Let (G#, ℳ) be the concise representation of the Gröbner basis G of ⟨A, B⟩ with respect to ≺,
computed using Algorithm 2.

2 Compute PQ using any (zealous) multiplication algorithm.
3 Let (Q0,…,Qn,R) be an extended reduction of PQ modulo G, computed using Algorithm 3.
4 Return R.

20 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

THEOREM 24. Algorithm 5 is correct and takes time O(R(m2)+R(mn) log n+M(nm) log2 n).

6.3. Reduced Gröbner basis
Since we can reduce polynomials in quasi-linear time, we deduce a new method to compute the
reduced Gröbner basis: first compute the non-reduced basis, together with additional information
to allow the efficient reduction (which can be done fast); then reduce each element with respect to
the others.

Algorithm 6
Input: (A,B), generic bivariate polynomials of total degrees n and m with n⩽m.
Output: Gred ≔(G0

red,…,Gn
red) the reduced Gröbner basis of ⟨A,B⟩ with respect to ≺.

1 Let (G#,ℳ) be the concise representation of G, computed using Algorithm 2.
2 For all i=0,…,n:
3 Set t0 ≔Yn=lm(G0) or ti ≔Xm−n−1+2i Yn−i =lm(Gi) if i>0.
4 Let (Q0i,…,Qni,Ri) be an extended reduction of ti modulo G, computed using Algorithm 3.
5 Set Gi

red ≔ ti −Ri.
6 Return (G0

red,…,Gn
red).

THEOREM 25. Algorithm 6 is correct and takes time O(R(m2)n log n+nM(nm) log2 n).

Proof. Clearly Gi
red is in the ideal and has the same leading monomial as Gi. Moreover, Gi

red is
monic and none of its terms is divisible by the leading term of any Gj, j ≠ i. This proves Gred is
indeed the reduced Gröbner basis of ⟨A,B⟩ with respect to ≺. □

7. REFINED COMPLEXITY ANALYSIS

In sections 5 and 6, we purposely simplified our algorithms for convenience of the reader.
Although the complexity bounds are satisfactory, there are specific cases in which they are not
optimal, and a more subtle analysis is required to improve them. In this section, we detail the
missing ingredients and prove the announced complexity bounds from the introduction.

7.1. Optimized algorithm using lazier substitutions
The bound given in Theorem 22 contains an unwanted term O(M(nm) log2(n)) that corresponds
to the rewriting steps. This contribution is absorbed by the term O(R(n m) log(n)) when using
traditional relaxed multiplication [9, 16] withR(d)≍M(d) log d, but this is no longer true for faster
relaxed algorithms, such as the one from [20]. With some optimizations, it is possible to decrease
by a logarithmic factor the cost of the rewriting steps. Then this contribution can be absorbed into
the term O(R(nm) log(n)), independently of the relaxed multiplication algorithm being used.

For the general idea, notice that each time a new quotient Qj is known, we perform a sub-
stitution (Sk, Sk+1) += (Sj,Sj+1)Mk,2𝜆 (j = k + 2𝜆), followed by a few products of the form Sk Gk

#.
This means that there are a logarithmic number of products Sk Gk

for each k. Now up to a few
adaptations, it is possible to reduce this to a constant number. Summing over all k, the total cost
of rewriting the equation then drops from O(M(nm) log2 n) down to O(M(nm) log n).

JORIS VAN DER HOEVEN, ROBIN LARRIEU 21

The modification is essentially as follows:
1. instead of rewriting as soon as Qj is known, we delay the substitution until Qk is known;
2. we then perform all substitutions (Sk,Sk+1)+=(Sj,Sj+1)Mk,2𝜆 for each 𝜆, j=k+2𝜆;

3. we only perform the multiplications by Gk
#,Gk+1

after this loop.
Since the substitution is delayed, it is necessary to increase the precision of Gj

#, to ensure a correct
result up to the degree of Gk. If k > 0, then we have deg(Gj) = deg(Gk) + 2𝜆, so increasing the
precision by 2𝜆 is sufficient. However, if k=0, then deg(Gj)=deg(Gk)+2𝜆+m−n, and m−n may
be large; a naive increase of the precision would thus cause an undesirable overhead. A possible
workaround is to add a “virtual” basis element G1/2 ≔ Xm−n G0, that is used only for the sub-
stitutions (and we have deg(Gj) = deg(G1/2) + 2𝜆 − 1 so now the increased precision remains
reasonable).

DEFINITION 26. The augmented concise representation has the same content as the concise representa-
tion, up to the following:

• Gi
#≔𝜋p(i)

(Gi) for i=2,…,n−1, where p(i)≔4×2max(val2(i),val2(i−1)) (instead of 3×2…);
• An additional element G1/2

≔Xm−n G0;

• Additional matrices M1/2,2𝜆 ≔M0,2𝜆 ((((((((((((1/Xm−n

1)))))))))))) for each 𝜆⩽⌊log2 n⌋.

