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FEM-based kinematics and closed-loop control of
soft, continuum manipulators

Thor Morales Bieze, Frederick Largilliere, Alexandre Kruszewski, Zhongkai Zhang, Rochdi Merzouki
and Christian Duriez

Abstract—This paper presents a modeling methodology and
experimental validation for soft1 manipulators to obtain forward
and inverse kinematic models under quasistatic conditions. It
offers a way to obtain the kinematic characteristics of this type
of soft robots that is suitable for offline path planning and
position control. The modeling methodology presented relies on
continuum mechanics which does not provide analytic solutions
in the general case. Our approach proposes a real-time numerical
integration strategy based on Finite Element Method (FEM) with
a numerical optimization based on Lagrangian Multipliers to
obtain forward and inverse models. To reduce the dimension
of the problem, at each step, a projection of the model to
the constraint space (gathering actuators, sensors and end-
effector) is performed to obtain the smallest number possible of
mathematical equations to be solved. This methodology is applied
to obtain the kinematics of two different manipulators with
complex structural geometry. An experimental comparison is also
performed in one of the robots, between two other geometric
approaches and the approach that is showcased in this paper.
A closed-loop controller based on a state estimator is proposed.
The controller is experimentally validated and its robustness is
evaluated using Lypunov stability method.

Index Terms—Soft manipulators, Continuum robots, Soft
robots, Finite Element Method and Robotic control

I. INTRODUCTION

For the past four decades, rigid-link manipulators have been
successfully deployed in the industrial environment. Their
rigid bodies and high-torque joints are perfectly fitted to
perform tasks that involve accurate positioning while carrying
considerable payloads. However, as the applications for these
systems move away from this structured environment, tradi-
tional rigid manipulators have been less successful. Indeed,
their rigid and bulky bodies is a problem for adaptation to
dynamic environments.

Roboticists, trying to cope with the new applications for
manipulators, have turned their attention to nature, seeking
for inspiration to design new robot manipulators. Soft ma-
nipulators are robots often inspired by the morphology and
functionality of biological agents like octopus tentacles and
elephant trunks [1] [2] [3] [4] or tendrils [5] [6]. This type of
manipulator deforms continuously to achieve a certain pose
and can exhibit key advantages over their rigid counterpart
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1In the literature, these manipulators are usually classified as continuum
robots. However, their main characteristic of interest in this paper is that they
create motion by deformation, as opposed to the classical use of articulations.

with suitable design: they are lighter and therefore have less
energy consumption, present a bigger power-to-weight ratio as
well as a natural compliance because of their material prop-
erties. This compliance also gives the manipulators the ability
to better adapt themselves to dynamic work environments
and to work side by side with humans, without the concern
of hazardous collisions. Because of these characteristics, soft
manipulators have found a niche of applications in the medical
field [7] [8] [9] [10] [11].

The compliant nature of soft continuum manipulators comes
with the issues of modeling and control of their behavior,
which is highly non-linear. A popular approach to model con-
tinuum robots has been the modification of methods already
established to model rigid manipulators. In [12], Hannan and
Walker presented the development of the kinematic model
for a trunk robot. The model considers that each section
bends with constant curvature. This approach has been used to
express the kinematics of continuum trunks [13] and tendril-
like continuum robots [14]. The constant curvature models can
be used even when the shape of the continuum robot does not
conform to a circular arc. In [15], the kinematics of the bionic
handling assistant are obtained by modeling each section of
the robot as a finite number of serially connected circular arcs
with different parameters each. The models mentioned, while
producing close-form analytic models, are only based on the
geometry of the robot, without consideration for the mechanics
of the structure, necessary to properly describe the deformation
of this type of robot.

A. Model requirements

In contrast with rigid robots, soft manipulator kinematics
not only depend on the geometry of the robot, but also
on its mechanical properties, in particular the stiffness of
the structure. While rigid manipulator kinematics can be
used to solve positioning problems with the assumption of
resistance/counter-actuation to gravity or load effects, soft ma-
nipulators easily comply to these forces and deform. To answer
the same problems of positioning, it is then necessary to take
into account the current deformation (ie change of geometry)
induced by these forces to obtain a kinematic relation between
position of end-effector and position of actuators. (Fig. 1).

The degrees of freedom in a rigid manipulator are de-
termined by the joints of the manipulator and are often all
actuated. In soft manipulators, the degrees of freedom are
generated by the deformation of the continuum and their
number is infinite. (It can be noted that it is disconnected from



Fig. 1: In this example a tendon is pulled to create the motion
of an elastic soft robot. Starting with the same geometry, the
material stiffness has an influence on the kinematics (output
vs input displacements).

the number of actuators). Usually this problem is addressed by
a discretization of the degrees of freedom of the continuum,
through methods provided by computational mechanics. An-
other difference in soft manipulators, compared to rigid ones,
is that if a load is carried by a soft manipulator, this load will
deform the robot and modify its kinematics.

B. Related Work

This recapitulation of previous work is centralized in the use
of continuum mechanics in the modeling of soft manipulators.
A discussion on the use of mechanics-based methods to
describe soft continuum robots can start by mentioning the
work of Chirikjian [16] [17], who used continuum mechanics
to define a curve that describes the pose of hyper-redundant
robots without considering actuation. This work laid the basis
for subsequent work on continuum manipulator models.

Given the uprising trend in the design of manipulators
composed by a single elongated backbone actuated by tendons,
researchers have explored beam theory-based approaches to
describe the pose of this particular type of robots. Rucker
et al. present in [18] the potential of this theory applied to
the modeling of manipulators with tendon routing. In [19] the
compliance model of continuum robots is obtained by consid-
ering the robot as a single section of Cosserat rod. In [20],
Jones presents a static model in three-dimensional space and
in [21], this theory was implemented to compute the inverse
kinematic model of a tendon-driven tentacle manipulator in
two dimensions under Euler-Bernoulli beam hypothesis. While
providing models suitable for fast computing, beam theory is
limited in its application by the shape of the backbone, i.e.
when the backbone cannot be assimilated as a uniform beam,
this modeling approach loses relevance. In particular, when
the body of the robot is actuated intrinsically by pneumatic
or hydraulic actuators it tends to have a more complex shape,
and its behavior cannot be described by beam theory methods.
Finite Element Analysis is increasingly used in the field of

soft robots. In [22], a direct finite element simulation is used
to observe the behavior of soft pneumatic actuators.

In this article, the development of a method to compute the
kinematic model of soft manipulators that relies on the finite
element model of the structure of the robot is presented. By
using different types of elements (tetrahedral, beam, or shell
elements), the methodology can be used on robots of very
complex shapes. Contrary to the majority of models currently
available in the literature, this approach also models two types
of actuators, which enables this technique to be used as part
of the control of the robot as well as in off-line analysis.
Moreover, gravity and payload carried by the end-effector can
be accounted for by this approach.

