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Abstract

In the framework of the supervised learning of a real function defined on a space X, the so called
Kriging method stands on a real Gaussian field defined on X'. The Euclidean case is well known and
has been widely studied. In this paper, we explore the less classical case where A is the non com-
mutative finite group of permutations. In this setting, we propose and study an harmonic analysis of
the covariance operators that enables to consider Gaussian processes models and forecasting issues.
Our theory is motivated by statistical ranking problems.

keywords : Gaussian processes, Ranks, Kernel Methods.

1 Introduction

The problem of ranking a set of items is a fundamental task in today’s data driven world. Analyzing
observations which are not quantitative variables but rankings has been often studied in social sciences.
Nowadays, it has become very popular in statistical learning. This is mainly due to the generalization of
the use of automatic recommendation systems. Rankings are labels that model an order over a finite set
E, :={1,...,n}. Hence, an observation is a set of preferences between these n points. It is thus a one
to one relation o acting from £, onto F,,. In other words, ¢ lies in the finite symmetric group .S,, of all
permutations of F,,.

In this paper, our aim is to predict a function defined on the permutation group and for this we will
use the framework of Gaussian processes indexed on this set. Actually, Gaussian process models rely on
the definition of a covariance function that characterizes the correlations between values of the process
at different observation points. As the notion of similarity between data points is crucial, i.e. close
location inputs are likely to have similar target values, covariance functions are the key ingredient in
using Gaussian processes for prediction. Indeed, the covariance operator contains nearness or similarity
informations. In order to obtain a satisfying model one need to choose a covariance function (i.e. a
positive definite kernel) that respects the structure of the index space of the dataset.

A large number of applications gave rise to recent researches on ranking including "ranking aggre-
gation" ([KCS17]) , clustering rankings (see [CGJ11]]) or kernels on rankings for supervised learning.
Constructing kernels over the set of permutations has been tackled in several manners. In [KonOS],
Kondor provides results about kernel in non-commutative finite groups and constructs "diffusion ker-
nels" (which are positive definite) on the permutation group S,,. These diffusion kernels are based on a
discrete notion of neighborliness. We remark that the kernels considered therein are very different from
those considered here. Furthermore, the diffusion kernels are not in general covariance functions because



of their tricky dependency on permutations. The paper [KB10] deals with the complexity reduction of
computing the kernel computation for partial ranking. Recently, [JV17] proved that the Kendall and
Mallow’s kernels are positive definite. [MRW 16| extended this study characterizing both the feature
spaces and the spectral properties associated with these two kernels.

The goal in this paper is twofold : first we define Gaussian processes indexed by permutations by
providing a class of covariance kernels. They generalize previous results on the Mallow’s kernel (see
[JV17]]). Second, we study the asymptotic properties of the maximum likelihood estimator of the param-
eters of the covariance function and the properties of the prediction of the Gaussian Process associated.
We prove the asymptotic accuracy of the Kriging prediction under the estimated covariance parameters.
We also provide simulations that illustrate the performances of the studied kernels.

The paper falls into the following parts. In Section[2] we recall generalities on the set of permutations
and provide some covariance kernels. Asymptotic results on the estimation of the covariance function
are presented in Section [3] Section []is devoted to numerical illustration. Finally, Section 5 deals with
the special case of partial rankings. The proofs are postponed to the appendix.

2 Covariance model for rankings

We will use the following notations. Let .S, be the set of permutations on E,, = {1,...,n}. In order to
define a Gaussian process and in order to provide asymptotic results, we require the process to be defined
over an infinite set. For this, we will consider the space S := {J,, Sn ® Idy+\ g, , Where Idy-\ g, is the
identity operator on N* \ E,,. This corresponds to a set of observations where rankings are given on the
first {1,...,n} elements while leaving the other invariant.

This framework can be seen as a model to simulate long processes where it is possible to change the
order of the tasks, leading to several outcomes. For example in process mining, consider that we have
to collect firms from a large number of people (we assume that there is a countably infinite number of
them) to process out an administrative document. There is a predefined sequential order for the document
signatures, resulting in an overall time of treatment 7. We call p; the i-th person who signs the document
according to this predefined order. Let us now call Y (o) the processing time required when the order of
signatures is given by p, (1), Po(2)s s Po(n), --- Assume that Y — T is a realization of a Gaussian process
with zero-mean and covariance function K. Our aim is to predict the time Y (o), for new permutations
o, for instance in the aim of finding the order resulting in the shortest processing time for the document.
Another example is given by a collection of machines in a supply line that need to be tuned in order to
optimize the production of a good. The machines can be tuned in different orders, each corresponding to
a permutation. The objective of the model will thus be to forecast the outcome of a specific order for the
machines.

Recall that we set So = J,, Sp ® I dy+\E, - Furthermore, let Sy be the set of permutations on the
integers. As we will consider increasing domains, if ¢ € S,, and if n’ > n, we can consider o to be
in S,y with o (i) = 4 for all n < i < n/. With this simplification, we can write Soc = |J,, Sn. Several
distances can be considered on S,,. We will focus here on the three following distances (see [Dia88]]).
For any permutations 7 and o of S, let

e The Kendall’s tau distance be defined by

de(7,0) = Lo(iyso(j), ni)<n(i) + Lo(i)<o(), n()>m(): (2.1)
i<y

that is, it counts the number of pairs on which the permutations disagree in ranking.



e The Hamming distance be defined by

dH(W,J) = Z]lr(z);éo'(z) (22)

e The Spearman’s footrule distance be defined by

dg(m,0) = Z 17(i) — o (3)). (2.3)

These three distance are right-invariant. That is, V7, o, 7 € Sp, d(7,0) = d(71,07). Other right-
invariant distances are discussed in [[Dia88]]. We extend the last distances naturally on S, and obtain a
countably infinite discrete space. We then extend these distances on Sy, taking infinite sums of positive
numbers and assuming that the distances can be equal to +o0o. For example, the Kendall’s tau distance
is extended to

de(m,0) = Y Lo(i)so(i), ni)y<n(i) T Lo(i)<o(), w@)>mG): (2.4)

imjeN?
1<j

We observe that Sy is still a group with the composition.

