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Abstract

We construct in this paper, rational solutions as a quotient of two
determinants of order 2N = 14 and we obtain what we call solutions of
order N = 7 to the Kadomtsev-Petviashvili equation (KPI) as a quotient
of 2 polynomials of degree 112 in x, y and t depending on 12 parameters.
The maximum of modulus of these solutions at order 7 is equal to 2(2N+
1)2 = 450. We make the study of the patterns of their modulus in the
plane (x, y) and their evolution according to time and parameters a1, a2,
a3, a4, a5, a6, b1, b2, b3, b4, b5, b6. When all these parameters grow,
triangle and ring structures are obtained.

Keywords: KPI equation; Fredholm determinants; Wronskians; rogue waves;
lumps.
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1 Introduction

We consider the Kadomtsev-Petviashvili equation (KPI), first proposed in 1970
[1] in the following normalization

(4ut − 6uux + uxxx)x − 3uyy = 0. (1)

As usual, subscripts x, y and t denote partial derivatives.
The first rational solutions were constructed in 1977 by Manakov, Zakharov,
Bordag and Matveev [2]. Other more general rational solutions of the KPI
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equation were found by Krichever in 1978 [3, 4], Satsuma and Ablowitz in 1979
[5], Matveev in 1979 [6], in particuler among many works on this subject.
We construct rational solutions of order N depending on 2N − 2 parameters
which can be written as a ratio of two polynomials in x, y and t of degree
2N(N + 1).
The maximum of the modulus of these solutions at order N is equal to 2(2N +
1)2. Here we construct the explicit rational solutions of order 7, depending on
12 real parameters, and the representations of their modulus in the plane of the
coordinates (x, y) according to the real parameters a1, b1, a2, b2, a3, b3, a4, b4,

a5, b5, a6, b6 and time t. When the parameters grow, we obtain N(N+1)
2 peaks

in particular structures, such as triangles, rings, or concentric rings.

2 Rational solutions to KPI equation of order

N depending on 2N − 2 parameters

The rational solutions to the KPI equation are given by the following result
[38, 40]:

Theorem 2.1 The function v defined by

v(x, y, t) = −2
|det((njk)j,k∈[1,2N ])|

2

det((djk)j,k∈[1,2N ])2
(2)

is a rational solution of the KPI equation (1), where

nj1 = ϕj,1(x, y, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2ϕj,1

∂ǫ2k−2 (x, y, t, 0),

njN+1 = ϕj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2ϕj,N+1

∂ǫ2k−2 (x, y, t, 0),

dj1 = ψj,1(x, y, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ǫ2k−2 (x, y, t, 0),

djN+1 = ψj,N+1(x, y, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ǫ2k−2 (x, y, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

(3)

The functions ϕ and ψ are defined in (4),(5), (6), (7).

ϕ4j+1,k = γ
4j−1
k sinXk, ϕ4j+2,k = γ

4j
k cosXk,

ϕ4j+3,k = −γ4j+1
k sinXk, ϕ4j+4,k = −γ4j+2

k cosXk,
(4)

for 1 ≤ k ≤ N , and

ϕ4j+1,N+k = γ
2N−4j−2
k cosXN+k, ϕ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

ϕ4j+3,N+k = −γ2N−4j−4
k cosXN+k, ϕ4j+4,N+k = γ

2N−4j−5
k sinXN+k,

(5)

for 1 ≤ k ≤ N .
The functions ψj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N are defined in the same way,
the term Xk is only replaced by Yk.

Xν =
κνx

2
+ iδνy − i

x3,ν

2
− i

τν

2
t− i

eν

2
,
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Yν =
κνx

2
+ iδνy − i

x1,ν

2
− i

τν

2
t− i

eν

2
,

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (9) and parameters eν defined by
(10).

ψ4j+1,k = γ
4j−1
k sinYk, ψ4j+2,k = γ

4j
k cosYk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cosYk,
(6)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ
2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ

2N−4j−5
k sinYN+k.