This article presents the following contribution towards the
kinematic modeling of soft manipulators:
• A FEM-based modeling approach that accounts for com-

plex structural shapes and the mechanics of the employed
material.

• The model of two actuation systems (i.e. pulling on cables
and pneumatics) currently implemented in the majority of
designs of soft manipulators.

• The integration of sensors in the simulation that allows
for an observer of the manipulator in the configuration
space.

• The validation of the modeling approach using two com-
pletely different deformable manipulators.

• The experimental comparison of this approach to two
other geometric-based models.

• An experimental study on the robustness of the model
under external loading.

• A closed-loop controller based on a state estimator and
the robustness analysis of the closed-loop system.

In section II, the formulation of the static equilibrium
and the constraints for end-effector, actuators and sensors
is explained. Section III shows the projection of the model
in the constraint space and the convex optimization process
used to solve the reduced model. Section IV presents the
experimental validation of the forward and inverse kinematic
models and finally, in Section V, a discussion about the results
and limitations of the model, as well as the perspectives for
future work are presented.

II. METHODS

In this section, the development of the Finite Element
Method (FEM) of soft manipulators is presented. The method
relies on the constitutive law of the material from which the
robot is made. This constitutive law can be directly measured
by conducting stress/strain mechanical tests to a material
sample in the ideal case. When the strain/stress tests cannot be
done, an approximation of the constitutive law can be obtained
in the simulation. The main idea is to tune these material
parameters qualitatively by approximating the deformation
seen in reality by that observed on simulation in which the
deformation of the real robot is matched given a known static
load. A similar approach is presented in [23] in the context of



radiotherapy. After measuring the constitutive law, a volume-
based approach is used with tetrahedral elements. Then, the
mathematical formulation of the constraints is introduced
using Lagrange multipliers. In this method, the end-effector,
actuators, and sensors use constraint models.

A. FEM model of soft and continuum robots

Depending on the shape of the robot, one could use volume,
surface or linear elements to compute the non-linear defor-
mation of the structure. In this paper, volumetric elements2

are used. A non-linear formulation accounts for the large
displacements and rotations of the structure. In continuum
mechanics, this is considered as the case of large strain
but small stress. More sophisticated FEM models can be
proposed in the future, according to the constitutive law and
the solicitation of the employed material (i.e. large stress). The
computation in real-time with such models will be even more
challenging, but the principles of the method described in this
paper would still apply.

The corotational implementation of volume FEM, presented
in [24], is particularly suitable for linear elasticity under the
hypothesis of large displacements. The shape of the robot is
meshed using linear tetrahedral elements, but the same method
could be used with other elements, shape functions and more
advanced material laws.

In the FEM, the nodes at the vertices of the elements
represent the degrees of freedom of the manipulator. Even
for a considerable amount of nodes, the approach is fast to
compute, numerically stable and a free implementation in C++
is available in the open-source framework SOFA [25]. During
each step i of the simulation, the following linearization of the
internal forces is updated:

f(xi)≈ f(xi−1)+K(xi−1)dx (1)

where f provides the volumetric internal stiffness forces at a
given position x of the nodes, K(x) is the tangent stiffness
matrix that depends on the actual positions of the nodes and
dx is the difference between positions dx = xi− xi−1. This
linearization is valid as long as the displacement of the nodes
dx is small. The lines and columns that correspond to fixed
nodes are removed from the system to get a full rank for
matrix K. In f and K, the rows (and columns for K) contain
the component of the internal forces (x, y, z) for the nodes, in
the order corresponding to their numbering in the mesh.

In this paper, the study is limited to quasi-static behavior
on purpose, since the simulation step required to capture high
frequency vibrations is not feasible. Thus, in a first approach,
the assumption is that the control of the robot is performed at
low velocities, so that the inertia effects in the motion of the
robot can be neglected.

One seeks to establish static equilibrium at each step from
the first law of Newton:

fext + f(xi)+HT
λ = 0 (2)

2The method has also been tested with beam elements.

where fext represents the external forces (e.g. gravity) and
HT λ gathers the contributions of the end-effector, actuators
and the contact forces as Lagrange multipliers (see the follow-
ing sections). The way H is obtained is explained in sections
II-B and II-C but its computation is performed with the values
obtained from the previous step. We then use the expression
H(xi−1) and through the linearization explained in (1), we
obtain the following formulation :

−K(xi−1)dx = fext + f(xi−1)+H(xi−1)
T

λ (3)

The variables dx and λ are both unknown and are found
during the optimization process.

It is noted that the matrix K is highly sparse. In the
implementation, a conjugate gradient solver is used and pre-
conditioned by a sparse LDLT decomposition. For a mesh
composed of about 1000 nodes and about 3000 tetrahedral
elements, a refresh rate of 60Hz is obtained with the imple-
mentation available in SOFA.

B. Constraint for the end-effector

To set the Lagrange multiplier on the end-effector, a point or
a set of points of the robot needs to be considered as the end-
effector. It could be any point(s) mapped on the finite element
mesh. For each point, the constraint objective is to reduce the
difference between the end-effector position and its desired
position pdes. Thus, a function δ e(x) : R3n→R3 with n being
the number of nodes, evaluates this difference along x, y and
z. If the end-effector corresponds to a node i of the mesh, the
function is: δ e(x) = xi−pdes, where xi is the position of node
i. If the effector is set inside an element, we use:

δ e(x) =
n

∑
i=0

φi(pe f f )xi (4)

where pe f f is the position of the end-effector in the rest con-
figuration of the FEM model and φi is the shape (interpolation)
function associated to node i.

If several points are used for end-effector position, the
vector δ e(x) gathers the evaluation of the difference for all
the points. The function is then R3n → R3m, where m is the
number of end-effector points.

The matrix H used for the end-effectors corresponds to
He(x) = ∂δ e(x)

∂x .
The matrix He is highly sparse: A row, that corresponds to

a component of a point of the end-effector, will contain non
null values on a very small number of columns: As the point is
mapped on a single tetrahedral element, there is a maximum of
4 non-null value per row. Of course, the column should match
with the components of the nodes, given the fact that the non-
null values are gathered in 3x3 diagonal block matrices.

Finally, an important point is the effort value that is put
on the Lagrange multiplier that corresponds to the terminal
effector. The value of λ e will depend on the load applied
on the end-effector. Two cases can be considered: (I) if the
points defined as end-effector move freely in the space, there



is no physical interaction, so the contribution of the constraint
vanishes λ e = 0. (II) if one or several points of the end-effector
carries one object l which mass creates a load that could
deform the structure. In such cases, the corresponding load
should be set on λ e = mlg. with ml the mass of the object and
g the gravity field.

C. Actuator constraint model
In this work, the actuator model takes into account its

physical characteristics. Two types of actuators have been
implemented in the framework: Tendon (cable) and pneumatic
actuators. The contributions of these actuator constraints are
unknown before the optimization process. However, given the
type of actuation, the constraint is not set the same way.

a) Cable actuator: In a first case (Fig 2), a cable is used
to actuate the structure. The cable can simply be attached at
one point of the structure, but it can also go through several
other points (frictionless guides are considered) In all cases,
the unknown λa is the stretching force inside the cable. This
force is unilateral (λa ≥ 0).