We aim to define a Gaussian process indexed by permutations. Let us recall that the law of a Gaus-
sian random process (Y;),cp indexed by a set E is entirely characterized by its mean and covariance
functions

M :z— E(X,)

and

K : (z,y) — Cov(X,, Xy).
Hence we have only to build a covariance function on Sy.
We recall the definition of a positive definite kernel on a space E. A symmetricmap k: £ x E — Ris
called a "positive definite kernel" if for all n € N and for all (21, ..., z,) € E™, the matrix (K (z;, x;))i
is positive semi-definite.
In this paper, we call k a "strictly positive definite kernel" if k£ is symmetric and for all n € N and for all
(21,...,xn) € E™ such that x; # x; if ¢ # j, the matrix (K (z;,;)); ; is positive definite.

This notion is particularly interesting for .S, (and any finite set). Indeed, if k is a strictly positive
definite kernel, then for any function f : S,, — R, there exists (a,)ses, such that:

f=Y" ack(.,0), (2.5)
ocES,

and k is of course an "universal kernel" (see [SEL11l]). The last decomposition is no longer true neither
in S, nor in Sy, but we have a result a little bit weaker than the universality of the kernel in S..

Proposition 1. If k is a strictly positive definite kernel on S, then

Vect {Z aik(.,0;), n€N, a; €R, o; € SOO} (2.6)
i=1

is dense for the pointwise convergence topology in the space of all the functions on Ss..

Proof. Let f : Soo — R and let f,, be the restriction of f on S,,. The kernel k is strictly definite positive
on S, so there exists N,, € N, af, ..., a’]{,n € Rand o}..., aﬁn € S, such that

N7L

fo = k(. o}). (2.7)
=1

Hence f is the pointwise limit of (f,,)y,. O



Corollary 1. Let k be a strictly positive definite kernel on S, and let F be its RKHS. Then, F is dense,
in the pointwise convergence topology, in the space of all the functions on Sy.

We provide now three different covariance kernels. They share the following type
Ko g5(0,0") := 03 exp (—01d(0,0")), (2.8)

where d is one of the three distances discussed previously. More precisely, for the Kendall’s tau distance,
let K, 4, be the corresponding covariance function; for the Hamming distance, let &, g 4, be the corre-
sponding covariance function; and for the Spearman’s footrule distance, let K 51 1, be the corresponding
covariance function. We will write Ky, g, (resp. d) for all three kernels (resp. distances). Note that when
d(o,0') = 400, we have Ky, 9,(0,0’) = 0. Note further that the right-invariance of the distances is
inherited by the kernel Ky, ¢, .

Finally, let 0 € (Ri)3 and let us write K for the following covariance kernel

Ky(o,0") == Kp, 9,(0,0") + 031 5o (2.9)

In our case, we have assumed that Ky g+ is a covariance function, so that K o 1s a strictly positive
definite kernel. The following theorem proves this assumption.

Theorem 1. For all 61 > 0 and 02 > 0, the maps K ., Kg g, and K@i g, are strictly positive definite
kernel on S,,, on Soo and on Sy.

Corollary 2. The kernel K, is strictly positive definite on Sy, on S and on Sy.

3 Gaussian fields on the Symmetric group

Let us consider a Gaussian process Y indexed by ¢ € Sy, with zero mean and unknown covariance
function K. A classical assumption is that the covariance function K, belongs to a parametric set of the
form

{Ky;0 € 6}, (3.1)

with © C R? and where for all § € O, Ky is a covariance function. The quantity € is generally called
the covariance parameter. In this framework, K, = Ky« for some parameter 6* € ©.

The parameter 6* is estimated from noisy observations of the values of the Gaussian process on
several inputs. Namely (y; = Y(0;),0;) fori = 1,...,n. Actually, let us consider an independent
sample of random permutations ¥ = (01, 09, ..., 0,) € Sy. Assume that we observe ¥ and a realization
vy = (y1,Y2, -, Yn) € R" of the random vector Y = (Y (01), Y (02), ..., Y (0,,))" defined by

Y (o) = Z(ok) + ek- (3.2)

Here, ¢ ~ N(0,041,) is independent of ¥, and Z is a Gaussian process indexed by Sy independent of
> and . We assume that Z is centered with covariance function Kg;g; (see in Section . Thus,
Y is a Gaussian process with zero mean and covariance function K. defined by (2.9). The Gaussian
process Y (resp. Z) is stationary in the sense that for all o1, ...,0, € Sy and for all 7 € Sy, the finite-
dimensional distribution of Y (resp. Z) at oy, ..., g, is the same as the finite-dimensional distribution at
O1Ty «eey O T.

Several techniques have been proposed for constructing an estimator 6 = é(ol, YLy -y Ony Yn ) OF OF.
Here, we shall focus on the maximum likelihood one. It is widely used in practice and has received a lot
of theoretical attention. The maximum likelihood estimate is defined as

OriL = 0, € arg {I;leiél} Lo (3.3)
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with 1 !
Ly = —In(det Ry) + ggfulzgly, (3.4)

where Ry = [K}(0i,0;)]i1<ij<n. We consider that © C Hg”:l[ei,mm,ei,max] for some given 0 <
gi,min < ei,mam < oo (i = 17 27 3).

When considering the asymptotic behaviour of the Maximum Likelihood Estimate, two different
frameworks can be studied: fixed domain and increasing domain asymptotics ([Ste99]]). Under increasing-
domain asymptotics, as n — oo, the observation points o1, ..., o, are such that min;; d(oj,05) is lower
bounded and d(o;, o) becomes large with |¢ — j|. Under fixed-domain asymptotics, the sequence (or
triangular array) of observation points (o1, ..., 0y, ...) is dense in a fixed bounded subset. For a Gaussian
field on R?, under increasing-domain asymptotics, the true covariance parameter 6* can be estimated
consistently by maximum likelihood. Furthermore, the maximum likelihood estimator is asymptoticly
normal ([MMS84}ICL93| ICL96, Bac14]). Moreover, prediction performed using the estimated covariance
parameter 0 is asymptotically as good as the one computed with 8* as pointed out in [[Bac14]]. Finally,
note that in the Symmetric group, the fixed-domain framework can not be considered (contrary to the
input space R?) since S,, is a finite space and S, is a discrete space.

