Pré-Publication, Document De Travail Année : 2018

Rational solutions to the KPI equation of order 7 depending on 12 parameters

Résumé

We construct in this paper, rational solutions as a quotient of two determinants of order 2N = 14 and we obtain what we call solutions of order N = 7 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 112 in x, y and t depending on 12 parameters. The maximum of modulus of these solutions at order 7 is equal to 2(2N + 1) 2 = 450. We make the study of the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6. When all these parameters grow, triangle and ring structures are obtained.
Fichier principal
Vignette du fichier
hal KPN=7V2.pdf (2.02 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01736228 , version 1 (16-03-2018)

Identifiants

  • HAL Id : hal-01736228 , version 1

Citer

Pierre Gaillard. Rational solutions to the KPI equation of order 7 depending on 12 parameters. 2018. ⟨hal-01736228⟩
153 Consultations
41 Téléchargements

Partager

More