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Abstract

In the framework of the supervised learning of a real function defined on a space X , the so called
Kriging method stands on a real Gaussian field defined on X . The Euclidean case is well known and
has been widely studied. In this paper, we explore the less classical case where X is the non com-
mutative finite group of permutations. In this setting, we propose and study an harmonic analysis of
the covariance operators that enables to consider Gaussian processes models and forecasting issues.
Our theory is motivated by statistical ranking problems.

keywords : Gaussian processes, Ranks, Kernel Methods.

1 Introduction

The problem of ranking a set of items is a fundamental task in today’s data driven world. Analyzing
observations which are not quantitative variables but rankings has been often studied in social sciences.
Nowadays, it has become very popular in statistical learning. This is mainly due to the generalization of
the use of automatic recommendation systems. Rankings are labels that model an order over a finite set
En := {1, . . . , n}. Hence, an observation is a set of preferences between these n points. It is thus a one
to one relation σ acting from En onto En. In other words, σ lies in the finite symmetric group Sn of all
permutations of En.

In this paper, our aim is to predict a function defined on the permutation group and for this we will
use the framework of Gaussian processes indexed on this set. Actually, Gaussian process models rely on
the definition of a covariance function that characterizes the correlations between values of the process
at different observation points. As the notion of similarity between data points is crucial, i.e. close
location inputs are likely to have similar target values, covariance functions are the key ingredient in
using Gaussian processes for prediction. Indeed, the covariance operator contains nearness or similarity
informations. In order to obtain a satisfying model one need to choose a covariance function (i.e. a
positive definite kernel) that respects the structure of the index space of the dataset.

A large number of applications gave rise to recent researches on ranking including "ranking aggre-
gation" ([KCS17]) , clustering rankings (see [CGJ11]) or kernels on rankings for supervised learning.
Constructing kernels over the set of permutations has been tackled in several manners. In [Kon08],
Kondor provides results about kernel in non-commutative finite groups and constructs "diffusion ker-
nels" (which are positive definite) on the permutation group Sn. These diffusion kernels are based on a
discrete notion of neighborliness. We remark that the kernels considered therein are very different from
those considered here. Furthermore, the diffusion kernels are not in general covariance functions because
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of their tricky dependency on permutations. The paper [KB10] deals with the complexity reduction of
computing the kernel computation for partial ranking. Recently, [JV17] proved that the Kendall and
Mallow’s kernels are positive definite. [MRW+16] extended this study characterizing both the feature
spaces and the spectral properties associated with these two kernels.

The goal in this paper is twofold : first we define Gaussian processes indexed by permutations by
providing a class of covariance kernels. They generalize previous results on the Mallow’s kernel (see
[JV17]). Second, we study the asymptotic properties of the maximum likelihood estimator of the param-
eters of the covariance function and the properties of the prediction of the Gaussian Process associated.
We prove the asymptotic accuracy of the Kriging prediction under the estimated covariance parameters.
We also provide simulations that illustrate the performances of the studied kernels.

The paper falls into the following parts. In Section 2 we recall generalities on the set of permutations
and provide some covariance kernels. Asymptotic results on the estimation of the covariance function
are presented in Section 3. Section 4 is devoted to numerical illustration. Finally, Section 5 deals with
the special case of partial rankings. The proofs are postponed to the appendix.

2 Covariance model for rankings

We will use the following notations. Let Sn be the set of permutations on En = {1, . . . , n}. In order to
define a Gaussian process and in order to provide asymptotic results, we require the process to be defined
over an infinite set. For this, we will consider the space S∞ :=

⋃
n Sn ⊗ IdN∗\En , where IdN∗\En is the

identity operator on N∗ \ En. This corresponds to a set of observations where rankings are given on the
first {1, . . . , n} elements while leaving the other invariant.

This framework can be seen as a model to simulate long processes where it is possible to change the
order of the tasks, leading to several outcomes. For example in process mining, consider that we have
to collect firms from a large number of people (we assume that there is a countably infinite number of
them) to process out an administrative document. There is a predefined sequential order for the document
signatures, resulting in an overall time of treatment T . We call pi the i-th person who signs the document
according to this predefined order. Let us now call Y (σ) the processing time required when the order of
signatures is given by pσ(1), pσ(2), ..., pσ(n), ... Assume that Y − T is a realization of a Gaussian process
with zero-mean and covariance function K∗. Our aim is to predict the time Y (σ), for new permutations
σ, for instance in the aim of finding the order resulting in the shortest processing time for the document.
Another example is given by a collection of machines in a supply line that need to be tuned in order to
optimize the production of a good. The machines can be tuned in different orders, each corresponding to
a permutation. The objective of the model will thus be to forecast the outcome of a specific order for the
machines.

Recall that we set S∞ :=
⋃
n Sn ⊗ IdN∗\En . Furthermore, let SN be the set of permutations on the

integers. As we will consider increasing domains, if σ ∈ Sn and if n′ > n, we can consider σ to be
in Sn′ with σ(i) = i for all n < i ≤ n′. With this simplification, we can write S∞ =

⋃
n Sn. Several

distances can be considered on Sn. We will focus here on the three following distances (see [Dia88]).
For any permutations π and σ of Sn let

• The Kendall’s tau distance be defined by

dτ (π, σ) :=
∑
i<j

1σ(i)>σ(j), π(i)<π(j) + 1σ(i)<σ(j), π(i)>π(j), (2.1)

that is, it counts the number of pairs on which the permutations disagree in ranking.
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• The Hamming distance be defined by

dH(π, σ) :=
∑
i

1τ(i)6=σ(i). (2.2)

• The Spearman’s footrule distance be defined by

dS(π, σ) :=
∑
i

|τ(i)− σ(i)|. (2.3)

These three distance are right-invariant. That is, ∀π, σ, τ ∈ Sn, d(π, σ) = d(πτ, στ). Other right-
invariant distances are discussed in [Dia88]. We extend the last distances naturally on S∞ and obtain a
countably infinite discrete space. We then extend these distances on SN, taking infinite sums of positive
numbers and assuming that the distances can be equal to +∞. For example, the Kendall’s tau distance
is extended to

dτ (π, σ) =
∑
i,j∈N,
i<j

1σ(i)>σ(j), π(i)<π(j) + 1σ(i)<σ(j), π(i)>π(j). (2.4)

We observe that SN is still a group with the composition.
We aim to define a Gaussian process indexed by permutations. Let us recall that the law of a Gaus-

sian random process (Yx)x∈E indexed by a set E is entirely characterized by its mean and covariance
functions

M : x 7→ E(Xx)

and
K : (x, y) 7→ Cov(Xx, Xy).

Hence we have only to build a covariance function on SN.
We recall the definition of a positive definite kernel on a space E. A symmetric map k : E × E → R is
called a "positive definite kernel" if for all n ∈ N and for all (x1, ..., xn) ∈ En, the matrix (K(xi, xj))i,j
is positive semi-definite.
In this paper, we call k a "strictly positive definite kernel" if k is symmetric and for all n ∈ N and for all
(x1, ..., xn) ∈ En such that xi 6= xj if i 6= j, the matrix (K(xi, xj))i,j is positive definite.

This notion is particularly interesting for Sn (and any finite set). Indeed, if k is a strictly positive
definite kernel, then for any function f : Sn → R, there exists (aσ)σ∈Sn such that:

f =
∑
σ∈Sn

aσk(., σ), (2.5)

and k is of course an "universal kernel" (see [SFL11]). The last decomposition is no longer true neither
in S∞ nor in SN, but we have a result a little bit weaker than the universality of the kernel in S∞.

Proposition 1. If k is a strictly positive definite kernel on S∞, then

V ect

{
n∑
i=1

aik(., σi), n ∈ N, ai ∈ R, σi ∈ S∞

}
(2.6)

is dense for the pointwise convergence topology in the space of all the functions on S∞.