We will consider hereafter the increasing-domain framework. Hence, we observe values of the Gaus-
sian process on the permutations > = (o1, ..., 0y,) that are assumed to fulfill the following assumptions

1. Condition 1: There exists § > 0 such that Vi, j, d(o;, 05) > |i — jlP.
2. Condition 2: There exists ¢ > 0 such that Vi, d(o;,0,41) < c.

Such conditions are ensured for particular choices of observations (o1, ..., 0,,) for the three different
distances previously considered. For example consider the following setting.

Lemma 1. We fix k € N and we choose o, = Tpc, € Sgyn with 7, € Si a random permutation
such that (1,,)p, are independent (we do not make further assumptions on the law of 1,). Let ¢, =
(n+k n+k—1 .. 1)the cycle defined by c,(1) =n+k, c,(i) =i —1ifl <i<n+kand
cn (1) = 1 ifi > n+ k. Finally, 0y, is a permutation such that o, (1) = n+k, 0,,(¢) is a random variable
in2:klifl<i<k+4+lorifi=n+k o,(i)=i—1ifk+1<i<n+kando,(i)=1iifi>n+k.
The conditions are satisfied with = 1 and ¢ = 1+ k(k — 1) /2 for the Kendall’s tau distance, c = 1 + k
for the Hamming distance and ¢ = 2 + k for the Spearman’s footrule distance.

Remark 1. If there is a 01 € Sy for N € N, Condition 2 ensures that all the observations (o),
belong to So. More generally, using the stationarity of the Gaussian process Y and writing o, instead
of ooy Y\ve can assume that all the observations belong 10 So.

The following theorem ensures the consistency of the estimator when the number of observations
increases.

Theorem 2. Let 0, w1 be defined as in (3.3)), then under Conditions 1 and 2, we get

Ovr — 6% (3.5)
n——+00
The following Lemmas are useful for the proof of Theorem 2] (and of Theorems [3] and [] below).

Their proofs are postponed to the appendix.
Lemma 2. The eigenvalues of Ry are lower-bounded by 03 1,in > 0 uniformly in n, 0 and 3.

Lemma 3. For all @ = (a1, a2, a3) € N2, with |a| = a1 + a2 + a3 and with 00% = 0070052065,

the eigenvalues of 6‘;0\(11%0 are upper-bounded uniformly in n, 0 and 3.




Lemma 4. Uniformly in %,

1 n
Va >0, liminf inf — Z (Kp(oi,05) — Kps(0i,07))* > 0. (3.6)

n—=+00 [|§—0%|>a N =
4,j=1

Lemma 5. V(\1, A2, A3) # (0,0,0), uniformly in ¥,
TS By S I T ’
lim inf~ ]szl (}; )\ia—ekKe*(ai, aj)> > 0. (3.7)
With these lemmata we are ready to prove the main asymptotic results.

Proof. of Theorem 2] We follow the proof of Theorem V.9 of [BGLV17]. We first show that for all
e > 0, almost surely,

P <st;p (Lo — Lo« ) — (E(Lg|X) — E(Lg«|X))| > € E) — oo 0. (3.8)
We then prove that, for a fixed a > 0,
n
1 2
E(Ly|%) — E(Lp:[%) > a— > (Ko(oi,05) — Ko+ (04, 05))>. (3.9)
ij=1
We conclude since (3.8)), (3.9) and Lemma[]imply consistency. O

The following theorem provides the asymptotic normality of the estimator.

Theorem 3. Let My, be the 3 x 3 matrix defined by

1 _1ORy~ ., ORy~
Myz)ij = 5= Tr | Ry 2 : 3.10
(Man)ig =5, T <R9 o9, 10" "9, > (3-10)
Then
1 § 2
VM, (GML —0 ) oo, N0 1), (3.11)
Furthermore,
0< liH—l}inf Amin(Marz) < limsup Apax(Mpyz) < 400. (3.12)
n—oo n—00

Proof. We proceed as in the proof of Theorem V.10 in [BGLV17]]. First, we prove (3.12). We then use a
proof by contradiction: we assume that (3.11) is not true. So, there exists a bounded measurable function
g :R? — Rand & > 0 so that, up to extracting a subsequence

1
& [o (v, @ - 0)| - 00| 2 € G.13)
with U ~ N(0, I3). As in [BGLV17], we prove that, extracting another subsequence, we have:
5 (2 L
2 _p*
VM, (GML 0 ) Do N0, 1) (3.14)
which is in contradiction with (3.13). O



Given the maximum likelihood estimator 0, ML, the value Y (o), for any input o € Sy, can be pre-
dicted by plugging the estimated parameter in the conditional expectation (or posterior mean) expression
for Gaussian processes. Hence Y (o) is predicted by

Yi(0) = ri(o) Ry "y (3.15)
with
Ké\(ﬂ', Ul)
7“5(‘7) = :
Ké(a, on)

We point out that }75(0) is the conditional expectation of Y (o) given yi, ..., yn, when assuming that Y is
a centered Gaussian process with covariance function K.

Theorem 4.

Vo € Sy, ‘}/}A

Gy () — f’e*(a)’ = op(1). (3.16)

Proof. We follow the same guidelines as in Theorem V.11 in [BGLV17], showing that, for & € {1,2,3}

sup -0 3y(0)

= Op(1 3.17
gco 00}, p(l) ©-17)

O]

4 Numerical illustrations

To illustrate Theorem [2| we suggest a numerical application to show that the maximum likelihood is
consistent. We generated the observations suggested in Section [3| with k& = 3. We recall that o, =
Tm(n+kn+k—1..1) € Sy, with 7, € Si, a random permutation.

