Gaussian Processes indexed on the symmetric group: prediction and learning - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Gaussian Processes indexed on the symmetric group: prediction and learning

Résumé

In the framework of the supervised learning of a real function defined on a space X , the so called Kriging method stands on a real Gaussian field defined on X. The Euclidean case is well known and has been widely studied. In this paper, we explore the less classical case where X is the non commutative finite group of permutations. In this setting, we propose and study an harmonic analysis of the covariance operators that enables to consider Gaussian processes models and forecasting issues. Our theory is motivated by statistical ranking problems.
Fichier principal
Vignette du fichier
HalF.pdf (510.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01731251 , version 1 (14-03-2018)
hal-01731251 , version 2 (19-07-2018)
hal-01731251 , version 3 (09-09-2018)
hal-01731251 , version 4 (19-04-2019)
hal-01731251 , version 5 (05-02-2020)

Identifiants

Citer

François Bachoc, Baptiste Broto, Fabrice Gamboa, Jean-Michel Loubes. Gaussian Processes indexed on the symmetric group: prediction and learning. 2018. ⟨hal-01731251v1⟩
365 Consultations
364 Téléchargements

Altmetric

Partager

More