Proof. Let f : S∞ → R and let fn be the restriction of f on Sn. The kernel k is strictly definite positive
on Sn so there exists Nn ∈ N, an1 , ..., a

n
Nn
∈ R and σn1 ..., σ

n
Nn
∈ Sn such that

fn =

Nn∑
i=1

ani k(., σni ). (2.7)

Hence f is the pointwise limit of (fn)n.
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Corollary 1. Let k be a strictly positive definite kernel on S∞ and let F be its RKHS. Then, F is dense,
in the pointwise convergence topology, in the space of all the functions on S∞.

We provide now three different covariance kernels. They share the following type

Kθ∗1 ,θ
∗
2
(σ, σ′) := θ∗2 exp

(
−θ∗1d(σ, σ′)

)
, (2.8)

where d is one of the three distances discussed previously. More precisely, for the Kendall’s tau distance,
let Kτ

θ1,θ2
be the corresponding covariance function; for the Hamming distance, let KH

θ1,θ2
be the corre-

sponding covariance function; and for the Spearman’s footrule distance, let KS
θ1,θ2

be the corresponding
covariance function. We will write Kθ1,θ2 (resp. d) for all three kernels (resp. distances). Note that when
d(σ, σ′) = +∞, we have Kθ1,θ2(σ, σ′) = 0. Note further that the right-invariance of the distances is
inherited by the kernel Kθ1,θ2 .

Finally, let θ ∈ (R∗+)3 and let us write K ′θ for the following covariance kernel

K ′θ(σ, σ
′) := Kθ1,θ2(σ, σ′) + θ31σ=σ′ . (2.9)

In our case, we have assumed that Kθ∗1 ,θ
∗
2

is a covariance function, so that K ′θ is a strictly positive
definite kernel. The following theorem proves this assumption.

Theorem 1. For all θ1 > 0 and θ2 > 0, the maps Kτ
θ1,θ2

, KH
θ1,θ2

and KS
θ1,θ2

are strictly positive definite
kernel on Sn, on S∞ and on SN.

Corollary 2. The kernel K ′θ is strictly positive definite on Sn, on S∞ and on SN.

3 Gaussian fields on the Symmetric group

Let us consider a Gaussian process Y indexed by σ ∈ SN, with zero mean and unknown covariance
function K∗. A classical assumption is that the covariance function K∗ belongs to a parametric set of the
form

{Kθ; θ ∈ Θ}, (3.1)

with Θ ⊂ Rp and where for all θ ∈ Θ, Kθ is a covariance function. The quantity θ is generally called
the covariance parameter. In this framework, K∗ = Kθ∗ for some parameter θ∗ ∈ Θ.

The parameter θ∗ is estimated from noisy observations of the values of the Gaussian process on
several inputs. Namely (yi = Y (σi), σi) for i = 1, . . . , n. Actually, let us consider an independent
sample of random permutations Σ = (σ1, σ2, ..., σn) ∈ SN. Assume that we observe Σ and a realization
y = (y1, y2, ..., yn)T ∈ Rn of the random vector Y = (Y (σ1), Y (σ2), ..., Y (σn))T defined by

Y (σk) = Z(σk) + εk. (3.2)

Here, ε ∼ N (0, θ∗3In) is independent of Σ, and Z is a Gaussian process indexed by SN independent of
Σ and ε. We assume that Z is centered with covariance function Kθ∗1 ,θ

∗
2

(see (2.8) in Section 2). Thus,
Y is a Gaussian process with zero mean and covariance function K ′θ∗ defined by (2.9). The Gaussian
process Y (resp. Z) is stationary in the sense that for all σ1, ..., σn ∈ SN and for all τ ∈ SN, the finite-
dimensional distribution of Y (resp. Z) at σ1, ..., σn is the same as the finite-dimensional distribution at
σ1τ, ..., σnτ .

Several techniques have been proposed for constructing an estimator θ̂ = θ̂(σ1, y1, ..., σn, yn) of θ∗.
Here, we shall focus on the maximum likelihood one. It is widely used in practice and has received a lot
of theoretical attention. The maximum likelihood estimate is defined as

θ̂ML = θ̂n ∈ arg min
{θ∈Θ}

Lθ (3.3)
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with
Lθ :=

1

n
ln(detRθ) +

1

n
ytR−1

θ y, (3.4)

where Rθ = [K ′θ(σi, σj)]1≤i,j≤n. We consider that Θ ⊂
∏3
i=1[θi,min, θi,max] for some given 0 <

θi,min ≤ θi,max <∞ (i = 1, 2, 3).
When considering the asymptotic behaviour of the Maximum Likelihood Estimate, two different

frameworks can be studied: fixed domain and increasing domain asymptotics ([Ste99]). Under increasing-
domain asymptotics, as n→∞, the observation points σ1, ..., σn are such that mini 6=j d(σi, σj) is lower
bounded and d(σi, σj) becomes large with |i − j|. Under fixed-domain asymptotics, the sequence (or
triangular array) of observation points (σ1, ..., σn, ...) is dense in a fixed bounded subset. For a Gaussian
field on Rd, under increasing-domain asymptotics, the true covariance parameter θ∗ can be estimated
consistently by maximum likelihood. Furthermore, the maximum likelihood estimator is asymptoticly
normal ([MM84, CL93, CL96, Bac14]). Moreover, prediction performed using the estimated covariance
parameter θ̂ is asymptotically as good as the one computed with θ∗ as pointed out in [Bac14]. Finally,
note that in the Symmetric group, the fixed-domain framework can not be considered (contrary to the
input space Rd) since Sn is a finite space and S∞ is a discrete space.

We will consider hereafter the increasing-domain framework. Hence, we observe values of the Gaus-
sian process on the permutations Σ = (σ1, ..., σn) that are assumed to fulfill the following assumptions

1. Condition 1: There exists β > 0 such that ∀i, j, d(σi, σj) ≥ |i− j|β .

2. Condition 2: There exists c > 0 such that ∀i, d(σi, σi+1) ≤ c.

Such conditions are ensured for particular choices of observations (σ1, ..., σn) for the three different
distances previously considered. For example consider the following setting.

Lemma 1. We fix k ∈ N and we choose σn = τncn ∈ Sk+n with τn ∈ Sk a random permutation
such that (τn)n are independent (we do not make further assumptions on the law of τn). Let cn =
(n + k n + k − 1 ... 1) the cycle defined by cn(1) = n + k, cn(i) = i − 1 if 1 < i ≤ n + k and
cn(i) = i if i > n+k. Finally, σn is a permutation such that σn(1) = n+k, σn(i) is a random variable
in [2 : k] if 1 < i ≤ k+ 1 or if i = n+k, σn(i) = i− 1 if k+ 1 < i < n+k and σn(i) = i if i > n+k.
The conditions are satisfied with β = 1 and c = 1 +k(k−1)/2 for the Kendall’s tau distance, c = 1 +k
for the Hamming distance and c = 2 + k for the Spearman’s footrule distance.

Remark 1. If there is a σ1 ∈ SN for N ∈ N, Condition 2 ensures that all the observations (σn)n
belong to S∞. More generally, using the stationarity of the Gaussian process Y and writing σn instead
of σnσ−1

1 we can assume that all the observations belong to S∞.

The following theorem ensures the consistency of the estimator when the number of observations
increases.

Theorem 2. Let θ̂ML be defined as in (3.3), then under Conditions 1 and 2, we get

θ̂ML
P−→

n→+∞
θ∗. (3.5)

The following Lemmas are useful for the proof of Theorem 2 (and of Theorems 3 and 4 below).
Their proofs are postponed to the appendix.

Lemma 2. The eigenvalues of Rθ are lower-bounded by θ3,min > 0 uniformly in n, θ and Σ.