Remark 2. This choice of observations o, can model real cases. Recall the example given in Section
where Y (0) is the time for a document to be signed in the order Do (1) Po(2)s -+ Po(n)s - 10 estimate 6%,
we have to observe a realization of the time Y at 01,09, ... witho, = T,(n+kn+k—1..1) € Sp1p
and T, € Sk is a random permutation. Assume that the k first persons p1, ..., px are in the same office
We begin to give the document to the person Py . Pn+k Signs the document, then, observing that he/she
is the first one to sign, gives the document to one of the k first persons, who then sign in a random order.

To highlight the dependency with n, we write 0, = Oy, the maximum likelihood estimator for
n observations. For each value of n, we estimate the probability P(||#,, — 8| > ¢) using a Monte-
Carlo method and a sample of 1000 values of ]1H B0 >e" Figuremdepicts these estimates for ¢ = 0.5,

6* = (0.1,0.8,0.3) and © = [0.02,2] x [0.3,2] x [0.1, 1].

In Figure 2] we display the density of the coordinates of the maximum likelihood estimator for
different values of n (20, 60 and 150). These densities have been estimated with a 1000 sample of the
maximum likelihood estimator. We observe that the densities can be far from the true parameter for
n = 20 or n = 60 but are quite close to it for n = 150. We can see that for n = 150, the Kendall’s tau
distance seems to give better estimates of 63. However, the computation time of the distance matrix is
much longer with the Kendall’s tau distance than with the other distances.

In Figure 3} we display estimates of the probability that the absolute value of the prediction of Y (o)
given in (3.13) with the parameter 6,7, minus the prediction of Y (o) with the parameter 6 is greater
than 0.3. Theorem [ ensures us that this probability converges to 0 when n — +o0.
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Figure 1: Estimates of P(||f,, — 6*| > 0.5) for different values of n, the number of observations, with
6* = (0.1,0.8,0.3) and Kendall’s tau distance, the Hamming distance and the Spearman’s footrule
distance from left to right.

0.0

Figure 2: Density of the coordinates of @l for the number of observations n = 20 (in red), n = 60 (in
blue), n = 150 (in green) with 6* = (0.1, 0.8,0.3) (represented by the red vertical line). We used the
Kendall’s tau distance, the Hamming distance and the Spearman’s footrule distance from left to right.
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Figure 3: Estimates of P (’%ML (o) — Yp- (a)’ > 0.3) for different values of n, the number of observa-

tions, with 6* = (0.1,0.8,0.3), 0 = (1 4 6) and the Kendall’s tau distance, the Hamming distance and
the Spearman’s footrule distance from left to right.

S Partial Rankings

5.1 Introduction

In many situations, when n is large, preferences are not given for all points i € {1,...,n} but only for
a small number £ of points {1, ..., }. This situation occurs often in social science. When consider-
ing statistical models which analyzes the behavior of human decision in a consumer behaviour, partial
rankings are often considered. Actually, given k objects governed by a large number n of variables, how
can we model the decision to choose one object rather than another ? Objects are described by a set
of quantitative variables X = (X! ... X ”)/ € R". These variables are representative of a specific
property of each object. For instance when buying a bike one may be interested in the weight, the price,
the number of velocities, the height, or any other quantitative or qualitative descriptors. Each consumer
when confronted to the choice of a product, chooses to give more importance to certain variables while
discarding others. The consumer selects a small number of variables (features) that are essential in his
choice, ranks these variables according to its preferences while the others play little importance.

In the general framework, we have a finite set X = {z1, ..., x, }. A partial ranking aims at giving an
order of preference between different elements of X. A partial ranking R is a statement of the form

X1 =-Xo - o= X, (5.1)

where X1, ..., X;,, are disjoint set of X = {1, z9, ..., x, }. This partial ranking means that any element
of X if preferred to any element of X; 1. We can associate to the partial ranking R the set Er of .S,
defined by

Er = {O’ € Sn, V(:El'l, ,l’lk) € X1 X ... x X, U(il) < U(iz) < .. < O'(Zm)} (5.2)

Remark 3. In [KBI0O] and [JVI7], the set ER is defined by the set of the permutations o such that

V(ziy, .oy xiy) € X1 X oo X Xopy, 0(i1) > o(ia) > ... > o(ix). They chose this definition to simplify
their computations but in this way the ranking mapped to {c} is
To—1(iy) 7 - 7 To—1(3y)

The definition (5.2)) seems to be more natural because we map {c} to the ranking

.To.—l(il) - 17071( ).

in



The first natural way to extend a positive definite kernel K : .S, X S;, — R on the partial rankings
(see [KB10], [JV17],...) is letting

AN 1 /
K(R,R) := Bl > Y K(od). (5.3)

O’GER O'IEER/

If K is a positive definite kernel on permutations, then K defined by (3.3)) is a positive definite kernel
on partial ranking ([Hau99|]). We also can see this saying that if 1, ..., Ry are partial rankings and if
(a1, ...,an) # 0, then

> aig;K(Ri,Rj) = Y bobyK(o,0), (5.4)

i,j=1 o,0’'ESy

letting u
boi= > (5.5)

i, cER; |ERZ|

Remark 4. The values of K (R, R) depends on R. It can be very closed to 0, that means for a Gaussian
process Y indexed by the partial rankings that the value Y (R) is almost constant. To circumvent this
problem, we can define a new kernel

1
VKR, RK(R,R)

K™ (R,R) = K(R,R). (5.6)

The computation of this kernel seems to be very long because we have to sum over |Er||Er/| per-
mutations. In the following, we aim to reduce this computation. We focus especially on the following
kernel on S,,:

K(o, o) := e Vi), (5.7)

where d if the Kendall’s tau distance, the Hamming distance or the Spearman’s footrule distance. These
kernels are interesting for two reasons: they are strictly positive definite and they are easy to interpret
(more than a kernel defined by a matrix exponential).