Fig. 2: Tendon actuation. db and da on the figure, represent
the direction of the tendon before and after the cable guide,
respectively, which are used to compute the normal forces at
the guides.

Let’s suppose now that the points are numbered starting
from the extremity where the cable is being pulled. The matrix
H is computed this way: At each point p, we take the direction
of the cable before db =

xp−xp−1
‖xp−xp−1‖

and after da =
xp+1−xp
‖xp+1−xp‖ .

To obtain the constraint direction that is applied to the point,
we use dp = da − db. Note that the direction of the final
point is equal to the direction ”before” as da does not exist.
These constraint directions are mapped on the nodes using the
interpolation:

...
fn
...

=


...

φn(α,β ,γ) dp
...

λa = HT
a λa (5)

A function δa(x) is defined to provide the length of the cable,
given the position of the constrained node(s). The actuator
stroke can also be included by imposing δa(x) ∈ [δmin δmax]).
Through the use of this function, we get Ha =

∂δa(x)
∂x .

b) Pneumatic actuator: The formulation is compatible
with pressure-based actuation of cavities that are placed on
the structure, as seen in Fig. 3. In that case, the effort λa is
the pressure exerted on the wall of the cavity. As the pressure
is uniform inside the cavity, a single constraint can be set for
each pneumatic actuator. All triangles of the cavity wall will be
involved: For each triangle t, the area and the normal direction
are computed. If this result is multiplied by the pressure, one
obtains the force applied by the pneumatic actuator on the
nodes t of this triangle. Consequently, the contribution of each
triangle is added in the corresponding column of HT

a .

Fig. 3: Pressure actuation

In the particular case of a pneumatic actuation, λa provides
the difference of pressure inside the cavity compared to
the atmospheric pressure. Usually, pneumatic actuators only
provide positive pressure so λa ≥ 0. However, in some cases,
it is also possible to create both negative and positive pressure
using vacuum/pressure actuation. In that case, there is no
particular constraint on the unknown value of λa, despite an
eventual limit (max / min) of pressure that can be achieved by
the actuator.

The approach to the modeling of fluidic actuators can
also account for hydraulic actuators, by accounting for the
weight distribution of the liquid at any given configuration, as
presented in [26].

D. Sensor constraint model

In order to relate the end-effector position and the geometry
of the manipulator, one needs sensors that can measure the
geometric state of the robot. In this study, the sensors used
can measure the lengths of the sections that compose the
manipulator, but also that can be easily integrated in the
design. String potentiometers offer a good solution to acquire
information on the real geometric state of the robot. As in the
case of the cable actuator, the string of the sensor is routed
through several frictionless guides, at n points xn. In the model,
the measure of the lengths read by the sensor will be

n−1

∑
i=1
‖xi+1−xi‖ (6)

which evaluates the distance between each sensor guide
after the position of the nodes have been updated. A function



δs is defined to represent the difference between the current
lengths of the sensors and the desired lengths. The matrix Hs
that gathers the directions of the sensor constraint is obtained
in the same way as for the cable actuator, shown in section
II-C.

III. REDUCED MODEL IN THE CONSTRAINT SPACE

The classical resolution of a FEM problem (like solving
the static equilibrium of the structure described at equation 3)
provides a forward model: it allows to compute the displace-
ments of the structure, given the values of the efforts put on
the actuator λa. However, in the case of position control, the
actuation λa is the unknown. Yet, for controlling the motion of
the soft robot, an inverse model is needed, which is challenging
to compute in real-time as the size of the system is in the range
of several thousands degrees of freedom. In this work, another
approach is used, based on the projection of the mechanics in
the constraint space that drastically reduces the size of the
optimization problem. This approach, initially developed in
[27], is generalized. A new formulation of the inverse problem
in the form of a quadratic programming (QP) optimization
(developed in [28]) is used.

A. Reduced compliance in constraint space

As stated above, the optimization process relies on a projec-
tion of the mechanics in the constraint space. Each constraint
has a direction that is set by a line of the matrices He and Ha

This matrix is sparse, as the direction of the constraints is
mapped on few nodes of the FE mesh. The values of the effort
applied by the actuators λ a are not known at the beginning of
the optimization process, whereas the value of λ e is supposed
to be known.

The first step consists of obtaining a free configuration xfree
of the robot which is found by solving the equation 3 while
considering that there is no actuation applied to the deformable
structure. In practice, the known value of λ e is used and λ a = 0
is imposed.

The linear equation 3 is solved using a LDLT factorization
of the matrix K. Given this new free position xfree for all the
nodes of the mesh, one can evaluate the values of δ

free
e =

δ e(xfree), the shift between the effector point(s) position and
the desired position introduced in section II-B. One can also
evaluate δ

free
a = δ a(xfree) the position of the actuated points

without actuation effort.
From the FEM formulation of the problem that uses a large

matrix K, a formulation that accounts for the directions of the
constraints placed for actuators and end-effectors is derived.
Using the Schur complement of matrix K in the Lagrange
multiplier-augmented system [29], a small formulation of δ e
is obtained. This variable expresses the difference between the
desired position for the end-effector and its current position in
terms of the actuators contributions λa:

δ e =
[
HeK−1HT

a
]︸ ︷︷ ︸

Wea

λa +δ
free
e (7)

The Schur complement also provides similar formulations
for the difference between a desired sensor or actuator position
and its current position:

δ a =
[
HaK−1HT

a
]︸ ︷︷ ︸

Waa

λa +δ
free
a (8)

δ s =
[
HsK−1HT

a
]︸ ︷︷ ︸

Wsa

λa +δ
free
s (9)

This step is central in the method. It consists in projecting
the mechanics into the constraint space. As the constraints
are the inputs (effector position shift and sensor length shift)
and outputs (effort to apply on the actuators) of the inverse
problem, the smallest possible projection space for the inverse
problem is obtained. It allows for a projection that drastically
reduces the size of the search space without loss of infor-
mation. Indeed, section III-B shows how the matrices Wea
and Waa provides the mechanical coupling equations between
actuators and effector point(s).

After this projection, the optimization is processed in the
reduced constraint space to get the values of λa. This part is
described in the section III-C.

The final configuration of the soft robot, at the end of the
time step, is obtained as :

xt = xfree +K−1HT
a λ a. (10)

It should be emphasized that one of the main difficulties is to
compute Wea and Waa in a fast manner. No pre-computation is
possible as their value changes at each iteration. However, this
type of projection problem is frequent when solving friction
contact on deformable objects. Thus, several strategies are
already implemented in SOFA [25].

B. Coupled Kinematic Equations

Using the compliance operator Wea, one can get a measure
of the mechanical coupling between effector and actuator, and
with Waa, the coupling between actuators.