Lemma 3. For all α = (α1, α2, α3) ∈ N3, with |α| = α1 + α2 + α3 and with ∂θα = ∂θα1
1 ∂θα2

2 ∂θα3
3 ,

the eigenvalues of ∂
|α|Rθ
∂θα are upper-bounded uniformly in n, θ and Σ.
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Lemma 4. Uniformly in Σ,

∀α > 0, lim inf
n→+∞

inf
‖θ−θ∗‖≥α

1

n

n∑
i,j=1

(K ′θ(σi, σj)−K ′θ∗(σi, σj))2 > 0. (3.6)

Lemma 5. ∀(λ1, λ2, λ3) 6= (0, 0, 0), uniformly in Σ,

lim inf
n→+∞

1

n

n∑
i,j=1

(
3∑

k=1

λi
∂

∂θk
K ′θ∗(σi, σj)

)2

> 0. (3.7)

With these lemmata we are ready to prove the main asymptotic results.

Proof. of Theorem 2. We follow the proof of Theorem V.9 of [BGLV17]. We first show that for all
ε > 0, almost surely,

P
(

sup
θ
|(Lθ − Lθ∗)− (E(Lθ|Σ)− E(Lθ∗ |Σ))| ≥ ε

∣∣∣∣Σ)→n→∞ 0. (3.8)

We then prove that, for a fixed a > 0,

E(Lθ|Σ)− E(Lθ∗ |Σ) ≥ a 1

n

n∑
i,j=1

(Kθ(σi, σj)−Kθ∗(σi, σj))
2. (3.9)

We conclude since (3.8), (3.9) and Lemma 4 imply consistency.

The following theorem provides the asymptotic normality of the estimator.

Theorem 3. Let MML be the 3× 3 matrix defined by

(MML)i,j =
1

2n
Tr

(
R−1
θ∗
∂Rθ∗

∂θi
R−1
θ∗
∂Rθ∗

∂θj

)
. (3.10)

Then √
nM

1
2
ML

(
θ̂ML − θ∗

)
L−→

n→+∞
N (0, I3). (3.11)

Furthermore,
0 < lim inf

n→∞
λmin(MML) ≤ lim sup

n→∞
λmax(MML) < +∞. (3.12)

Proof. We proceed as in the proof of Theorem V.10 in [BGLV17]. First, we prove (3.12). We then use a
proof by contradiction: we assume that (3.11) is not true. So, there exists a bounded measurable function
g : R3 → R and ξ > 0 so that, up to extracting a subsequence∣∣∣∣E [g(√nM 1

2
ML(θ̂ML − θ∗

)]
− E(g(U))

∣∣∣∣ ≥ ξ, (3.13)

with U ∼ N (0, I3). As in [BGLV17], we prove that, extracting another subsequence, we have:

√
nM

1
2
ML

(
θ̂ML − θ∗

)
L−→

n→+∞
N (0, I3). (3.14)

which is in contradiction with (3.13).
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Given the maximum likelihood estimator θ̂ML, the value Y (σ), for any input σ ∈ SN, can be pre-
dicted by plugging the estimated parameter in the conditional expectation (or posterior mean) expression
for Gaussian processes. Hence Y (σ) is predicted by

Ŷ
θ̂
(σ) = rt

θ̂
(σ)R−1

θ̂
y (3.15)

with

r
θ̂
(σ) =

 K ′
θ̂
(σ, σ1)

...
K ′
θ̂
(σ, σn)

 .
We point out that Ŷ

θ̂
(σ) is the conditional expectation of Y (σ) given y1, ..., yn, when assuming that Y is

a centered Gaussian process with covariance function K
θ̂
.

Theorem 4.
∀σ ∈ SN,

∣∣∣Ŷθ̂ML
(σ)− Ŷθ∗(σ)

∣∣∣ = oP(1). (3.16)

Proof. We follow the same guidelines as in Theorem V.11 in [BGLV17], showing that, for k ∈ {1, 2, 3}∣∣∣∣sup
θ∈Θ

∂

∂θk
Ŷθ(σ)

∣∣∣∣ = OP(1) (3.17)

4 Numerical illustrations

To illustrate Theorem 2, we suggest a numerical application to show that the maximum likelihood is
consistent. We generated the observations suggested in Section 3 with k = 3. We recall that σn =
τn(n+ k n+ k − 1 ...1) ∈ Sk+n with τn ∈ Sk a random permutation.

Remark 2. This choice of observations σn can model real cases. Recall the example given in Section 2,
where Y (σ) is the time for a document to be signed in the order pσ(1), pσ(2), ..., pσ(n), ... To estimate θ∗,
we have to observe a realization of the time Y at σ1, σ2, ... with σn = τn(n+ k n+ k − 1 ...1) ∈ Sk+n

and τn ∈ Sk is a random permutation. Assume that the k first persons p1, ..., pk are in the same office
We begin to give the document to the person pn+k. pn+k signs the document, then, observing that he/she
is the first one to sign, gives the document to one of the k first persons, who then sign in a random order.

To highlight the dependency with n, we write θ̂n := θ̂ML the maximum likelihood estimator for
n observations. For each value of n, we estimate the probability P(‖θ̂n − θ∗‖ > ε) using a Monte-
Carlo method and a sample of 1000 values of 1‖θ̂n−θ∗‖>ε. Figure 1 depicts these estimates for ε = 0.5,
θ∗ = (0.1, 0.8, 0.3) and Θ = [0.02, 2]× [0.3, 2]× [0.1, 1].

In Figure 2, we display the density of the coordinates of the maximum likelihood estimator for
different values of n (20, 60 and 150). These densities have been estimated with a 1000 sample of the
maximum likelihood estimator. We observe that the densities can be far from the true parameter for
n = 20 or n = 60 but are quite close to it for n = 150. We can see that for n = 150, the Kendall’s tau
distance seems to give better estimates of θ∗3. However, the computation time of the distance matrix is
much longer with the Kendall’s tau distance than with the other distances.

In Figure 3, we display estimates of the probability that the absolute value of the prediction of Y (σ)
given in (3.15) with the parameter θ̂ML minus the prediction of Y (σ) with the parameter θ∗ is greater
than 0.3. Theorem 4 ensures us that this probability converges to 0 when n→ +∞.
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Figure 1: Estimates of P(‖θ̂n − θ∗‖ > 0.5) for different values of n, the number of observations, with
θ∗ = (0.1, 0.8, 0.3) and Kendall’s tau distance, the Hamming distance and the Spearman’s footrule
distance from left to right.
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Figure 2: Density of the coordinates of θ̂n for the number of observations n = 20 (in red), n = 60 (in
blue), n = 150 (in green) with θ∗ = (0.1, 0.8, 0.3) (represented by the red vertical line). We used the
Kendall’s tau distance, the Hamming distance and the Spearman’s footrule distance from left to right.
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(∣∣∣Ŷθ̂ML

(σ)− Ŷθ∗(σ)
∣∣∣ > 0.3
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for different values of n, the number of observa-

tions, with θ∗ = (0.1, 0.8, 0.3), σ = (1 4 6) and the Kendall’s tau distance, the Hamming distance and
the Spearman’s footrule distance from left to right.

5 Partial Rankings

5.1 Introduction

In many situations, when n is large, preferences are not given for all points i ∈ {1, . . . , n} but only for
a small number k of points {i1, . . . , ik}. This situation occurs often in social science. When consider-
ing statistical models which analyzes the behavior of human decision in a consumer behaviour, partial
rankings are often considered. Actually, given k objects governed by a large number n of variables, how
can we model the decision to choose one object rather than another ? Objects are described by a set
of quantitative variables X = (X1, . . . , Xn)

′ ∈ Rn. These variables are representative of a specific
property of each object. For instance when buying a bike one may be interested in the weight, the price,
the number of velocities, the height, or any other quantitative or qualitative descriptors. Each consumer
when confronted to the choice of a product, chooses to give more importance to certain variables while
discarding others. The consumer selects a small number of variables (features) that are essential in his
choice, ranks these variables according to its preferences while the others play little importance.