5.2 Direct computations

The first idea is to simplify the expression of (5.3). However, this does not seem to be a simple task,
that is why we take a particular framework. In this section, we assume that all the items are ranked,
ie. (Xj)i<j<m is a partition of [1 : n]. Let ; := |X;| and v = (7;)1<j<m is a partition of n. This
computation has always been done in [LMOS] for the Kendall’s tau distance. Let us sum up the result
that interests us in the following proposition.

Proposition 2. [[LMOS] A
Let 7y be a partition of n. Forall j € [1 :m], let g; := Z{:—ll ~; and let

az- = H(s,t), s<t, gj+1<7(t) <7(s) < gj+1}

(1) = H(s,1), s <t, gj +1<7(t) < gjy1 <gi+1<7(s) < gryr}|

Then, if Er, = Svimfori =1,2,

1
m Vs r

1 m 1
K - - —vyitiqbl (o) —vh .
(R1, Ry) S5 E e i<t 9 | | | | E e (5.8)

UeﬁlTl’;lS,Yz s=1r=1h=0
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Now, we do the same work with the Hamming distance. Before, we need to introduce a new notation.

Definition 1. We define

. nl G (—1)F
cna = {0 € S, du(oyid) = d}f = = d),Z o (5.9)

=0
the number of permutations of n elements which move exactly d elements.
Now we give a proposition similar than Proposition [2] with the Hamming distance.

Proposition 3. Let us define

Q= i€l i £ 700, (,7(6) € g +1: gy}
b}l(T) = {iel:n],l#j,i€(gj+1:gj41], 7()) € [g1 +1: gi41]}]
Then,
1 Ly 571( ) m s N
KRR =g oy | 2 < e ] 610
oemmy S 2 s=1h=0

5.3 Fourier Transform of the kernel on partial ranking
5.3.1 Notations
In this section, we use the usual kernel on partial ranking defined by
1
KR,R):= ———— K(o,0"). (5.11)
B i= i) 20 2 Ko
rRO'€EER

We assume that the kernel K on the set of permutation is right-invariant and we write k(o) := K (o, id).
We extend the work of [KB10]. We compute the Fourier transform for general partial rankings, i.e.
statement R of the form

X1 -Xo ==X (5.12)

Let v = (71, ..., Ym) be the size of the (X)1<;j<m, let k be the sum of the y; and let ¥ be the partition
of n defined by 4 := (71,72, ---, Ym,n — k). Let IT} be the set of interleaving of [1 : k] with [k + 1 : n]

o(i) < o(j)sii < j<k
o(i)<o(j)sik+1<i<j
Then, writing I = {id}, we have (as in [KB10] but generalized for all partial ranking)

Eg :=1I}Sy7R, (5.13)

where g € S, is such that 7(X;) = |1+ Z{:_ll m 2{21 fyl] Finaly, let us write £, := I} S5.
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5.3.2 Reduction of number of terms

We just generalize the works of [KB10] for general partial rankings. Let R; (z = 1,2) be the partial
rankings defined by
ER, = E,iTR,. (5.14)

As in [KB10], we identify a set A of permutation with the function of S,, which associates to o the
number 1 if o € A and 0 otherwise. Proposition 6 of [KB10] gives

1 — ~ —
K(Ri, Rs) = ’ > d\Tr (ERl (p2)* k(px)ER, (PA)) : (5.15)

The next proposition (which generalizes Proposition 8 of [KB10]) show how the sum in the previous
equation can be reduced to a lower number of terms.

Proposition 4. Let ¢ := max(v{, ..., ’Y%@l,” — k1,74, ., *yfm, n — ko) and let A be the set of Young’s
diagrams of n boxes with at least c boxes in their first row. Then

K(F1Bo) = e 3 i (B )" Ron) B ). (5.16)

n!|ER,|ER, e

5.3.3 Reduction of each remaining term

Here, we assume that the partial rankings for which we want to compute the kernel K (R, R2) have
always the same forms . For example, assume that all these partial rankings are top-k lists and partial
rankings of the form z;, > z;, > ... > ;.. In this case, we just have v = (1,1,...,1,n — k) and
v = (1,1,...,1). The next proposition show that the computation of can still be reduced.

Proposition 5. Let R; (i = 1,2) be the partial rankings defined by

Eg, = Eim;. (5.17)
Then
K(Ri, Ro) = 5™ dyTr (pa(mom aa(B, R (pa)pa(Be) ) (5.18)
AEAR
where
1 -1
D(Ey) = ﬁ palo™),
ocky
1
PA(Ey) = W pA(o).
oEE,

Corollary 3. If all the items are ranked, i.e. k = n, then we have

K(Ri B) = - 5 dyTr (a(ram ) oa (S5 R(on)pa (55 (5.19)
AEAD

where py(S5) is a projector on Wy = {z € C™, Vo € S5, px(0)z = x}.

12



5.4 A new Kernel on partial ranking

However, | Er| and | E/| are often large numbers. The computation of the kernel on partial rankings can
be very long.

That is why we suggest another manner to extend the kernels K61, 6> and K} on partial rankings. If d
is the Kendall’s tau distance, the Hamming distance or the Spearman’s footrule distance, we define the
measure of dissimilarity dg,, as the mean of distances d(c, 0’) foro € E and o’ € E":

/
davg(R, R') == \ERHERI\ JEZE gﬂ«:,d 0,0 (5.20)
R
Then, we define
Ky, 0, (R, R') := 0, exp(—01davg (R, R), (5.21)
and
Ké(R, R,) =0y exp(—@ld(wg(R, R/)) + 031 p_pg. (5.22)

Proposition 6. Ky, ¢, is a positive definite kernel on the set of partial rankings of Sy, and K is a strictly
positive definite kernel.