For instance, the displacement δ i
e created on the end-effector

(along a direction stored on the line i of matrix He) by a unitary
force λ

j
a applied by the actuator (which is stored at the line j

of matrix Ha) is directly obtained by ∆δ i
e = wi j

eaλ
j

a +δ
i,free
e .

As the motion is created by deformation, the motion of
actuator j is influenced by actuator k.

Through the same principle, actuator k also influences the
displacement of the effector. To get a kinematic link between
actuators and effector, the method needs to account for the
mechanical coupling that can exist between actuators. It is
captured by Waa that can be inverted if actuators are defined
on independent degrees of freedom. Thus one can get a
kinematic link by rewriting equation (8) as:

δ e = WeaW−1
aa (δ a−δ

free
a )+δ

free
e (11)



Equation (11) is composed of a reduced number of lin-
ear equations that relate the displacement of the actuators
to the displacement of the effector. Consequently, matrix
WeaW−1

aa is equivalent to the Jacobian matrix of a rigid
manipulator. This matrix is a local linearization provided
by the FEM model on a given position. It needs to be
updated for deformations with large displacements.

C. Inverse model by convex optimization

The goal of the optimization is to find how to actuate
the structure so that the end-effector of the robot reaches a
desired position. This was initially proposed in [28]. It consists
in reducing the norm of δ e which actually measures the
shift between the end-effector and its desired position. Thus,
computing min( 1

2 δ
T
e δ e) leads to a Quadratic Programming

(QP) problem:

min
(

1
2

λa
T WT

eaWeaλa +λa
T WT

eaδ
free
e

)
(12)

sub ject to (course of actuators) :
δmin ≤ δ a = Waaλa +δ

free
a ≤ δmax

and (case of unilateral effort actuation) :
λa ≥ 0

(13)

The use of a minimization allows to find a solution even when
the desired position is out of the workspace of the robot. In
such a case, the algorithm will find the point that minimizes
the distance to the desired position while staying in the limits
introduced by the course of the actuators.

In practice, the QP solver available in the Computational
Geometry Algorithms Library (CGAL) [30] is used. The
matrix of the QP WT

eaWea is symmetric. If the number of
actuators is equal or inferior to the size of the end-effector
space, the matrix is also definite. In such a case, the solution
of the minimization is unique.

In the case when the number of actuators is greater than
the degrees of freedom of the effector points, the matrix of
the QP is only semi-definite. Consequently, the solution could
be non-unique.

A new criterion for the minimization can be introduced,
based on the deformation energy. Indeed, this energy Ede f
is linked to the mechanical work of the forces exerted by the
actuators. Ede f can be computed by evaluating the dot product
between λa and the displacements of the actuators ∆δa = δ a−
δ

free
a due to the actuator forces Ede f = λa

T
∆δa = λa

T Waaλa.
Yet, matrix Waa is positive-definite if the actuators are placed
on different nodes of the FEM or with different directions
(i.e. if there is no linear dependencies between lines of Ha.
Thus, one can add this energy in the minimization process by
replacing (12) with:

min
(

1
2

λa
T (WT

eaWea + εWaa)λa +λa
T WT

eaδ
free
e

)
(14)

with ε chosen sufficiently small so that the deformation
energy does not disrupt the quality of the effector positioning.
In practice, ε = tr(WT

eaWea)
tr(Waa)

∗ 10−3 so that the term εWaa
does not alter the value of the QP matrix. Thanks to this
modification, the QP matrix becomes positive-definite and a
unique solution of the problem can be found.

IV. KINEMATIC MODELS OF A SOFT MANIPULATOR

In this section, the proposed methodology is validated
experimentally by obtaining forward and inverse kinematic
models of the Compact Bionic Handling Assistant (CBHA).
The forward model is compared to two geometric models
developed for the same robot. The simulation in real time of
the inverse kinematic model is used in open loop to control
the position of the end-effector of the manipulator. A proof of
genericness is given by modeling a second soft manipulator
inspired by parallel robots actuated by tendons with clear
geometric differences and material characteristics.

A. Description of the CBHA

Fig. 4: The RobotinoXT by Festo Robotics. (left) The anatomy
of the Compact Bionic Handling Assistant. (right) A section
of the manipulator, composed by 3 pneumatic actuators and
their correspondent length sensor.

The CBHA is the bionic continuum manipulator component
of the RobotinoXT, a didactic mobile platform designed by
Festo Robotics. The system is shown in Fig. 4 (a). The bionic
continuum manipulator is formed by 2 serially connected
sections of pneumatic actuators, an axially rotating wrist and
a compliant gripper. Without actuation, the manipulator has a
length of 206mm, with each section having a length of 103mm.
The width at the base of the manipulator is 100mm long and
the top has 80mm of width. In our study, the end of the second
section is considered as the end-effector.

Each section of the manipulator is composed of a parallel
array of pneumatic actuators, as shown in Fig. 4 (b). By



applying different pressures to the bellows, each section can
bend or extend independently. The pose of the manipulator is
obtained as the contribution of the poses of the 2 sections.
In order to sense the state of the robot, string potentiometers
measure the lengths of the actuators.

B. Forward kinematic models

The forward kinematic model of a soft manipulator deals
with the problem of finding the end-effector position, given a
defined configuration of the manipulator. For a rigid manipula-
tor, this configuration is simply the set of variables associated
with the joints of the robot. In contrast with the rigid robots,
the variables that express the configuration of a soft manipula-
tor change with respect to the structure of the robot and its type
of actuation, and therefore, cannot be obtained in a straight-
forward manner. The FEM-based methods explained before
provide an easy way to obtain the kinematic relation between
the end-effector and the configuration of the manipulator.

• FEM-based model
Given the intrinsic nature of the CBHA, the configuration of

the robot is represented by the lengths of the pneumatic actua-
tors that correspond to an end-effector position. Of course, the
description of the robot could be given in the actuator space
directly, using in this case Equation 7, to attain a pressure-
to-position model, but that requires a precise control over
the actuation (in this case the pressure inside the cavities)
in order to obtain a good estimation of the position of the
end-effector. Instead, Equation 9, which is reproduced here
for clarification, is used to relate the end-effector position
to the configuration of the manipulator represented by the
lengths of each pneumatic actuator, given by the sensors. This
representation is clearer in the context of kinematic modeling,
and allows for a position-to-position model which is less
sensitive to unknown hardware parameters.

δ s =
[
HsK−1HT

a
]︸ ︷︷ ︸

Wsa

λa +δ
free
s (15)

In this approach, no geometrical assumptions are needed.
Each part of the robot is modeled in detail using shell and
tetrahedral elements, as presented in Fig. 5. The mesh used
in the model of the pneumatic cavities is composed by 3528
elements.

Once the constraints have been incorporated in the model,
the convex optimization finds each actuator contribution re-
quired to have the desired sensor lengths. The final position
of the end-effector is obtained after the position of the nodes
of the mesh is updated.