(7)

Real numbers λj are such that −1 < λν < 1, ν = 1, . . . , 2N depending on a
parameter ǫ which will be intended to tend towards 0; they can be written as

λj = 1− 2ǫ2j2, λN+j = −λj , 1 ≤ j ≤ N. (8)

The terms κν , δν , γν , τν and xr,ν are functions of λν , 1 ≤ ν ≤ 2N ; they are
defined by the formulas :

κj = 2
√

1− λ2j , δj = κjλj , γj =
√

1−λj

1+λj
,

xr,j = (r − 1) ln
γj−i
γj+i

, r = 1, 3, τj = −12iλ2j

√

1− λ2j − 4i(1− λ2j )
√

1− λ2j ,

κN+j = κj , δN+j = −δj , γN+j = γ−1
j ,

xr,N+j = −xr,j , , τN+j = τj j = 1, . . . , N.

(9)

eν , 1 ≤ ν ≤ 2N are defined in the following way :

ej = 2i
(

∑1/2M−1
k=1 ak(je)

2 k−1
− i

∑1/2M−1
k=1 bK(je)

2 k−1
)

,

eN+j = 2i
(

∑1/2M−1
k=1 ak(je)

2 k−1
+ i

∑1/2M−1
k=1 bk(je)

2 k−1
)

, 1 ≤ j ≤ N,

ak, bk ∈ R, 1 ≤ k ≤ N − 1.

(10)

ǫν , 1 ≤ ν ≤ 2N are real numbers defined by :

ǫj = 1, ǫN+j = 0 1 ≤ j ≤ N. (11)

3 Explicit expression of rational solutions of or-

der 7 depending on 12 parameters

In the the following, we explicitly construct rational solutions to the KPI equa-
tion of order 7 depending on 12 parameters.
We cannot give the complete analytic expressions of the solutions to the KPI
equation of order 7 with twelve parameters because of their lengths.

The rational solutions to the KPI equation can be written as v(x, y, t) = −2
|d3(x, y, t)|

2

d1(x, y, t)2
,
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with d3 and d1 polynomials of degree 112 in x, y and t. The number of terms
of the polynomials of the numerator d3 and denominator d1 of the solutions are
shown in the table below (Table 1) when only one of the parameters ai and bi
are set non equal to 0.

ai d3 d1 bi d3 d1
1 86 927 46 383 1 86 926 45 036
2 55 509 29 584 2 55 509 28 790
3 42 219 22 489 3 42 309 21 962
4 34 968 18 608 4 34 968 18 167
5 30 342 16 132 5 30 342 15 778
6 26 595 14 099 6 26 595 13 846

Table 1: Number of terms for the polynomials d3 and d1 of the solutions to the
KPI equation in the case N = 7.

We give patterns of the modulus of the solutions in the plane (x, y) of coordi-
nates in functions of parameters a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6 and
time t.
The maximum of modulus of theses solutions is checked equal in this case N = 7
to 2(2N + 1)2 = 2× 152 = 450.
When all the parameters are equal to 0, we obtain the lump L7 with a highest
amplitude of the modulus equal to 450.
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Figure 0. Solution of order 7 to KPI, for t = 0 when all parameters equal to 0.

Figure 1. Solution of order 7 to KPI, for a1 6= 0 and all other parameters
equal to 0; on the left for t = 0 and a1 = 1; in the center for t = 0 and

a1 = 103; on the right for t = 1 and a1 = 105.

Figure 2. Solution of order 7 to KPI, for b1 6= 0 and all other parameters
equal to 0; on the left for t = 0 and b1 = 1; in the center for t = 0 and

b1 = 103; on the right for t = 10 and b1 = 106.
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Figure 3. Solution of order 7 to KPI, for a2 6= 0 and all other parameters
equal to 0; on the left for t = 0 and a2 = 106; in the center for t = 0.1 and

a2 = 106; on the right for t = 10 and a2 = 103.