The computation of this new kernel on partial rankings is still very long: we have to sum |ER||Ep/|
elements. However, this form can be easily reduced. Let us take the example of top-k partial rankings.
A top-k partial ranking (or a top-k list) is a partial ranking of the form

Tiy = Tiy > oo = Tiy = Xpest- (5.23)

Let us write [ = (i1, ..., iy ) this top-k partial ranking. The following proposition show how to reduce the
computation of dy.4 (and so of the kernel of partial rankings) for the fixed domain framework.

Proposition 7. Let I and I' be partial rankings. Let the set [1 : k] = {c1, ..., cp} U{u, ..., uy } such that
ic; € INI"andiy; € INT'. Similarly, let [1 : k] = {c}, ..., c,} U{ul, ..., u;.} such that i/, € I'\ I and
J
i w € I’ N 1. We order the integers cj and c so that 1 le; <leji4 and 7' o < Zc, . Remark that le; = i’c,.
U € J+1 J
Let us writen :=n —k —land m :=n — | UI'|. Then

r

n—=k
dT,CWg(Ia I/) - Z ]I(Cj<cj/,cg.>c;_,)or(Cj>cj/,c;»<c;.,)+T(2k+1_T)_Z(u3+u )—l—T’ +( 92 ) )

{4.3"}C(1:p] j=1
(5.24)
P n—k—1
di,avg(1,1') = Zl Lejey +-m— =+ 2n, (5:25)
j:
and
b ! om (n'+1 1 1 1
2
sl = Yo ler=G ootk ) =3 (s 5)+ 55 (555 g) 629

j=
Remark 5. These computations show that K (I, 1) can be easily computed. We have

K (I,]) = ngxp< < )) (5.27)

Ky(I,I) = 62exp(—0i(n—k—1)) (5.28)

B n n—k m—-k-12 n-k-1 1
KH(I,I) = 926Xp< 291 —k—l( B — 3 — B —6>>.(5.29)

The computation of K" defined by (5.6) become easy for the top k lists.

13



For the Hamming distance, we have a more general result for all partial ranking such that all items
are ranked, with same sizes (i.e. v = 7?). We take the previous notations.

Proposition 8.
At avg(Sym1, Syma) = [{i, T(m1(3)) # T(ma(i))}| + Z Ly — 1) (5.30)

We can also find in the proof of Theorem 2 of [JV17] how to compute dT,avg(R, R’) for R and R’
partial rankings of the form
Tiy > Tjy 7 oo > Ty (531)

Remark 6. The measure of dissimilarity between partial rankings dq,q depends on n, contrary to the
distance between total ranking (or permutations). For example, let I and I' be two tok-k lists of [1 : n1).
If na > na, we can assume that I and I' are top-k lists of [1 : ny]. However, we can see in PropositionE]

that daygn, (I,1') # davgm, (I, 1').

6 Appendix
6.1 Proofs of main Results
Proof of Theorem[I]

Proof. First part: we show that the map Ky, g, is a strictly positive definite kernel on S,,. It suffices to
prove that, if v > 0, the map K defined by

K(o, o) := e V@) 6.1)

is a strictly positive definite kernel. It is already shown in Theorem 5 of [MRW ™ 16] for the Kendall’s tau
distance. Let us prove it for the Hamming distance. We follow the proof of Theorem 5 in [MRW ™ 16)].
For simplicity, we keep the same notations for a map S, x S, — R and a matrix indexed by the
permutations of S,,. Let

D(o,0") :=n—dy(o,0") Z]la() o) (6.2)

We see that if we define the vector ® € R™ by

(o) == (Ly()=j)i s (6.3)

we have
D(o,0") = ®(0)T®(c"). (6.4)

Hence D is a Grammian matrix and thus a positive semi-definite matrix.
Let us write M := " K seen as a matrix indexed by the elements of S,,. We use the Hadamard product
A o B of the matrix A and B, defined by the element-wise product. As in [MRW ™ 16|, we have

M = Z DOZ+Z Doz

=0 ! z>n+1
vV on . -
= (1 + ;D) + go a; V' D
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with

(d-1)*

(d=1)'=(d=1)(d=2)..(d=)) < o if; <p
Q; 1= 20
120 ifi >n+1.

As in [MRW " 16], the second term is a positive semi-definite matrix because of Schur’s theorem. We
have to prove that the first term is a positive definite matrix. For this, we will show that the first term is a
Gramian matrix of independent vectors.

Let us write @ (o) € R the vector defined by

(I)l( )60*1 (I)l fﬂo (ir)=3jr> (65)

where the coordinates are indexed by the ordered pair cg = (—1,0) and the n? ordered pairs ¢, =
(ir,jr) € [1 : n]%. We see that (1 + £D) is the Grammian matrix of {®1(c), o € Sp}. As in proof of
Theorem 6 in [MRW ™ 16], we can show by induction on p that if we define @, : S,, — R+ by

(I) clcz .Cp — H (I>1 Cza (66)

then (1 + 2D)°P is the Grammian matrix of {®,(c), o € S, }. We use this results for p = n. Finally
we have to show that the vectors {®,,(c),0 € S,} are linearly independent. We then will have that
(1+ 2D)°" is the Grammian matrix of independent vectors so it is a definite positive matrix and we may
conclude that the claim holds on \S,, and so on S,

Assume that their exists (a,)ses, such that
Y ap®u(o) =0 e RO 6.7)
oc€Sn

Let 0g € Sy, Let us write j; := 0(¢) and ¢; the ordered pair (i, j;). We look at the coordinate c1, ..., ¢,
of the equation (6.7)), we have
0 = Z ao n— 1 c1,

oESH

n
ag (=) .
°\n

Thus, ay, = 0, and that is true for all permutation og. We have shown that K, gf g, 1s a strictly positive
definite kernel on S,,.

Let us prove it now for K (§1 g,- We follow the same idea. Let

D(o,0') :=n?—dg = Zmin(a(i), d'(i)) +n — max(o(i), o’ (7)),
i=1

1 ifj < o(d)

0 otherwise,

0 ifj <o)
1 otherwise.