• Constant curvature model
This model of the CBHA, which was developed in [31] and

[32] and validated in [33], works under the assumption that,
after actuation, the resulting pose of each section in the robot
can be represented by an arc section with constant curvature
(Fig. 6).

Fig. 5: Visual model of the trunk and the underlying finite
element model.

Fig. 6: Constant curvature model

The evolution from end-to-end of a section i is described,
in terms of backbone parameters, by 2 coupled rotations and
one translation in the homogeneous transformations:

i
jT =


c2φicθi + s2φi cφisφi(cθi−1) cφisθi xi
cφisφi(cθi−1) s2φicθi + c2φi sφisθi yi
−cφisθi −sφisθi cθi zi

0 0 0 1

 (16)

where the notations s and c mean sine and cosine respec-
tively. The cartesian coordinates of the end of the bending
section i are given by (xi,yi,zi), where xi = ricφi(1− cθi),
yi = risφi(1− cθi) and zi = risθi. The backbone variables φi,
θi and ri can be expressed in terms of the actuator lengths in
order to have the correct kinematic relations :

φi = tan−1(
√

3(l3−l1)
2l1−l2−l3

)

θi =
Di
3di

ri =
(l1+l2+l3)di

Di

(17)

with

Di = 2
√

l2
1 + l2

2 + l2
3 − l1l2− l1l3− l2l3 (18)



The parameter di represents the diameter of section i. In
this model, each section is considered to be a cylinder with
constant radius. The lengths of each actuator in the section i
are represented by l1, l2 and l3.

• Hybrid model

In this approach, developed in detail in [34], the CBHA
is considered as 17 vertebrae serially connected. Between
each pair of vertebrae, an inter-vertebra section is modeled as
a 3UPS-1UP joint (3 universal-prismatic-spherical joints and
one universal-prismatic joint). The behavior of a sub-structure
composed by 2 vertebrae and an inter-vertebra is represented
by a parallel robot with 3 DoF, as shown in Fig. 7.

Fig. 7: Sub-structure of the CBHA modeled as a parallel robot.

The parallel robot consists of an upper and a lower platform
connected by 3 limbs and a central leg. The limbs are modeled
by a UPS joint in which only the prismatic part is active
allowing the control of the position and orientation of the
upper vertebra, with respect to the lower vertebra. The central
leg is modeled as a passive UP joint and is used to constraint
the rotation about the longitudinal axis of the parallel robot,
as well as any shearing motion between the vertebrae.

The position and orientation of the upper vertebra k+1, with
respect to the lower vertebra k is given by the transformation
matrix

k
k+1T =


cθk sθksψk sθkcψk 0
0 cψk −sψk 0
−sθk sψkcθk cθkcψk zk

0 0 0 1

 (19)

where the angles θk and ψk represent pitch and roll angles,
respectively, and the notations s and c mean sine and cosine
respectively. In this model, the prismatic variable qn,k shown
in Fig. 7 represents the length of each inter-vertebra, which
is a percentage of the total length of the actuator. This
percentage can be obtained by considering the minimum and
maximum elongation of each inter-vertebra. This development
is presented in detail in [34].

C. Experimental validation and model comparison

In order to validate the model, a set of 50 end-effector posi-
tions distributed inside the task space of the manipulator were
selected. For each position, the correspondent configuration
of the robot was recorded using the string potentiometers that
are placed along the structure of the robot. The set of lengths
recorded were used as an input for the forward kinematic
model. The experiment assumes zero-end-effector payload.
The results are compared to those of the Constant Curvature
and also the Hybrid approach. This comparison is presented
in Fig. 8 and 9.

Fig. 8: X/Y view of the results from the model comparison.

Fig. 9: X/Z view of the results from the model comparison.

The results show that the constraint approach is more
accurate in estimating the position of the end-effector, with
a Root-Mean-Square (RMS) error of 4.66mm, compared to
12.87mm and 17.09mm of error for the Constant curvature
and the Hybrid approaches, respectively. We hypothesize that
the imprecise measurement of displacement for each vertebra
may be the cause of the hybrid approach being less precise
than ours, as there were only 6 string potentiometers available
to chart the displacements. Moreover, this model was initially
developed to be able to inverse it, more than for the pure
precision of the forward kinematic model.

Nevertheless, the FEM model still has a few limitations in
its development. These limitations represent the main source of
error in the results: for the moment, the constitutive law used
to model the material of the trunk is only an approximation.



Fig. 10: Collision of the outer wall of the cavities. The
collisions occur on the orange edges depicted in the bent
actuator (right).

Moreover, non-linear effects like the viscosity of the material
are not yet implemented in the model.

Another source of error comes from the geometry of the
trunk itself. When the trunk is bent at a maximum angle, the
outer walls of the pneumatic cavities collide with each other,
as shown in Fig. 10. The consideration of these collisions is
not yet implemented in the simulation.

The generic nature of the approach showcased in this
article is illustrated by obtaining the inverse kinematics of
two different soft manipulators. The simulation of the inverse
model provides the position control of the robots in open loop
that can be used to pilot directly the robot, as in the case of
the parallel soft robot.

D. Inverse kinematic model

In this section, an experimental validation of the modeling
methodology is conducted using two different soft robots:
• A parallel soft robot made of silicone, actuated with

tendons (cables) controlled in position,
• The Compact Bionic Handling Assistant (CBHA).

The inverse model provided by convex optimization in real-
time allows to teleoperate the robots in open-loop: Given a
desired input position of the effector, the desired output for
the actuators is computed. For the soft parallel robot, a desired
position of the tendons is provided.

1) Modeling and feed-forward control of a parallel soft
robot: This experiment is based on a 3D soft robot, made
of silicone, which design is inspired by parallel robots with
closed kinematic chains (Fig. 11). In its rest position, the
dimensions of the robot are 180× 180× 130mm The robot
naturally deforms and sinks under the action of gravity, but 4
unilateral actuators (servo-motors that are connected to the
structure of the robot with cables) are placed on each leg
to prevent and pilot the deformation. The effector position is
placed on the upper part of the robot. Its trajectory is defined
in 3D (and can interactively be changed by a user) and the
algorithm provides the position to apply to the servomotors.
The Young modulus of the silicone, measured experimentally,
is used to parametrize the robot. The FEM model of the robot
is composed of 4147 Tetrahedrons and 1628 Nodes. When
projected in the constraint space, the size of the system is
highly reduced: 3 equations for the effector, and 4 equations
for the actuators. The convex optimization that leads to the

Fig. 11: Deformable parallel manipulator.

inverse model can be performed in real-time. The most time-
expensive part of the computation is the projection expressed
in equations (7) to (8) (50 ms on a Core i7, 2.8GHz), but when
using the Graphics Processing Unit (GPU) method described
in [35], it significantly reduces the computation time of the
projection (15ms in this case).