Figure 4. Solution of order 7 to KPI, for b2 6= 0 and all other parameters
equal to 0; on the left for t = 0 and b2 = 105; in the center for t = 0.1 and

b2 = 103; on the right for t = 10 and b2 = 105.

Figure 5. Solution of order 7 to KPI, for a3 6= 0 and all other parameters
equal to 0; on the left for t = 0 and a3 = 108; in the center for t = 0.1 and

a3 = 105; on the right for t = 10 and a3 = 103.

6



Figure 6. Solution of order 7 to KPI, for b3 6= 0 and all other parameters
equal to 0; on the left for t = 0 and b3 = 107; in the center for t = 0.1 and

b3 = 104; on the right for t = 10 and b3 = 103.

Figure 7. Solution of order 7 to KPI, for a4 6= 0 and all other parameters
equal to 0; on the left for t = 0 and a4 = 109; in the center for t = 0.1 and

a4 = 109; on the right for t = 10 and a4 = 103.

Figure 8. Solution of order 7 to KPI, for b4 6= 0 and all other parameters
equal to 0; on the left for t = 0 and b4 = 109; in the center for t = 0.1 and

b4 = 105; on the right for t = 10 and b4 = 103.
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Figure 9. Solution of order 7 to KPI, for a5 6= 0 and all other parameters
equal to 0; on the left for t = 0 and a5 = 1011; in the center for t = 0.1 and

a5 = 105; on the right for t = 20 and a5 = 1011.

Figure 10. Solution of order 7 to KPI, for b5 6= 0 and all other parameters
equal to 0; on the left for t = 0 and b5 = 1012; in the center for t = 0.1 and

b5 = 105; on the right for t = 50 and b5 = 1011.

Figure 11. Solution of order 7 to KPI, for a6 6= 0 and all other parameters
equal to 0; on the left for t = 0 and a6 = 1014; in the center for t = 0.1 and

a6 = 105; on the right for t = 20 and a6 = 1011.
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Figure 12. Solution of order 7 to KPI, for b6 6= 0 and all other parameters
equal to 0; on the left for t = 0 and b6 = 106; in the center for t = 0.1 and

b6 = 103; on the right for t = 20 and b6 = 1011.

4 Conclusion

We construct 7-th order rational solutions to the KPI equation depending on
12 real parameters. These solutions can be expressed in terms of a ratio of two
polynomials of degree 2N(N + 1) = 112 in x, y and t. The maximum of the
modulus of these solutions is equal to 2(2N +1)2 = 450; this solution which can
be called lump L7 is obtained when all parameters are equal to 0 at the instant
t = 0. Here we have given a complete description of rational solutions of order 7
with 12 parameters by constructing explicit expressions of polynomials of these
solutions.
We deduce the construction of the modulus of solutions in the (x, y) plane of
coordinates; different structures appear. For a given t close to 0, when one
parameter grows and the other ones are equal to 0 we obtain triangles, rings
or concentric rings. There are six types of patterns. In the cases a1 6= 0 or
b1 6= 0 we obtain triangles with a maximum of 28 peaks (figures 1 and 2); for
a2 6= 0 or b2 6= 0, we have 3 concentric rings with two of them with 10 peaks
and an another with 5 peaks (figures 3 and 4). For a3 6= 0 or b3 6= 0, we obtain
4 concentric rings without central peak with 7 peaks on each of them (figures 5
and 6). For a4 6= 0 or b4 6= 0, we have 3 concentric rings with 9 peaks, with a
peak in the center(figures 7 and 8). For a5 6= 0 or b5 6= 0, we obtain 2 concentric
rings without central peak with 11 peaks on each of them (figures 9 and 10).
For a6 6= 0 or b6 6= 0, we have only one ring with 13 peaks (figures 11 and 12).
But, when t grows, all the structures disappear very quickly and the heights of
the peaks decrease even more quickly.
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