®(0)ij1 = {

and M := ¢""’ K. We have

P(0)ijz2 = {

vV on . 0i
M= (1 4 5D> 4 ;0 ;i D% (6.8)
i>
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and it remains to show that the first matrix is positive definite. Let ®1(c). := 1 if ¢ = (0,0,0) and
®1(0)e = \/ED(0). if ¢ € [L: n] x [1: n] x {1,2}. As for the Hamming distance, we define ®,, by
induction and we want to prove that the vectors {®,,(0),c € S,} are linearly independent. Assume that
we have (6.7). Let o € S,, and choose ¢; := (i,0(i),1). Then oy, = 0.

Second part: let us prove now that the claim is also true on Sy. We will use the following lemma.

Lemma 6. Let 01,01 € Sy. Then,
d(oy,02) < 00 <= dn, 0201_1 € Sn. (6.9)

Proof. 1t is obvious for the Hamming distance and the Spearman’s footrule distance. Let us prove it for
the Kendall’s tau distance. Assume that d.(id, o) < +oo. Let us write N := max{j, 3 < j, o(i) >

o(4)}-

Let us prove that o is the identity on [N+1 : +00[. By contradiction, assume that Iny < N, o(ny) >
N + 1. Then there exists ng > N + 1, o(n1) < N. Thus ny < ng, but o(ny) > o(n2), that contradicts
the maximality of /V.

Thus, o is an increasing permutation on [NV + 1 : 4+00[, so it is the identity on this set. O

In order to prove that Ky, g, is strictly positive definite on Sy, the idea is to boil down to S, using
the previous lemma and using the positivity on .S,,.

Let ~ be the equivalence relation defined by: i ~ j < d(i,j) < +o0.

Let (01, ...,0,) € Sy and let (aq, ..., a,) # 0. Let C1, ..., Ck be the equivalence classes formed by
{o1,...,0,}. Then

K
> aia;jKo, 0,(00,05) = > > aa;Ky, 6,(0i,0))

2% k=1 (i,j)eC?
K
= > > aia;jKy, g,(0imk, 057k)

k=1 (i,j)eC?

where 75, € Sy such that Ing,, Vi € Cy, 7,05 € Sy, (We can choose for example 73, = T L with i any
element of C};). We know that the kernel Ky, g, is strictly positive definite on Sy, , so all the terms of the
previous sum over k are non-negative and at least one is positive. O

6.2 Proofs of Lemmata

Proof of Lemma[3
Proof. It is easy to prove when ov; = g = 0. Indeed:

1. If az = 0, then )\max (Ké(o‘i,O'j)i,j) < >\max (K91,92(0'i70'j)i,j) + 93,max and we show that

Amax (Ko, 0,(0i,05)i ;) is uniformly bounded using Gershgorin circle theorem ([Ger31).

glol
2. Ifag =1, then 2.8 = 1.

alelRy

3. If ag > 1, then Jg0 . =
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Then, we suppose that (o, a2) # (0,0). Thus,

ollRy 0ol (Ky, g,(04,05)i ;)
90 BIE )

It does not depend on 3 so we can assume that o € N2, We have

a|a|K / ’
%gi(g’ ) < max(1, 2 max)d(o, U')ale_el’“‘i“d(g’g ), (6.10)
We conclude using Gershgorin circle theorem ([Ger31]). O

Proof of Lemma(d
Proof. Let N be the norm on R? defined by
N(z) := max(4cls max|z1], 2|22], |23]), (6.11)
with ¢ as in Condition 2. Let o > 0. We want to find a positive lower-bound over § € © \ By (6*, o) of
1 - / / 2
" Z (Ky(oi,05) — Ky (0i,05))". (6.12)
ij=1
Let 0 € © \ By(0*, ).

1. If |01 — 07| > a/(4ch2,max). Let k, € N be the first integer such that

2 In(6 max,) — In(6 min
KE > ey 002 aoz 0(62.min) 6.13)
Then, for all 7+ € N*,
(07 — 01)d(04, 0itk, ) + In(02) — In(65) 51
5 > 1.
For all n > k,,
1 - ! / 2
- > (Ky(oi,05) = Kpe(04,07))
ij=1
1 n—=keq
= > (Ky(0i,0i4k,) — Kpe(03,0i11,))?
i=1
n—~ke * *
2 l 6—29171113,(016@4-2 ln(927min)4 Sinh2 ((91 B el)d(alu Ui-‘rka) + 1]:1(92) _ ln(92)>
n 2
i=1
> Cl,an — ka?
n

where we write C o, = e~ 20tmaxchat2In(02,min) 4 sinh?(1).

2. If ‘91 — 0T| S a/(4092,max).
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(a) If |#2 — 65| > /2. We have

01 — 0F
‘121|d(0'i,02‘+1) < @

892,max

« _ «
492,max 8‘92,max
[In(63) — In(62)| a

- 2 892 max ‘

Thus,

) (6.14)

(61 — 01)d(0i, 0i+1) +In(02) —In(63)| «
2 - 892 max

and we have

> (Kyloi,05) — Kp.(01,05))
ij—=1

SR

1 n—1
=z n Z(K(;(Ui7‘7i+1) — Ky (04,0i11))°

i=1

1 n—1
1 Z 6—201,maxc+2ln(027"‘in)4 sinh? ( a )
n L 8927max
i=1
n—1
= 0270[ bl

n

Y

where we write Cy , 1= e~ 201maxc+2In(02,min)4 ginh? ( a )

802,max
(b) If |§2 — 05| < /2, we have |03 — 05| > «. Thus,

1 n
~ > (Kyloi,05) — Kpe(01,05))

ij=1

1 n
— E (Ky(oi,04) — Ké*(oi,ai))2
n

i=1

v

1 < .
= - > (02 + 05 — 05 — 05)°
=1

a2

1

v

Finally, if we write
o

2
Cy :=min <C’17a, C,a, ) , (6.15)

we have n
1 n—k

inf = (Kj(os,05) — Kp(05,04))* > -
N(GI%*)Eanijzl( o) = (o) =

To conclude, there exists & > 0 such that ||.||2 < hN(.) thus
1 n
liminf inf = Y (Kp(04,04) — Kpe(04,05))> = Coyp, > 0. (6.17)

n—+400 ||0—0%||>a N &
,j=1

Co. (6.16)

n

18



Proof of Lemma 3

Proof. We have

8(31 Kg-(0i,05) = —d(Ui,aj)efefd(UivUj%
0 —Kp.(0i,05) = e—01d(04,05)

