Finite element method-based kinematics and closed-loop control of soft, continuum manipulators - Archive ouverte HAL
Journal Articles Soft Robotics Year : 2018

Finite element method-based kinematics and closed-loop control of soft, continuum manipulators

Abstract

This paper presents a modeling methodology and experimental validation for soft 1 manipulators to obtain forward and inverse kinematic models under quasistatic conditions. It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on Finite Element Method (FEM) with a numerical optimization based on Lagrangian Multipliers to obtain forward and inverse models. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this paper. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.
Fichier principal
Vignette du fichier
Finite element method-based kinematics and closed-loop control of soft,continuum manipulators.pdf (1.5 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01745625 , version 1 (28-03-2018)

Identifiers

Cite

Thor Morales Bieze, Frederick Largilliere, Alexandre Kruszewski, Zhongkai Zhang, Rochdi Merzouki, et al.. Finite element method-based kinematics and closed-loop control of soft, continuum manipulators. Soft Robotics, 2018, 5 (3), pp.348-364. ⟨10.1089/soro.2017.0079⟩. ⟨hal-01745625⟩
538 View
2171 Download

Altmetric

Share

More