The following theorem is a straightforward adaptation of Proposition 15 and Theorem 17.

THEOREM 27. The augmented concise representation requires O(mn log n) space and can be computed in
time O(R(m2)+M(nm) log(n)) using a suitable adaptation of Algorithm 2.

Assuming from now on the augmented concise representation, the loop in lines 11-18 of Algo-
rithm 3 can be modified as follows:

Algorithm 7
Replaces the loop in lines 11-18 of Algorithm 3

1 For all k (in decreasing order) such that d′=deg(Gk): // See Remark 20
2 If k<n, then set Sk ≔Qk.
3 If k<n and ⌊k⌋ is even:
4 If k+1<n then update ℐ ≔ℐ ∖{k, ⌊k+1⌋} else update ℐ ≔ℐ ∖{k}.
5 If k=0, then update Psubs−=S0 G0

#.
6 If (1<k<n and Λ≔val2(k)>0) or k=1/2, then:
7 If k=1/2 then set Λ≔⌈log2 n⌉.
8 For each 𝜆∈{1,2,…,Λ−1} such that j≔⌊k⌋+2𝜆<n:
9 Update (Sk,S⌊k+1⌋)+=(Sj,Sj+1)Mk,2𝜆.

10 Update Psubs+=Sj Gj
+Sj+1 Gj+1

.
11 Set (Sj,Sj+1)≔(0,0).
12 Update Psubs−=Sk Gk

+S⌊k+1⌋ G⌊k+1⌋
.

THEOREM 28. The above modification of Algorithm 3 is correct and runs in time

O(R(d2)+R(nm) log n).

22 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

Proof. The correctness proof is essentially the same as for Theorem 22, although a bit more tech-
nical. Invariant I5 must be modified as follows:

I5*. With i0 as in Invariant I4, if i even with i−2val2(i) ⩾ i0 or i=n, then Si =0 and Si+1=0.

The rest of the proof is as before except for some degree bounds: if i is even, then the polyno-
mials Si Gi and Si Gi

have the same terms of degree at least deg(Gi) −4 ×2val2(i) + deg(Si) (notice
the term 4 × 2val2(i) instead of 3 × 2val2(i) because the precision in the concise representation was
increased). Assuming Si ≠0, that is i−2val2(i)< i0, we have deg(Gi)−4×2val2(i)+deg(Si)⩽d′. Sim-
ilarly if i is odd, then the polynomials Si Gi and Si Gi

have the same terms of degree at least
deg(Gi)−4×2val2(i−1)+deg(Si), which is again ⩽d′.

As to the complexity, it is clear that for each k, there are at most 2 products Sk Gk
#: one during

the substitution at step k (line 12 in Algorithm 7) and possibly one at step k−2val2(k) (line 10). The
complexity of the rewriting steps therefore drops to O(M(nm) log n), as announced. □

7.2. Improved complexity analysis using refined support bounds
The bound given in Theorem 28 assumes that the input polynomial P has a “triangular” support
of degree d; typically the bound is tight if lm(P) = Yd. However, it may happen that the degree
in the variable Y is much smaller than the total degree: this is in particular the case in sections 6.2
and 6.3.

Let us first notice that the degree in the variable Y during the execution of Algorithm 3 can be
controlled using the following elementary properties:

LEMMA 29. We have that for all i, degY Gi ⩽n+ i.

COROLLARY 30. If the input polynomial P (in Algorithm 3) verifies degY P⩽Kn for some K ⩾3, then for
each i we have degY Qi Gi ⩽Kn.

Proof. The dichotomic selection strategy imposes that for i > 0 we have degY(Qi) ⩽ n, hence
degY(Qi Gi)⩽3n. The result for i=0 is obtained from Q0G0=P−∑i>0 Qi Gi. □

We next extend the discussion from section 3.1 to a new type of supports. Initially, we restricted
ourselves to supports of the form Sl,h ≔ {M ∈ℳ: l⩽deg M ⩽h}, for which |Sl,h| = Θ(h (h − l)). We
now need to bound the degree in the variable Y independently of the total degree, so we con-
sider suports of the form Sl,h,s ≔ {M ∈ ℳ: l⩽deg M⩽h and degY M⩽s}. Using the same change
of variables as before with Xa Yb →Th−a−b Ub, it is not hard to check that multiplication can still
be done in time O(M(|Sl,h,s|)) for such more general supports, and similarly for relaxed multi-
plication. This allows us to prove the following result:

PROPOSITION 31. If K ⩾ 3 is such that degY(P) ⩽ K n, then the improved variant of Algorithm 3 (from
Theorem 28) runs in time

O(R(Knd)+R(nm) log n).