In the general framework, we have a finite set X = {x1, ..., xn}. A partial ranking aims at giving an
order of preference between different elements of X . A partial ranking R is a statement of the form

X1 � X2 � ... � Xm, (5.1)

where X1, ..., Xm are disjoint set of X = {x1, x2, ..., xn}. This partial ranking means that any element
of Xj if preferred to any element of Xi+1. We can associate to the partial ranking R the set ER of Sn
defined by

ER := {σ ∈ Sn, ∀(xi1 , ..., xik) ∈ X1 × ...×Xm, σ(i1) < σ(i2) < ... < σ(im)}. (5.2)

Remark 3. In [KB10] and [JV17], the set ER is defined by the set of the permutations σ such that
∀(xi1 , ..., xik) ∈ X1 × ... × Xm, σ(i1) > σ(i2) > ... > σ(ik). They chose this definition to simplify
their computations but in this way the ranking mapped to {σ} is

xσ−1(in) � ... � xσ−1(i1).

The definition (5.2) seems to be more natural because we map {σ} to the ranking

xσ−1(i1) � ... � xσ−1(in).

9



The first natural way to extend a positive definite kernel K : Sn × Sn → R on the partial rankings
(see [KB10], [JV17],...) is letting

K(R,R′) :=
1

|ER||ER′ |
∑
σ∈ER

∑
σ′∈ER′

K(σ, σ′). (5.3)

If K is a positive definite kernel on permutations, then K defined by (5.3) is a positive definite kernel
on partial ranking ([Hau99]). We also can see this saying that if R1, ..., RN are partial rankings and if
(a1, ..., aN ) 6= 0, then

n∑
i,j=1

aiajK(Ri, Rj) =
∑

σ,σ′∈Sn

bσbσ′K(σ, σ′), (5.4)

letting
bσ :=

∑
i, σ∈Ri

ai
|ERi |

. (5.5)

Remark 4. The values of K(R,R) depends on R. It can be very closed to 0, that means for a Gaussian
process Y indexed by the partial rankings that the value Y (R) is almost constant. To circumvent this
problem, we can define a new kernel

Knew(R,R′) :=
1√

K(R,R)K(R′, R′)
K(R,R′). (5.6)

The computation of this kernel seems to be very long because we have to sum over |ER||ER′ | per-
mutations. In the following, we aim to reduce this computation. We focus especially on the following
kernel on Sn:

K(σ, σ′) := e−νd(σ,σ′), (5.7)

where d if the Kendall’s tau distance, the Hamming distance or the Spearman’s footrule distance. These
kernels are interesting for two reasons: they are strictly positive definite and they are easy to interpret
(more than a kernel defined by a matrix exponential).

5.2 Direct computations

The first idea is to simplify the expression of (5.3). However, this does not seem to be a simple task,
that is why we take a particular framework. In this section, we assume that all the items are ranked,
i.e. (Xj)1≤j≤m is a partition of [1 : n]. Let γj := |Xj | and γ = (γj)1≤j≤m is a partition of n. This
computation has always been done in [LM08] for the Kendall’s tau distance. Let us sum up the result
that interests us in the following proposition.

Proposition 2. [LM08]
Let γ be a partition of n. For all j ∈ [1 : m], let gj :=

∑j−1
l=1 γl and let

aγj := |{(s, t), s < t, gj + 1 ≤ τ(t) < τ(s) ≤ gj+1}|
bγjl(τ) := |{(s, t), s < t, gj + 1 ≤ τ(t) ≤ gj+1 < gl + 1 ≤ τ(s) ≤ gl+1}|

Then, if ERi = Sγiπi for i = 1, 2,

K(R1, R2) =
1

|Sγ1 ||Sγ2 |

 ∑
σ∈π1π−1

2 Sγ2

e−ν
∑m

1=j<l b
γ1

jl (σ)


 m∏
s=1

γ1s∏
r=1

r∑
h=0

e−νh

 (5.8)
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Now, we do the same work with the Hamming distance. Before, we need to introduce a new notation.

Definition 1. We define

cn,d := |{σ ∈ Sn, dH(σ, id) = d}| = n!

(n− d)!

d∑
k=0

(−1)k

k!
, (5.9)

the number of permutations of n elements which move exactly d elements.

Now we give a proposition similar than Proposition 2 with the Hamming distance.

Proposition 3. Let us define

aγj := |{i ∈ [1 : n], i 6= τ(i), (i, τ(i)) ∈ [gj + 1 : gj+1]}|
bγjl(τ) := |{i ∈ [1 : n], l 6= j, i ∈ [gj + 1 : gj+1] , τ(i) ∈ [gl + 1 : gl+1]}|

Then,

K(R1, R2) =
1

|Sγ1 ||Sγ2 |

 ∑
σ∈π1π−1

2 Sγ2

e−ν
∑m
j,l=1 b

γ1

jl (σ)


 m∏
s=1

γ1s∑
h=0

cγ1,he
−νh

 . (5.10)

5.3 Fourier Transform of the kernel on partial ranking

5.3.1 Notations

In this section, we use the usual kernel on partial ranking defined by

K(R,R′) :=
1

|ER||ER′ |
∑
σ∈ER

∑
σ′∈ER′

K(σ, σ′). (5.11)

We assume that the kernel K on the set of permutation is right-invariant and we write k(σ) := K(σ, id).
We extend the work of [KB10]. We compute the Fourier transform for general partial rankings, i.e.
statement R of the form

X1 � X2 � ... � Xm (5.12)

Let γ = (γ1, ..., γm) be the size of the (Xj)1≤j≤m, let k be the sum of the γj and let γ̃ be the partition
of n defined by γ̃ := (γ1, γ2, ..., γm, n− k). Let Πn

k be the set of interleaving of [1 : k] with [k + 1 : n]

σ(i) ≤ σ(j) si i < j ≤ k
σ(i) ≤ σ(j) si k + 1 ≤ i < j

Then, writing Πn
n = {id}, we have (as in [KB10] but generalized for all partial ranking)

ER := Πn
kSγ̃πR, (5.13)

where πR ∈ Sn is such that π(Xj) =
[
1 +

∑j−1
l=1 γl :

∑j
l=1 γl

]
. Finaly, let us write Eγ := Πn

kSγ̃ .
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5.3.2 Reduction of number of terms

We just generalize the works of [KB10] for general partial rankings. Let Ri (i = 1, 2) be the partial
rankings defined by

ERi = EγiπRi . (5.14)

As in [KB10], we identify a set A of permutation with the function of Sn which associates to σ the
number 1 if σ ∈ A and 0 otherwise. Proposition 6 of [KB10] gives

K(R1, R2) =
1

n!|ER1 ||ER2 |
∑
λ`n

dλTr
(
ÊR1(ρλ)∗ k̂(ρλ)ÊR2(ρλ)

)
. (5.15)

The next proposition (which generalizes Proposition 8 of [KB10]) show how the sum in the previous
equation can be reduced to a lower number of terms.

Proposition 4. Let c := max(γ1
1 , ..., γ

1
m1
, n − k1, γ

2
1 , ..., γ

2
m2
, n − k2) and let Λnc be the set of Young’s

diagrams of n boxes with at least c boxes in their first row. Then

K(R1, R2) =
1

n!|ER1 |ER2 |
∑
λ∈Λnc

dλTr
(
ÊR1(ρλ)∗ k̂(ρλ)ÊR2(ρλ)

)
. (5.16)

5.3.3 Reduction of each remaining term

Here, we assume that the partial rankings for which we want to compute the kernel K(R1, R2) have
always the same forms γ. For example, assume that all these partial rankings are top-k lists and partial
rankings of the form xi1 � xi2 � ... � xik . In this case, we just have γ = (1, 1, ..., 1, n − k) and
γ = (1, 1, ..., 1). The next proposition show that the computation of (5.16) can still be reduced.