To validate the method, a study of the discrepancy be-
tween the desired positions and the obtained positions is
conducted on static positions distributed across a workspace
of 25mm×25mm×50mm around the rest-position of the robot
(see Fig. 12). The measurements are performed using a motion
capture system based on infrared cameras3. On a sample of 28
positions, a mean error of 1.4mm is obtained with a standard
deviation of 0.6 mm and a maximum error of 2.9 mm. This
illustrates the precision that can be achieved using such FEM
approaches.

Fig. 12: Comparison of desired trajectory and measured tra-
jectory of the parallel manipulator

It can be noted that these results are obtained using an
open-loop and with a position to position control: for a given
position of the effector, the algorithm finds a position for the

3The positioning precision provided by the motion capture system is less
than 0.1mm



actuator cables. This is a favorable case for FEM precision
because the partial differential equations are enforced with
Dirichlet boundary conditions.

2) Inverse kinematics of the CBHA: Considering the kine-
matic relationship for the CBHA given in section IV-D, that
is the link between the actuator lengths and the position of
the end-effector, the inverse kinematic model, solved by the
convex optimization will give the actuator lengths that result
from a predefined end-effector position. The FEM analysis
applied to model this soft robot is detailed in [36]. A domain
decomposition strategy is applied in order to perform the
computation of the model (Equation (3)) and the projection
in the constraint space (Equation (7)). After the actuator
contribution required to achieve the desired position of the
end-effector is applied to the model, and the position of
the nodes is updated, the readings from the sensors in the
simulation, given by Equation 6, will give the lengths of the
pneumatic actuators that represent the output of the inverse
kinematic model.

To validate the method, a set of 50 end-effector positions
are selected inside the task space of the robot and the corre-
sponding set of lengths for each position is recorded by the
sensors of the robot. The same set of positions is used as
inputs for the inverse model, and the resultant length of each
actuator is estimated. This study is summarized in Table 1,
where l1, . . . , l6 represent the lengths of the actuators and their
values are in mm, µ represents the mean error and σ is the
standard deviation. The results are presented in Fig. 13.

Fig. 13: Comparison of measured and estimated lengths of one
of the sensors given a predefined set of end-effector positions
for the CBHA

TABLE 1: Statistical analysis of the error between measured
and estimated lengths for the CBHA

l(mm) l1 l2 l3 l4 l5 l6
µ(mm) 3.2 2.43 3.86 4.08 3.6 3.69
σ(mm) 1.55 1.76 2.05 2.12 2.56 2.06

The results show a mean error between 2.43mm and
4.08mm across all lengths, which represents between 1.21%
and 2.04% of the total length of the manipulator. As in the
case of the parallel robot, the set of actuator contributions (in
this case the pressures applied to the cavities) obtained from

the optimization process can be used as input for the real
robot to obtain a feed-forward control. However, as explained
before, there are some considerable discrepancies between the
pressure calculated by the simulation and the pressure applied
to the cavities, mainly caused by the way the pressure is
regulated in the robot. This leads to less accurate results.

In order to improve the results in terms of efforts (pres-
sure,force) in the inverse model, one can use more advanced
constitutive models for the materials. One of these models is
the St Venant-Kirchhoff hyper-elastic model. The stress/strain
relationship in the St Venant-Kirchhoff model is represented
by the Second Piola-Kirchhoff stress tensor S that has the
form:

S = λ tr(E)I+2µE (20)

where E is the Lagrange-Green strain tensor and λ and
µ are the Lamé constants that can be approximated from
the Young’s modulus and Poisson’s ratio of the material in
question. We have conducted tests on the parallel soft robot
using the St. Venant-Kirchhoff model to compare the results
to those obtained using the corotational formulation. In the
tests we observed very small errors in the displacement output
(3.24% of a total cable stroke of 50mm). In the case of the
force output we observed bigger errors (16.02% of the tension
in the cable) related to the errors made by the corotational
formulation in the stress computation.

E. Deflection of end-effector under external loading
As explained in section II, one of the advantages of this

modeling approach is the ability to predict the deflection of
the robot under external loading, given a good representation
of the material mechanics. If the load is known a priori,
the value of the force acting on the end-effector λe can be
used in equation (3) to compute the position that accounts for
said force. In order to validate this modeling feature, a set
of experiments were conducted on both manipulators using
known loads.

First, an initial configuration for the manipulator without
loading is selected and the position of the end-effector is
measured, then the load is applied and the new position of
the end-effector is recovered after the robot achieves static
equilibrium. The same load is then applied to the model of the
manipulator using the same initial pose and the resulting end-
effector position is also recovered. In the case of the CBHA,
the model of the sensors presented in section II-D is used
to apply the configuration of the real robot measured by the
string potentiometers to the simulation model. A vector that
connects initial and final end-effector positions represents the
deflection caused by the loading.

In order to assess the repeatability of the measurements,
the loading sequence described before is performed 40 times
for each loading value and the average value is then used
for the model validation. A standard deviation of 0.4838mm
is obtained across all the measurements. The comparison be-
tween measured and model deflections for both manipulators
is presented in Fig. 14 and 15.



Fig. 14: Comparison between measured and predicted deflec-
tions caused by external loading on the parallel manipulator

Fig. 15: Comparison between measured and predicted deflec-
tions caused by external loading on the CBHA manipulator

In the figures, the blue line represents the compliance to
loading of the manipulators and the red line is the prediction
of the model. In the case of the CBHA, the maximum
error is 4.107mm with an average error of 2.1047mm. Nev-
ertheless, Fig. 15 shows that the CBHA presents a strain
hardening/necking stages of plastic behavior at the beginning
of the loading profile which corresponds to the compliance
of the plastic material from which the manipulator is made
of (polyamide nylon), and therefore the model prediction is
accurate only for a small region of the profile. In order to
improve the model predictive capabilities for the CBHA in
particular, two constitutive laws could be implemented to
account for the different behaviors, but this would modify the
way the inverse FEM is formulated. In contrast, the maximum
error in the case of the parallel manipulator is 2.06mm with an
average error of 2.01mm. The reason we obtain better results
is because the material of the parallel robot conforms better
to the assumption of high deformation and low stress, while
also being an elastic material with no plastic behavior.

V. FEM-BASED CLOSED-LOOP CONTROL OF CONTINUUM
ROBOTS

In section IV-D2, the relationship between the sensor
lengths and the end-effector position of the CBHA was ob-
tained based on the FEM simulation of the robot, however, in

order to control the motion of the robot, the set of pressures
applied to the actuators is to be computed. Indeed, the rela-
tionship given by equation (7) can be used to control directly
the robot in open-loop, but as explained in IV-B this requires
an accurate control over the pressures applied to the robot.
Moreover, non-linear behaviors like the hysteresis and strain-
rate dependency of the material (which is not considered in
the model) render the feedforward control of the manipulators
unusable in real applications.

Controllers for soft manipulators have been investigated in
the past with the intention of rejecting non-linear behaviours
and model uncertainties that result from the complex dynamics
of the manipulators. Control based on energy formulations
[37], model-less approaches [38] and feedback controllers [39]
[40] have been proposed before with the intention of achieving
accurate positioning of the manipulators in presence of non-
modeled dynamics. In this section, a closed-loop control
strategy based on a state estimator is proposed.