Proof. By Corollary 30, the supports appearing during Algorithm 3 are all of the form Sl,h,s with
s⩽Kn, and we have |Sl,h,s|=Θ(s(h− l)), so that the cost of the relaxed multiplications is

R(|Q0 G0
#|)+⋯+R(|QnGn

#|)=O(R(Knd)+R(nm) log n).

and the cost of the rewriting steps is O(M(nm) log n)=O(R(nm) log n) as in Theorem 28. □

JORIS VAN DER HOEVEN, ROBIN LARRIEU 23

7.3. Consequences of the refined complexity bounds
We are now in a position to improve the results from section 6. Given a fixed ideal ⟨A, B⟩, we
may precompute an augmented concise Gröbner basis (G#, ℳ) once and for all; by Theorem 27,
this precomputation takes time O(R(m2)+R(mn) log n). Theorem 28 then leads to the following
improved complexity bound for the ideal membership test from section 6.1.

THEOREM 32. Given P∈𝕂[X,Y] with deg P⩽d, we may test whether P∈⟨A,B⟩ in time

O(R(d2)+R(mn) log n),

using Algorithm 4, when regarding step 1 as a precomputation.

If P, Q ∈ 𝕂[X, Y] are in normal form with respect to G, then deg(P Q) ⩽ 2 (n + m) and
degY(P Q) ⩽ 2 n. Proposition 31 then implies the following quasi-optimal complexity bound for
multiplication in the quotient algebra 𝕂[X,Y]/⟨A,B⟩.

THEOREM 33. Using Algorithm 5, one multiplication in 𝕂[X,Y]/⟨A,B⟩ can be performed in time

O(R(mn) log n),

when regarding step 1 as a precomputation.

Remark 34. The new bound is quasi-linear in the dimension mn of the quotient algebra. If n≪m,
then the new bound improves upon the one from Theorem 24 due to the term R(m2). Notice
that this term occurred for two reasons. First of all, the computation of the concise Gröbner
basis in particular involves the computation of B rem A; we now regard this as a precompu-
tation. The reduction of P Q, which has degree d = 2 (m + n), also lead to a cost O(R(d2)) in
Theorem 22. Exploiting the reduced degrees in Y of P and Q, the cost of this reduction is reduced
to O(R(mn) log n) by Proposition 31.

Similarly, applying the improved bound from Proposition 31 to Algorithm 6, the reduction of
t0 ≔Yn=lm(G0) or ti ≔Xm−n−1+2i Yn−i =lt(Gi) with i>0 takes time O(R(nm) log n). This yields:

THEOREM 35. Using Algorithm 6, the reduced deglex Gröbner basis of ⟨A,B⟩ can be computed in time

O(R(m2)+R(nm)n log n).

Remark 36. This bound is quasi-linear in m2 + n2 m, which indeed quasi-optimal if we take into
account both the input and output sizes.

8. PERSPECTIVES

A general concern for algorithms with improved asymptotic complexity is the question how well
they perform in practice. For the algorithms presented in this work, the second author started
a proof-of-concept SAGE [26] implementation that is available at

https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip

24 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip
https://hal.archives-ouvertes.fr/hal-01770408/file/implementation.zip

Concerning the structure of 𝕂[X, Y]/⟨A, B⟩, the computation of concise Gröbner bases using
a first implementation of Algorithm 2 outperforms SAGE's built-in Gröbner basis function for
degrees ⩾160. In order to develop implementations of the other algorithms with the announced
complexities, it is crucial to build on high quality bivariate polynomial arithmetic. A particularly
formidable challenge is to implement fast relaxed arithmetic, which seems hard or impossible
to achieve in the high level language from SAGE. So far, the proof-of-concept implementation
only allowed us to check the correctness of our other algorithms, by resorting to asymptotically
suboptimal lazy (instead of relaxed) arithmetic.

Several theoretical challenges also remain. First we notice that Algorithm 2 fails if the Euclidean
algorithm raises a quotient with degree larger than 1. Generically, this should not happen, but
this restriction can be limiting in practice, especially in the case of small finite fields. It is then
natural to ask how to handle the case of non-normal degree sequences. We conjecture that our
algorithm extends (and remains quasi-linear) to the case where the quotients have a bounded
degree, with only a logarithmic number of them being larger than 1.

It would also be interesting to extend our ideas to the case of r > 2 variables or more gen-
eral term orderings. Although the dichotomic selection strategy extends in a straightforward
manner, we are more pessimistic concerning the other ingredients. Indeed, the bivariate total
degree ordering is very special for the reasons mentioned in section 2.

BIBLIOGRAPHY

[1] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of the F5 Gröbner basis algorithm.
Journal of Symbolic Computation, pages 1–24, sep 2014.