Proposition 5. Let Ri (i = 1, 2) be the partial rankings defined by

ERi = Eγiπi. (5.17)

Then
K(R1, R2) =

1

n!

∑
λ∈Λnc

dλTr
(
ρλ(π2π

−1
1 )qλ(Eγ1)k̂(ρλ)pλ(Eγ2)

)
, (5.18)

where

qλ(Eγ) :=
1

|Eγ |
∑
σ∈Eγ

ρλ(σ−1),

pλ(Eγ) :=
1

|Eγ |
∑
σ∈Eγ

ρλ(σ).

Corollary 3. If all the items are ranked, i.e. k = n, then we have

K(R1, R2) =
1

n!

∑
λ∈Λnc

dλTr
(
ρλ(π2π

−1
1 )T pλ(Sγ̃1)k̂(ρλ)pλ(Sγ̃2)

)
, (5.19)

where pλ(Sγ̃) is a projector on W γ
λ = {x ∈ Cdλ , ∀σ ∈ Sγ̃ , ρλ(σ)x = x}.
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5.4 A new kernel on partial ranking

However, |ER| and |ER′ | are often large numbers. The computation of the kernel on partial rankings can
be very long.
That is why we suggest another manner to extend the kernels Kθ1, θ2 and K ′θ on partial rankings. If d
is the Kendall’s tau distance, the Hamming distance or the Spearman’s footrule distance, we define the
measure of dissimilarity davg as the mean of distances d(σ, σ′) for σ ∈ E and σ′ ∈ E′:

davg(R,R
′) :=

1

|ER||ER′ |
∑
σ∈ER

∑
σ∈ER′

d(σ, σ′). (5.20)

Then, we define
Kθ1,θ2(R,R′) := θ2 exp(−θ1davg(R,R

′)), (5.21)

and
K ′θ(R,R

′) := θ2 exp(−θ1davg(R,R
′)) + θ31R=R′ . (5.22)

Proposition 6. Kθ1,θ2 is a positive definite kernel on the set of partial rankings of Sn, andK ′θ is a strictly
positive definite kernel.

The computation of this new kernel on partial rankings is still very long: we have to sum |ER||ER′ |
elements. However, this form can be easily reduced. Let us take the example of top-k partial rankings.
A top-k partial ranking (or a top-k list) is a partial ranking of the form

xi1 � xi2 � ... � xik � Xrest. (5.23)

Let us write I = (i1, ..., ik) this top-k partial ranking. The following proposition show how to reduce the
computation of davg (and so of the kernel of partial rankings) for the fixed domain framework.

Proposition 7. Let I and I ′ be partial rankings. Let the set [1 : k] = {c1, ..., cp}t{u1, ..., ur} such that
icj ∈ I \ I ′ and iuj ∈ I ∩ I ′. Similarly, let [1 : k] = {c′1, ..., c′p} t {u′1, ..., u′r} such that i′c′j ∈ I

′ \ I and

i′u′j
∈ I ′ ∩ I . We order the integers cj and c′j so that icj < icj+1 and i′c′j < i′c′j+1

. Remark that icj = i′c′j
.

Let us write n′ := n− k − 1 and m := n− |I ∪ I ′|. Then

dτ,avg(I, I
′) =

∑
{j,j′}⊂[1:p]

1(cj<cj′ ,c
′
j>c
′
j′ ) or (cj>cj′ ,c

′
j<c
′
j′ )

+r(2k+1−r)−
r∑
j=1

(uj+u
′
j)+r2+

(
n− k

2

)
,

(5.24)

dH,avg(I, I
′) =

p∑
j=1

1cj 6=c′j +m
n− k − 1

n− k
+ 2r, (5.25)

and

dS,avg(I, I
′) =

p∑
j=1

|cj−c′j |+r(n+k+1)−
r∑
j=1

(uj+u′j)+
2m

n′

(
n′ + 1

2
− 1

3
n′2 − 1

2
n′ − 1

6

)
. (5.26)

Remark 5. These computations show that K(I, I) can be easily computed. We have

Kτ (I, I) = θ2 exp

(
−θ1

(
n− k

2

))
(5.27)

KH(I, I) = θ2 exp (−θ1(n− k − 1)) (5.28)

KH(I, I) = θ2 exp

(
−2θ1

n− k
n− k − 1

(
n− k

2
− (n− k − 1)2

3
− n− k − 1

2
− 1

6

))
. (5.29)

The computation of Knew defined by (5.6) become easy for the top k lists.
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For the Hamming distance, we have a more general result for all partial ranking such that all items
are ranked, with same sizes (i.e. γ1 = γ2). We take the previous notations.

Proposition 8.

dH,avg(Sγπ1, Sγπ2) = |{i, Γ(π1(i)) 6= Γ(π2(i))}|+
m∑
j=1

γj
n

(γj − 1) (5.30)

We can also find in the proof of Theorem 2 of [JV17] how to compute dτ,avg(R,R′) for R and R′

partial rankings of the form
xi1 � xi2 � ... � xik . (5.31)

Remark 6. The measure of dissimilarity between partial rankings davg depends on n, contrary to the
distance between total ranking (or permutations). For example, let I and I ′ be two tok-k lists of [1 : n1].
If n2 > n2, we can assume that I and I ′ are top-k lists of [1 : n2]. However, we can see in Proposition 7
that davg,n1(I, I ′) 6= davg,n2(I, I ′).

6 Appendix

6.1 Proofs of main Results

Proof of Theorem 1

Proof. First part: we show that the map Kθ1,θ2 is a strictly positive definite kernel on Sn. It suffices to
prove that, if ν > 0, the map K defined by

K(σ, σ′) := e−νd(σ,σ′) (6.1)

is a strictly positive definite kernel. It is already shown in Theorem 5 of [MRW+16] for the Kendall’s tau
distance. Let us prove it for the Hamming distance. We follow the proof of Theorem 5 in [MRW+16].
For simplicity, we keep the same notations for a map Sn × Sn → R and a matrix indexed by the
permutations of Sn. Let

D(σ, σ′) := n− dH(σ, σ′) =
n∑
i=1

1σ(i)=σ(j). (6.2)

We see that if we define the vector Φ ∈ Rn2
by

Φ(σ) := (1σ(i)=j)i,j , (6.3)

we have
D(σ, σ′) = Φ(σ)TΦ(σ′). (6.4)

Hence D is a Grammian matrix and thus a positive semi-definite matrix.
Let us write M := eνnK seen as a matrix indexed by the elements of Sn. We use the Hadamard product
A ◦B of the matrix A and B, defined by the element-wise product. As in [MRW+16], we have

M =

n∑
i=0

νi

i!
D◦i +

∑
i≥n+1

νi

i!
D◦i

=
(

1 +
ν

n
D
)◦n

+
∑
i≥0

αiν
iD◦i
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with

αi :=

{
(d−1)i−(d−1)(d−2)...(d−i)

(d−1)i
> 0 if i ≤ n,

1
i! > 0 if i ≥ n+ 1.

As in [MRW+16], the second term is a positive semi-definite matrix because of Schur’s theorem. We
have to prove that the first term is a positive definite matrix. For this, we will show that the first term is a
Gramian matrix of independent vectors.

Let us write Φ1(σ) ∈ R1+n2
the vector defined by

Φ1(σ)c0 = 1 Φ1(σ)cr =
√

ν
n1σ(ir)=jr , (6.5)

where the coordinates are indexed by the ordered pair c0 = (−1, 0) and the n2 ordered pairs cr =
(ir, jr) ∈ [1 : n]2. We see that (1 + ν

nD) is the Grammian matrix of {Φ1(σ), σ ∈ Sn}. As in proof of
Theorem 6 in [MRW+16], we can show by induction on p that if we define Φp : Sn → R(1+n2)p by

Φp(σ)c1c2...cp =

p∏
i=1

Φ1(σ)ci , (6.6)

then (1 + ν
nD)◦p is the Grammian matrix of {Φp(σ), σ ∈ Sn}. We use this results for p = n. Finally

we have to show that the vectors {Φn(σ), σ ∈ Sn} are linearly independent. We then will have that
(1+ ν

nD)◦n is the Grammian matrix of independent vectors so it is a definite positive matrix and we may
conclude that the claim holds on Sn and so on S∞.