A. Closed-loop control design

The closed-loop controller is designed to ensure the correct
configuration of the robot, given a desired end-effector posi-
tion. A reference computation is performed to transform the
desired position to the correspondent configuration. Assuming
that the external forces are constant, the discrete model of the
system, derived form of equation (9), takes the form:

δ s,k+1 = δ s,k +Jsa(xk)∆λa,k+1 (21)

where Jsa = Wsa is the Jacobian matrix between sensors
and actuators. When the desired sensor lengths are provided
by the reference computation, we can propose the closed-loop
control approach shown in Fig. 16

In Fig. 16 the blue blocks represents the computations
performed by simulation. Two simulations executing simulta-
neously are implemented in the closed-loop system: One main
simulation that computes the Inverse kinematic model and a
second simulation that acts as a state estimator for the system.
The state estimator is the Forward kinematic model simulation
of the robot that computes an estimated configuration for the
robot based on the lengths of the sensors. This configuration
is used to update the state of the Inverse kinematic model
at each simulation step. In this way, we make sure that the
configurations of both simulation model and the manipulator
are similar before the estimation of the Jacobian is computed.
The tracking error ek in the closed-loop system is computed
as:

ek = δ s,k−δ
d
s,k (22)

with δ d
s,k represents the desired lengths of the sensors and

δs,k represents the current lengths in the robot. We define the
control vector vk as:

vk = Ĵsa(x̂k)rk (23)



Controller

IKM simulation Robot

FKM simulation

-

Fig. 16: Closed-loop control of the CBHA based on IKM and FKM simultaneous simulations and the controller

where Ĵsa(x̂k) is the estimated Jacobian matrix between the
sensors and actuators and rk = ∆λa,k+1. Using Eq. 23, the
kinematic model can be rewritten as:

δ s,k+1 = δ s,k +vk (24)

The control law is based on proportional integrative strategy,
therefore, the control vector vk is designed in the sensor space
as:

vk =−kpek− kihk (25)

with kp and ki being the proportional and integrative gains
of the controller, respectively. The integrative term h at time
k+1 is computed as:

hk+1 = hk + ek (26)

Then, the control allocation based on a Quadratic Program-
ming (QP) formulation [41] is employed to find a unique
solution to:

rk = Ĵ+sa(x̂k)vk (27)

where Ĵ+sa is the pseudo-inverse of the estimated Jacobian. In
practice, as Ĵsa(x̂k) may not be fully invertible, we introduce
a variable O defined as

O = Ĵ+sa(x̂k)rk−vk (28)

Using O, the QP problem formulation (III-C) becomes:

min
uk

(OT O) (29)

the resulting rk will be the best possible inversion of Eq.
23 in the least square sense. In addition, the QP formulation
allows to define constraints like actuator saturation or positive
direction of actuation. Using Eq. 25 in Eq. 27, rk is rewritten
as

rk =−Ĵ+sa(x̂k)(kpek + kihk) (30)

Using Eq. 30 in Eq. 21, the closed-loop system is defined
as:

ek+1 = ek +Jsa(xk)rk (31)

which in the ideal case in which Ĵsa is invertible, can be
written as:

ek+1 = ek +vk (32)

The system of Eq. 32 is a simple first order discrete model
that can be controlled with any standard controller. We choose
the control strategy to be based on proportional-integrative
control law because we want to improve the convergence rate
and remove any steady state error (in the sensor space at
least). After testing, the selected gain values are kp = 0.14
and ki = 0.0003 as a compromise between the rise time of
the signal and its overshot. Fig 17 shows the response of one
actuator length of the simulated robot and the real robot given
a pre-computed set points corresponding to an end-effector
position inside the task space of the robot. The position is
chosen so that the actuators are far from their saturation
points. The model simulation and the real robot have different
initial condition. The experiment was performed for 2500
simulation steps with a simulation step of 0.1 seconds. After
1000 simulation steps, the set points are changed in both the
simulation and the real robot.

The results show that both, the simulation of the robot and
the robot itself have the same settling time ts ≈ 400 simulation
steps. We can also see that the curve that represents the
measured value of the lengths in the robot jumps between two
values. This behavior is a consequence of the poor resolution
of the string potentiometers. Fig 17 also shows a different
behavior in the transitory stage of the curve of the measured
lengths. This behavior can be attributed to different factors;
first, there is the time required to compute the configuration
of the manipulator from the measured sensor lengths; second,
there is a time delay for the desired pressure to be applied
to the robot, and finally, the plasticity of the material from



Fig. 17: Comparison of real and estimated actuator length of
the CBHA. A second set point is applied to the system after
1000 simulation steps in order to observe the performance of
the controller. The time step is 0.1s for the experiment.

Fig. 18: Measured lengths of the CBHA in closed-loop. An
external force is applied to the manipulator after 1050 time
steps. The time step is 0.1s for the experiment.

which the manipulator is built (polyamide-nylon) which is
not accounted for in our FEM model. On the other hand, the
pneumatic valves that control the pressure inside the actuators
have a small dead zone, so, when the manipulator starts its
motion from a zero-pressure condition, very small increments
in the pressure do not produce any motion until this dead zone
is surpassed, which is not considered in the FEM.

A second experiment was performed using the real robot
in the loop. In this experiment an external unknown force
was applied to the manipulator in order to see the uncertainty
rejection capabilities of the controller. Fig. 18 shows the results
of this experiment.

B. Robustness analysis

Because of modeling uncertainties, the estimated Jacobian
matrix Ĵsa(x̂k) is, in general, different from the Jacobian of
the robot Jsa(xk). We introduce the vector ωk that represents
the disparities between the real Jacobian and the estimated
Jacobian. We call this vector the inversion error and is defined
as:

ωk = [I−Jsa(xk)Ĵ+sa(x̂k)]vk (33)

Then, the closed-loop system is re-written as:

ek+1 = ek +vk +ωk = ek− kpek− kihk +ωk (34)

The disturbed closed-loop system is:

[
ek+1
hk+1

]
=

[
I− kpI −kiI

I I

][
ek
hk

]
+

[
I
0

]
ωk (35)

It can be disturbing that we end up with such a simple linear
system. We emphasize to the reader that the non-linearities are
taken into account by the two simulation blocks (FKM and
IKM in Fig. 16) in the closed-loop control. In Eq. 35, we are
writing the system in terms of ek and hk and if the model was
perfect, the system would be trivial. However, we can have
modeling errors, that is why, in the following, we will prove
that the control is robust to these modeling uncertainties ωk.