[2] Thomas Becker and Volker Weispfenning. Gröbner bases: a computational approach to commutative algebra, volume
141 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1993.

[3] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimension-
alen Polynomideal. PhD thesis, Universitat Innsbruck, Austria, 1965.

[4] David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Infor-
matica, 28(7):693–701, 1991.

[5] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied
Algebra, 139(1–3):61–88, 1999.

[6] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In
Proceedings of the 2002 international symposium on Symbolic and algebraic computation, ISSAC '02, pages 75–83. New
York, NY, USA, 2002. ACM.

[7] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. Polynomial systems solving by fast
linear algebra. ArXiv preprint arXiv:1304.6039, 2013.

[8] Jean-Charles Faugère, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient computation of zero-dimensional
Gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):329–344, 1993.

[9] M. J. Fischer and L. J. Stockmeyer. Fast on-line integer multiplication. Proc. 5th ACM Symposium on Theory of
Computing, 9:67–72, 1974.

[10] Ralf Fröberg and Joachim Hollman. Hilbert series for ideals generated by generic forms. Journal of Symbolic Com-
putation, 17(2):149–157, 1994.

[11] A. Galligo. A propos du théoreme de préparation de weierstrass. In Fonctions de plusieurs variables complexes,
pages 543–579. Springer, 1974.

[12] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, New York, NY, USA,
3rd edition, 2013.

[13] Vladimir P. Gerdt and Yuri A. Blinkov. Involutive bases of polynomial ideals. Mathematics and Computers in
Simulation, 45(5):519–541, 1998.

[14] D. Harvey and J. van der Hoeven. Faster integer and polynomial multiplication using cyclotomic coefficient
rings. Technical Report, ArXiv, 2017. http://arxiv.org/abs/1712.03693.

[15] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. Faster polynomial multiplication over finite fields.
Technical Report, ArXiv, 2014. http://arxiv.org/abs/1407.3361.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 25

http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361

[16] J. van der Hoeven. Relax, but don't be too lazy. JSC, 34:479–542, 2002.
[17] J. van der Hoeven. On the complexity of polynomial reduction. In I. Kotsireas and E. Martínez-Moro, editors,

Proc. Applications of Computer Algebra 2015, volume 198 of Springer Proceedings in Mathematics and Statistics, pages
447–458. Cham, 2015. Springer.

[18] J. van der Hoeven and R. Larrieu. Fast reduction of bivariate polynomials with respect to sufficiently regular
Gröbner bases. Technical Report, HAL, 2018. http://hal.archives-ouvertes.fr/hal-01702547.

[19] J. van der Hoeven and É. Schost. Multi-point evaluation in higher dimensions. AAECC, 24(1):37–52, 2013.
[20] Joris van der Hoeven. Faster relaxed multiplication. In Proc. ISSAC '14, pages 405–412. Kobe, Japan, Jul 2014.
[21] Romain Lebreton, Eric Schost, and Esmaeil Mehrabi. On the complexity of solving bivariate systems: the case of

non-singular solutions. In ISSAC: International Symposium on Symbolic and Algebraic Computation, pages 251–258.
Boston, United States, Jun 2013.

[22] Ernst Mayr. Membership in polynomial ideals over ℚ is exponential space complete. STACS 89, pages 400–406,
1989.

[23] Guillermo Moreno-Socías. Degrevlex Gröbner bases of generic complete intersections. Journal of Pure and Applied
Algebra, 180(3):263–283, 2003.

[24] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Infor., 7:395–398,
1977.

[25] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.
[26] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.0). 2017. https://

www.sagemath.org.

26 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
https://www.sagemath.org
https://www.sagemath.org
https://www.sagemath.org

	1. Introduction
	2. Presentation of the setting
	2.1. Reduced Gröbner bases
	2.2. From Euclidean division to Gröbner bases
	2.3. Examples
	2.4. Key ingredients for our algorithms
	2.5. Comparison with terse representations of vanilla Gröbner bases

	3. Algorithmic prerequisites
	3.1. Polynomial multiplication
	3.2. Relaxed multiplication
	3.3. Polynomial reduction

	4. Concise Gröbner bases
	4.1. The dichotomic selection strategy
	4.2. Concise representations of Gröbner bases
	4.3. Computing concise Gröbner bases

	5. Fast reduction with respect to concise Gröbner bases
	5.1. Revisiting the relaxed reduction algorithm
	5.2. Exploiting the concise representation
	5.3. Reduction algorithm

	6. Applications
	6.1. Ideal membership
	6.2. Multiplication in the quotient algebra
	6.3. Reduced Gröbner basis

	7. Refined complexity analysis
	7.1. Optimized algorithm using lazier substitutions
	7.2. Improved complexity analysis using refined support bounds
	7.3. Consequences of the refined complexity bounds

	8. Perspectives
	Bibliography