Assume that their exists (aσ)σ∈Sn such that∑
σ∈Sn

ασΦn(σ) = 0 ∈ R(1+n2)
n

. (6.7)

Let σ0 ∈ Sn. Let us write ji := σ0(i) and ci the ordered pair (i, ji). We look at the coordinate c1, ..., cn
of the equation (6.7), we have

0 =
∑
σ∈Sn

ασΦn−1(σ)c1,...,cn

=
∑
σ∈Sn

ασ

(ν
n

)n
2
1σ(1)=i1,...,σ(n)=in

= ασ0

(ν
n

)n
2
.

Thus, ασ0 = 0, and that is true for all permutation σ0. We have shown that KH
θ1,θ2

is a strictly positive
definite kernel on Sn.

Let us prove it now for KS
θ1,θ2

. We follow the same idea. Let

D(σ, σ′) := n2 − dS =

n∑
i=1

min(σ(i), σ′(i)) + n−max(σ(i), σ′(i)),

Φ(σ)i,j,1 :=

{
1 if j ≤ σ(i)
0 otherwise,

Φ(σ)i,j,2 :=

{
0 if j < σ(i)
1 otherwise.

and M := eνn
2
K. We have

M =
(

1 +
ν

n
D
)◦n

+
∑
i≥0

αiν
iD◦i (6.8)
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and it remains to show that the first matrix is positive definite. Let Φ1(σ)c := 1 if c = (0, 0, 0) and
Φ1(σ)c :=

√
ν
nΦ(σ)c if c ∈ [1 : n] × [1 : n] × {1, 2}. As for the Hamming distance, we define Φn by

induction and we want to prove that the vectors {Φn(σ), σ ∈ Sn} are linearly independent. Assume that
we have (6.7). Let σ0 ∈ Sn and choose ci := (i, σ(i), 1). Then ασ0 = 0.

Second part: let us prove now that the claim is also true on SN. We will use the following lemma.

Lemma 6. Let σ1, σ1 ∈ SN. Then,

d(σ1, σ2) < +∞ ⇐⇒ ∃n, σ2σ
−1
1 ∈ Sn. (6.9)

Proof. It is obvious for the Hamming distance and the Spearman’s footrule distance. Let us prove it for
the Kendall’s tau distance. Assume that dτ (id, σ) < +∞. Let us write N := max{j, ∃i < j, σ(i) >
σ(j)}.

Let us prove that σ is the identity on [N+1 : +∞[. By contradiction, assume that ∃n1 ≤ N, σ(n1) ≥
N + 1. Then there exists n2 ≥ N + 1, σ(n1) ≤ N . Thus n1 < n2, but σ(n1) > σ(n2), that contradicts
the maximality of N .

Thus, σ is an increasing permutation on [N + 1 : +∞[, so it is the identity on this set.

In order to prove that Kθ1,θ2 is strictly positive definite on SN, the idea is to boil down to Sn using
the previous lemma and using the positivity on Sn.

Let ∼ be the equivalence relation defined by: i ∼ j ⇔ d(i, j) < +∞.
Let (σ1, ..., σn) ∈ SN and let (a1, ..., an) 6= 0. Let C1, ..., CK be the equivalence classes formed by

{σ1, ..., σn}. Then

∑
i,j

aiajKθ1,θ2(σi, σj) =

K∑
k=1

∑
(i,j)∈C2

k

aiajKθ1,θ2(σi, σj)

=

K∑
k=1

∑
(i,j)∈C2

k

aiajKθ1,θ2(σiτk, σjτk)

where τk ∈ SN such that ∃nk, ∀i ∈ Ck, τkσi ∈ Snk (we can choose for example τk = σ−1
i0

with i0 any
element of Ck). We know that the kernel Kθ1,θ2 is strictly positive definite on Snk , so all the terms of the
previous sum over k are non-negative and at least one is positive.

6.2 Proofs of Lemmata

Proof of Lemma 3.

Proof. It is easy to prove when α1 = α2 = 0. Indeed:

1. If α3 = 0, then λmax (K ′θ(σi, σj)i,j) ≤ λmax (Kθ1,θ2(σi, σj)i,j) + θ3,max and we show that
λmax (Kθ1,θ2(σi, σj)i,j) is uniformly bounded using Gershgorin circle theorem ([Ger31]).

2. If α3 = 1, then ∂|α|Rθ
∂θα = In.

3. If α3 > 1, then ∂|α|Rθ
∂θα = 0.
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Then, we suppose that (α1, α2) 6= (0, 0). Thus,

∂|α|Rθ
∂θα

=
∂|α| (Kθ1,θ2(σi, σj)i,j)

∂θα
.

It does not depend on α3 so we can assume that α ∈ N2. We have∣∣∣∣∣∂|α|Kθ1,θ2(σ, σ′)

∂θα

∣∣∣∣∣ ≤ max(1, θ2,max)d(σ, σ′)α1e−θ1,mind(σ,σ′). (6.10)

We conclude using Gershgorin circle theorem ([Ger31]).

Proof of Lemma 4

Proof. Let N be the norm on R3 defined by

N(x) := max(4cθ2,max|x1|, 2|x2|, |x3|), (6.11)

with c as in Condition 2. Let α > 0. We want to find a positive lower-bound over θ ∈ Θ \BN (θ∗, α) of

1

n

n∑
i,j=1

(K ′θ(σi, σj)−K ′θ∗(σi, σj))2. (6.12)

Let θ ∈ Θ \BN (θ∗, α).

1. If |θ1 − θ∗1| ≥ α/(4cθ2,max). Let kα ∈ N be the first integer such that

kβα ≥ 4cθ2,max
2 + ln(θ2,max)− ln(θ2,min)

α
. (6.13)

Then, for all i ∈ N∗, ∣∣∣∣(θ∗1 − θ1)d(σi, σi+kα) + ln(θ2)− ln(θ∗2)

2

∣∣∣∣ ≥ 1.

For all n ≥ kα,

1

n

n∑
i,j=1

(K ′θ(σi, σj)−K ′θ∗(σi, σj))2

≥ 1

n

n−kα∑
i=1

(K ′θ(σi, σi+kα)−K ′θ∗(σi, σi+kα))2

≥ 1

n

n−kα∑
i=1

e−2θ1,maxckα+2 ln(θ2,min)4 sinh2

(
(θ∗1 − θ1)d(σi, σi+kα) + ln(θ2)− ln(θ∗2)

2

)
≥ C1,α

n− kα
n

,

where we write C1,α = e−2θ1,maxckα+2 ln(θ2,min)4 sinh2(1).

2. If |θ1 − θ∗1| ≤ α/(4cθ2,max).
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(a) If |θ2 − θ∗2| ≥ α/2. We have

|θ1 − θ∗1|
2

d(σi, σi+1) <
α

8θ2,max

=
α

4θ2,max
− α

8θ2,max

≤ | ln(θ∗2)− ln(θ2)|
2

− α

8θ2,max
.

Thus, ∣∣∣∣(θ∗1 − θ1)d(σi, σi+1) + ln(θ2)− ln(θ∗2)

2

∣∣∣∣ ≥ α

8θ2,max
, (6.14)

and we have

1

n

n∑
i,j=1

(K ′θ(σi, σj)−K ′θ∗(σi, σj))2

≥ 1

n

n−1∑
i=1

(K ′θ(σi, σi+1)−K ′θ∗(σi, σi+1))2

≥ 1

n

n−1∑
i=1

e−2θ1,maxc+2 ln(θ2,min)4 sinh2

(
α

8θ2,max

)
= C2,α

n− 1

n
,

where we write C2,α := e−2θ1,maxc+2 ln(θ2,min)4 sinh2
(

α
8θ2,max

)
.