To simplify the notation of the problem, we define the
following vectors:

Xk+1 =

[
ek+1
hk+1

]
,Xk =

[
ek
hk

]
,D =

[
I
0

]
,F =

[
kp ki

]
(36)

Also [
I− kpI −kiI

I I

]
= A−BF (37)

where

A =

[
I 0
I I

]
,B =

[
I
0

]
(38)

Using this notation, matrix ωk is written as:

ωk = [I−Jsa(xk)Ĵ+sa(x̂k)]FXk (39)

We assume that the error in the Jacobian estimation is
bounded by a bounding parameter γ such that:

ω
T
k ωk = XT

k FT [I−Jsa(xk)Ĵ+sa(x̂k)]
T [I−Jsa(xk)Ĵ+sa(x̂k)]FXk ≤ γ

2XT
k FT FXk

(40)

with

[I−Jsa(xk)Ĵ+sa(x̂k)]
T [I−Jsa(xk)Ĵ+sa(x̂k)]≤ γ

2I (41)

For the proof of stability, we use Lyapunov’s second method
of stability [42]. We define the Lyapunov candidate function
as:

V = XT
k PXk (42)

where P is an unknown Lyapunov matrix with the properties

PT = P > 0 (43)

From Eq. 42 and the notation given in Eq. 36, the variation
of the Lyapunov function is defined as:

∆V = XT
k+1PXk+1−XT

k PXk (44)



Using Eq. 38, Eq. 44 is re-defined as:

∆V = ((A−BF)Xk +Dωk)
T P((A−BF)Xk +Dωk)−XT

k PXk
(45)

By making

A−BF = C (46)

Eq. 45 is written as:

∆V = (CXk +Dωk)
T P(CXk +Dωk)−XT

k PXk

= XT
k CT PCXk +XT

k CT PDωk +ω
T
k DT PCXk +ω

T
k DT PDωk−XT

k PXk
(47)

Reverting the notation in Eq. 38, Eq. 47 can be written in
matrix form as:

∆V =

[
Xk
ωk

]T [
(A−BF)T P(A−BF)−P (A−BF)T PD

DT P(A−BF) DT PD

][
Xk
ωk

]
(48)

For the proof, we introduce an accessory parameter α ≥ 0
in Eq. 40, such that:

ϒ = αω
T

ω−αγ
2XT

k FT FXk < 0 (49)

From Eq. 49, the left hand side of the inequality is written
in matrix form as:

ϒ =

[
Xk
ωk

]T [ −αγ2FT F 0
0 αI

][
Xk
ωk

]
< 0 (50)

Adding and subtracting this term to Eq. 48 allow us to find
a bounding for ∆V as:

∆V −ϒ+ϒ =

[
Xk
ωk

]T

Q
[

Xk
ωk

]
+ϒ (51)

with

Q =

[
(A−BF)T P(A−BF)−P+αγ2FT F (A−BF)T PD

DT P(A−BF) DPDT −αI

]
(52)

We know from Eq. 49 that ϒ < 0. Therefore, if Q is definite
negative, then ∆V < 0. To prove the closed-loop system to be
stable, the values for matrix P > 0 and α ≥ 0 need to be found
such as matrix Q is definite negative, given the predefined
values of the boundary parameter γ and the tuned controller
parameter kp and ki. To this end, a Linear Matrix Inequality
[43] Solver called SeDuMi [44] is used in the software Matlab.
In order to describe the LMI given by Eq. 46, Yalmip [45],
a toolbox for optimization that is compatible with Matlab is
employed. Given a value of γ = 0.98 and the gain values kp =
0.14 and ki = 0.0003, the LMI was solved successfully. The
resulting matrix P and the parameter α that make matrix Q
negative definite are:

P =

[
646.4512 1.2983

1.2983 0.0087

]
and α = 4655 (53)

Using the LMI solver, we can also compute the maximum
value of γ , which provides an insight on the robustness of the
closed-loop system. After some iterations we have:

max γ = 0.98685 < 1 (54)

Recalling Eq. 39, if ωT ω > 1, then matrices Jsa(xk) and
Ĵ+sa(x̂k) do not have the same sign, which means that the
robot Jacobian and the estimated Jacobian indicate opposite
directions. In our case, γ = 0.98685 is close to the limit case.
The proposed closed-loop system is robustly stable and can
handle high Jacobian inversion errors in the change of control
variables.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a modeling methodology to obtain the
kinematic relationships of soft manipulators. The kinematic
equations are derived from a FEM model (or any equivalent
physics based model) that can be obtained from the geometry
and the material properties of a soft manipulator. After a pro-
jection in a small constraint space, a set of coupled equations
relate the position of the end-effector to the contribution of
actuators and displacement of sensors. The validity of the
method is demonstrated in two different manipulators with
complex geometry. In the case of the CBHA, the results
were compared to those obtained with two geometric models
developed for the same robot. While the model of the material
used does not take into account the properties of viscosity, this
consideration is only due to the absence of knowledge of these
specific properties for the material used. Indeed, the framework
used allows for modeling viscoelasticity with Prony series
[46]. In general, a viscoelastic model is characterized by a
rate-independent term, which in this case is the shear modulus
representing the elastic behavior, and a rate-dependent modu-
lus. The rate-dependent modulus of the material is defined by
the Prony series based on time; faster strain rates will induce
higher modulus than static loads. The limitations on the use
of Prony series come with the determination of the required
coefficients, since it involves stress relaxation tests performed
under controlled temperature and loading speed. Another way
to model viscoelasticity behaviour is to introduce a rate-
dependent damping effect using Rayleigh equation. Rayleigh
damping is a viscous damping that is proportional to a linear
combination of mass and stiffness. Using Rayleigh damping,
The internal forces in the robot (equation 1) takes the form:

f(xi)≈ f(xi−1)+K(xi−1)dx+B(xi−1)dx (55)

where the Rayleigh damping matrix is computed as:

B = αM+βK (56)

where M and K are the mass and stiffness matrices, respec-
tively, and α and β are the coefficients of proportionality.

The problem of position control for soft manipulators was
solved by obtaining the inverse kinematic relationships of two
different types of robots. The implementation of the simulation



of the model was then used to directly pilot one of the
manipulators given a desired position of the end-effector in
feed-forward control.

The feed-forward control of the robots relies entirely on its
model. Because of the lack of material parameters, the open-
loop system does not account for non-linear behaviors such as
viscosity. The closed-loop controller proposed in this papers
was proven to be able to reject these model uncertainties and
improve the overall behavior of the manipulator. Moreover,
the proposed controller can be used even when high Jacobian
inversion errors are present.

It is important to remark that the method is no longer
viable when we leave the quasi-static motion case, and for
the moment, the sampling rate required to capture vibrations
in the robot is not feasible. Nevertheless, this first approach
to the kinematics and control for soft manipulator opens up
some interesting perspectives for future work:
• The model of the tendons does not account for the friction

between the cable and the guides it passes through.
Including a term in the formulation of the direct model
to account for the friction can be done, but the way it
will change the inverse model should be investigated.

• Given the information provided by the FEM model, a
study on the impedance control of the robot is feasible.
The information regarding the compliance of the robot
can be directly extracted from the FEM.
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