(b) If |θ2 − θ∗2| < α/2, we have |θ3 − θ∗3| ≥ α. Thus,

1

n

n∑
i,j=1

(K ′θ(σi, σj)−K ′θ∗(σi, σj))2

≥ 1

n

n∑
i=1

(K ′θ(σi, σi)−K ′θ∗(σi, σi))2

=
1

n

n∑
i=1

(θ2 + θ3 − θ∗2 − θ∗3)2

≥ α2

4
.

Finally, if we write

Cα := min

(
C1,α, C2,α,

α2

2

)
, (6.15)

we have

inf
N(θ−θ∗)≥α

1

n

n∑
i,j=1

(K ′θ(σi, σj)−K ′θ∗(σi, σj))2 ≥ n− kα
n

Cα. (6.16)

To conclude, there exists h > 0 such that ‖.‖2 ≤ hN(.) thus

lim inf
n→+∞

inf
‖θ−θ∗‖≥α

1

n

n∑
i,j=1

(K ′θ(σi, σj)−K ′θ∗(σi, σj))2 ≥ Cα/h > 0. (6.17)
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Proof of Lemma 5

Proof. We have

∂

∂θ1
K ′θ∗(σi, σj) = −d(σi, σj)e

−θ∗1d(σi,σj),

∂

∂θ2
K ′θ∗(σi, σj) = e−θ

∗
1d(σi,σj),

∂

∂θ3
K ′θ∗(σi, σj) = 1i=j

Let (λ1, λ2, λ3) 6= (0, 0, 0). We have

1

n

n∑
i,j=1

(
3∑

k=1

λk
∂

∂θk
K ′θ∗(σi, σj)

)2

=
1

n

n∑
i 6=j=1

(
2∑

k=1

λk
∂

∂θk
K ′θ∗(σi, σj)

)2

+ (λ2 + λ3)2

=
1

n

n∑
i 6=j=1

e−2θ∗1d(σi,σj) (λ2 − λ1d(σi, σj))
2 + (λ2 + λ3)2.

If λ1 6= 0, then for conditions 1 and 2, we can find ε > 0, τ > 0, k ∈ Z so that for |i− j| = k, we have
(λ2 − λ1d(σi, σj))

2 ≥ ε and e−2θ∗1d(σi,σj) ≥ τ . This concludes the proof in the case λ1 6= 0. The proof
in the case λ1 = 0 can then be obtained by considering the pairs (j, j + 1) in the above display.

6.3 Proofs of Partial rankings

Proof of Proposition 3

Proof. We follow the different steps of [LM08].

Lemma 7. For π ∈ Sn, q > 0, and a composition γ = (γ1, ..., γm) we have

∑
σ∈Sγπ

qdH(σ,id) = q
∑m
j,l=1 b

γ
jl(π)

m∏
j=1

γj∑
h=0

cγj ,hq
h. (6.18)

Proof. ∑
σ∈Sγπ

qdH(σ,id) =
∑
σ∈Sγπ

q
∑m
j=1 a

γ
j (σ)+

∑r
j,l=1 b

γ
jl(τ)

= q
∑r
j,l=1 b

γ
jl(π)

∑
σ∈Sγπ

q
∑m
j=1 a

γ
j (σ)

= q
∑r
j,l=1 b

γ
jl(π)

∑
σ∈Sγπ

q
∑m
j=1 a

γ
j (σ)

= q
∑r
j,l=1 b

γ
jl(π)

m∏
j=1

∑
σj∈Sγj

qdH(σj ,id)

= q
∑m
j,l=1 b

γ
jl(π)

m∏
j=1

γj∑
h=0

cγj ,hq
h.
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Corollary 4. For π, τ ∈ Sn, q > 0, and a partition γ = (γ1, ..., γm) we have

∑
σ∈Sγπ

qdH(στ,id) = q
∑r
j,l=1 b

γ
jl(πτ)

m∏
j=1

γj∑
h=0

cγj ,hq
h. (6.19)

Proof. (Sγπ)τ = Sγ(πτ) so ∑
τ∈Sγπ

qdH(στ,id) =
∑

σ′∈Sγ(πτ)

qd(σ′)

We use Equation (6.19) to conclude the proof of Proposition 3.∑
σ∈Sγ1π1

∑
σ′∈Sγ2π2

e−νdH(σ,σ′)

=
∑
σ∈Sγ1

∑
σ′∈Sγ2

e−νdH(σπ1,σ′π2)

=
∑
σ∈Sγ1

∑
σ′∈Sγ2

e−νdH(σπ1π
−1
2 σ′−1,id)

=
∑

σ′∈Sγ2

∑
σ∈Sγ1

e−νdH(σπ1π
−1
2 σ′,id)

=
∑

σ′∈Sγ2

e−ν
∑r
j,l=1 b

λ
jl(π1π

−1
2 σ′)

m∏
j=1

γj∑
h=0

cγ1j ,h
e−νh.

Proof of Proposition 4

Proof. It suffices to prove that if ER = EγπR, then ÊR(ρλ) = 0 for all λ /∈ Λnh where h := max(γ̃k)k
(with γ̃m+1 = n − k). For all j ∈ [1 : m + 1], let gj :=

∑j−1
l=1 γ̃l and let SΓj be the subgroup of Sn

which permutes only the integers between gj + 1 and gj+1. Then, we have

Sγ̃ =

m=1∏
j=1

SΓj (6.20)

Now, let τ := (1 2 ... n). Then, for all j ∈ [1 : m+ 1]

SΓj = τ gjSγj , (6.21)

where Sγj is the subgroup of Sn which permutes only the integers between 1 and γj . Proposition 7 of
[KB10] says that the subgroup Sγj of Sn is bandlimited on Λnγj i.e. for all Λnγj , we have Ŝj(ρλ) = 0.
Thus, using Equation (6.21) and the fact that ûv(ρλ)û(ρλ)v̂(ρλ), we have that SΓj is also bandlimited
on Λnγj . Then, Equation (6.20) shows that Sγ̃ is bandlimited on Λnh. We concludes the proof using that
ER = Πn

kSγ̃πR.

Proof of Proposition 5
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Proof.

K(R1, R2)

=
1

n!|ER1 |ER2 |
∑
λ∈Λnc

dλTr
(
ÊR1(ρλ)∗ k̂(ρλ)ÊR2(ρλ)

)

=
1

n!

∑
λ∈Λnc

dλTr

 1

|ER1 |
∑

σ∈ER1

ρλ(σ)∗

 k̂(ρλ)

 1

|ER2 |
∑

σ∈ER2

ρλ(σ)


=

1

n!

∑
λ∈Λnc

dλTr
(
ρλ(π−1

1 )qλ(Eγ1)k̂(ρλ)pλ(Eγ2)ρλ(π2)
)

Proof of Proposition 6

Proof. It suffices to show that the kernel Kν(R,R′) := exp(−νdavg(R,R′)) is strictly positive def-
inite. We have seen that for all the three distances, there exist constants Cn and dn and a function
Φ : Sn → Rdn such that Cn − d(σ, σ′) = Φ(σ)TΦ(σ′).

Let us write
Φavg : R 7−→ 1

|ER|
∑
σ∈ER

Φ(σ). (6.22)

Then,

Cn − davg(R,R′) = Cn −
1

|E||E′|
∑
σ∈ER

∑
σ∈ER′

d(σ, σ′)

=
1

|E||E′|
∑
σ∈ER

∑
σ∈ER′

Cn − d(σ, σ′)

=
1

|E||E′|
∑
σ∈ER

∑
σ∈ER′

Φ(σ)TΦ(σ′)

= Φavg(R)TΦavg(R
′).

Davg(R,R
′) := Φavg(R)TΦavg(R

′). (6.23)

Davg is a Gramian matrix thus a semi-definite positive matrix.
We use the Hadamard product A ◦ B of the matrix A and B, defined by the element-wise product. We
have

eνCnKν

+∞∑
i=0

νi

i!
D◦iavg.

Then, eνCnKν is a positive semi-definite matrix because of Schur’s theorem.

Proof of Proposition 7

Proof. Assume that σ (resp. σ′) is an uniform random variable on EI (resp. EI′). We have to compute
E(davg(σ, σ

′)) for the three distances: Kendall’s tau, Hamming and Spearman’s footrule.
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First, we prove (5.24). We follow the proof of Lemma 3.1 of [FKS03]. We have

E(dτ,avg(σ, σ
′)) =

∑
i<j

E(Ki,j(σ, σ
′)), (6.24)

with
Ki,j(σ, σ

′) = 1(σ(i)<σ(j),σ′(i)>σ′(j)) or (σ(i)>σ(j),σ′(i)<σ′(j)). (6.25)

We compute E(Ki,j(σ, σ
′)) for (i, j) in different cases.

1. i and j are in I ∩ I ′. Let us call them a and b. Their exists j and j′ ∈ [1 : p] such that a = icj and
b = icj′ . Then

Ka,b(σ, σ
′) = 1(cj<cj′ ,c

′
j>c
′
j′ ) or (cj>cj′ ,c

′
j<c
′
j′ )
. (6.26)

Thus, the total contribution of the pairs in this case is∑
{j,j′}⊂[1:p]

1(cj<cj′ ,c
′
j>c
′
j′ ) or (cj>cj′ ,c

′
j<c
′
j′ )
. (6.27)

2. i and j both appear in one top-k list (say I) and exactly one of i or j, say i appear in the other
top-k list. Let us call P2 the set of (i, j) such that i < j and (i, j) is in this case. We have∑

(i,j)∈P2

Ki,j(σ, σ
′) =

∑
i∈I∩I′,

j∈(I∪I′)\(I∩I′)

Ki,j(σ, σ
′)

=
∑

i∈I∩I′,
j∈I\I′

Ki,j(σ, σ
′) +

∑
i∈I∩I′,
j∈I′\I

Ki,j(σ, σ
′)

Let us compute the first sum. We order u1, ..., ur such that u1 < ... < ur. Let l ∈ [1 : r]. We
have #{i ∈ I, σ(i) > σ(iul) = ul} = k − ul and #{i ∈ I \ I ′, σ(i) > σ(iul)} = r − l thus
#{i ∈ I ∩ I ′, σ(i) > σ(iul)} = k − ul − r + l.

∑
i∈I∩I′,
j∈I\I′

Ki,j(σ, σ
′) =

r∑
l=1

#{i ∈ I ∩ I ′, σ(i) > σ(iul)}

= r

(
k +

1− r
2

)
−

r∑
l=1

ul.

Likewise, we have ∑
i∈I∩I′,
j∈I′\I

Ki,j(σ, σ
′) = r

(
k +

1− r
2

)
−

r∑
l=1

u′l. (6.28)

Finally, the total contribution of the pairs in this case is

r(2k + 1− r)−
r∑
j=1

(uj + u′j). (6.29)

3. i, but not j, appears in one top k list (say I), and j, but not i, appears in the other top k list (I ′).
Then Ki,j(σ, σ

′) = 1 and the total contribution of these pairs is r2.
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4. i and j do not appear in the same top k list (say I). It is the only case where Ki,j(σ, σ
′) is a non

constant random variable. First, we show that in this case, E(Ki,j(σ, σ
′)) = 1/2. Assume for

example that I do not contain i and j. Fix σ′ ∈ EI′ . Let (i j) be the transposition which exchange
i and j. We have

{σ ∈ EI , σ(i) < σ(j)} = (i j){σ ∈ EI , σ(i) > σ(j)}. (6.30)

Thus, there are as many σinEI such that σ(i) < σ(j) as there are σ ∈ EI such that σ(i) > σ(j).
That proves that E(Ki,j(σ, σ

′)) = 1/2.

Then, the total distribution of the pairs in thus case is

1

2

(
|Ic|
2

)
+

1

2

(
|I ′c|

2

)
=

(
n− k

2

)
=

1

2
(n− k)(n− k − 1). (6.31)

Finally, we have proved (5.24).

To prove Equation (5.25), it suffices to see that

dH,avg(I, I
′) = E

(
n∑
i=1

1σ(i)6=σ′(i)

)

=

p∑
j=1

1cj 6=c′j + E

 ∑
i 6=I∪I′

1σ(i)6=σ′(i)


+E

 r∑
j=1

1uj 6=σ′(iuj )

+ E

 r∑
j=1

1σ(iu′
j
)6=u′j


=

p∑
j=1

1cj 6=c′j +m
n− k − 1

n− k
+ 2r.

We want to prove (5.26). Let us write

• Ac :=
∑p

j=1 |cj − c′j |

• Au(σ′) :=
∑r

j=1 |uj − σ′(iuj )|

• Au′(σ) :=
∑r

j=1 |σ(i′u′j
)− u′j |

• R(σ, σ′) :=
∑

i 6=I∪I′ |σ(i)− σ′(i)|.

dS,avg(I, I
′) = E(Ac) + E(Au(σ′)) + E(Au′(σ)) + E(R(σ, σ′)).

We have to compute all the expected values.

1. E(Ac) = Ac.

2. E(Au(σ′)) =
∑r

j=1 E(|uj − σ′(iuj )|). If σ′ ∈ BI′ , then σ′(iuj ) ∈ [k + 1 : n] so:

E(|uj − σ′(iuj )|) = E(σ′(iuj − uj) =
n+ k + 1

2
− uj .

Finally,

E(Au(σ′)) = r
n+ k + 1

2
−

r∑
j=1

uj . (6.32)
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3. E(Au′(σ)) = rn+k+1
2 −

∑r
j=1 u

′
j .

4. E(R(σ, σ′)) =
∑

i 6=I∪I′ E(|σ(i) − σ′(i)|). σ(i) and σ′(i) are independent uniform random vari-
ables on [k + 1 : n].

E(|σ(i)− σ′(i)|) =

n−k−1∑
j=1

jP(|σ(i)− σ′(i)| = j)

=

n−k−1∑
j=1

j2
n− k − 1− j
(n− k − 1)2

.

Then

E(R(σ, σ′)) =
2m

n′2

n′∑
j=1

j(n′ − j) =
2m

n′2

(
n′(n′ + 1)

2
− 1

3
n′3 − 1

2
n′2 − 1

6
n′
)
.

So,

E(R(σ, σ′)) =
2m

n′

(
n′ + 1

2
− 1

3
n′2 − 1

2
n′ − 1

6

)
. (6.33)

That concludes Equation (5.26).

Proof of Proposition 8

Proof. We define

aγj (σ, σ′) := |{i ∈ [1 : n], σ(i) ∈ Γj , σ
′(i) ∈ Γj , σ(i) 6= σ′(i)}|

bγj,l(σ, σ
′) := |{i ∈ [1 : n], σ(i) ∈ Γj , σ

′(i) ∈ Γl, j 6= l}|

Now, assume that σ, σ′ ∼ U(Sγ) and σj , σ′j ∼ U(Sγj ).

E
(
dH(σ, σ′)

)
= E

 m∑
j,l=1

bγj,l(σπ1, σ
′π2) +

m∑
j=1

aγj (σπ1, σ
′π2)


=

m∑
j,l=1

bγj,l(π1, π2) +
m∑
j=1

|{i, π1(i), π2(i) ∈ Γj}|
γj − 1

γj

= |{i, Γ(π1(i)) 6= Γ(π2(i))}|+
m∑
j=1

γj
n

(γj − 1)
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