005 o ;

0

893 K@* <017 U]) = ]11:]

Let (A1, A2, A3) # (0,0,0). We have

3 2
_ Z <Z)\k89 Kg* O'Z,O'J)>

Jl

2 2
0
= — E E )\k Kg* 0'1,0']) +()\2+)\3)2
a0y,

z#g 1
= — Z 6720Td(0i’0j) ()\2 — /\1d(0'i, Uj))2 + ()\2 + )\3)2.
n
i#j=1

If A; # 0, then for conditions 1 and 2, we can find € > 0,7 > 0,k € Z so that for |i — j| = k, we have
(Ao — \id(oy, aj))2 > e and e 2014(?:93) > 7 This concludes the proof in the case A; # 0. The proof
in the case A\; = 0 can then be obtained by considering the pairs (j, j + 1) in the above display.

O
6.3 Proofs of Partial rankings
Proof of Proposition 3]
Proof. We follow the different steps of [LMOS]].
Lemma 7. Form € S, q¢ > 0, and a composition y = (71, ..., Ym) we have
m Y m 7]
Z qu(Uﬂ'd) — qu,zzlbjz(W) H Zc%hqh‘ (6.18)
o€SyT j=1h=0
Proof.
P A DI e R
oceSyT oESyT
— ng,lzl b;-yz(ﬂ') Z q ;n:l a;(”)
oceSyT
— ng,lzl b;-yz(ﬂ') Z q :;n/zl a;(cr)
oES,yT
m
_ qZ;,lzl bj;(m) H Z qu(Ujvid)
7j=1 gj ES’Y]'
m Y
— TS et
j=1h=0
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Corollary 4. Forw,7 € S,, ¢ > 0, and a partition v = (Y1, ..., Ym) we have

m

i
Z qu(O"T'Zd) =g > im 71(7” HZ fy],hqh' (6.19)
j=1h=0

oeSym

Proof. (Sym)T = S,(7T) so

Z qu(oT,id): Z qd(a’)

TESyT o’'eS,(nT)
L]
We use Equation to conclude the proof of Proposition
q p P
Z § : —l/dH o,0')
UES 171 O GS 2T
_ § : Z e—VdH(ovn,O"ﬂ'g)
06571 0’654{2
_ E Z e*l/dH(crﬂlwgla/_l,id)
UGS,YI OJES,YQ
- Z Z e—VdH(omw;la’,id)
U’GS,YQ 06571
m Yj
e S LX) | )3T
“/]»
o GS 2 j=1h=0
L]

Proof of Proposition 4]

Proof. It suffices to prove that if Er = E, g, then E}(p,\) = 0 forall A ¢ A} where h := max(%)x
(with ¥pp1 = n — k). Forall j € [1 : m+ 1], let g; := Z{:—ll 4 and let Sr; be the subgroup of S,
which permutes only the integers between g; + 1 and g;1. Then, we have

Sy =[] sr, (6.20)

Now, let 7 := (1 2 ... n). Then, forall j € [1:m + 1]
Sr, =198, (6.21)

where S, is the subgroup of S, which permutes only the integers between 1 and ;. Proposition 7 of

[KB10] says that the subgroup .S, of .Sy, is bandlimited on A7 i.e. for all A7, we have S’;(pA) = 0.
Thus, using Equation (6.21)) and the fact that uv(px)u(py)v (p,\) we have that St, is also bandlimited
on Azj. Then, Equation (6.20) shows that S5 is bandlimited on A}'. We concludes the proof using that
Er =11} Symg. O

Proof of Proposition 5]
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Proof.

K(R1, R2)

1 _ S
- = N 4T (E *T(p\)E )
o En Bl A;\:n A R ()" k(pr)ERy(p2)

1 1 P 1
Rl Z d\Tr \Ep,| Z px(0)" | k(px) Er] Z (o)

AEADR o€ER, o€ER,
1 - -
= = > daTr (pa(r DBy )R )pa(Ey2)oa(m2)
AEAD
0
Proof of Proposition [6]

Proof. 1t suffices to show that the kernel K, (R, R') := exp(—vdque(R, R')) is strictly positive def-
inite. We have seen that for all the three distances, there exist constants C,, and d,, and a function
® : S,, — R such that C,, — d(0,0") = ®(0)T®(o").

Let us write 1
Daug : R— —— Y D(0). (6.22)

Then,

Cr = duny(RR) = cn—’E1|E,’ S Y dio,o)

oc€ER o€EER

| ,
= EE| Z Z Cy, —d(o,0")

oc€ERo€EER

1 /
— ] Z Z (o)l o (o)

o€ERo€EER

= Doy (R)T(I)avg (R/) .

Davg(R, R) := ® g (R) @4y (R). (6.23)

D44 1s a Gramian matrix thus a semi-definite positive matrix.
We use the Hadamard product A o B of the matrix A and B, defined by the element-wise product. We
have

+o00 I/i
vChy o1
K,y iy
i=0
Then, e“~ K,, is a positive semi-definite matrix because of Schur’s theorem. O

Proof of Proposition 7]

Proof. Assume that o (resp. ¢’) is an uniform random variable on E; (resp. E;/). We have to compute
E(dqvg(o, ")) for the three distances: Kendall’s tau, Himming and Spearman’s footrule.
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First, we prove (5.24). We follow the proof of Lemma 3.1 of [FKS03]]. We have

E(drag( = E(Ki;(0,0) (6.24)
1<j
with
K;j(0,0") = Lg(i)<o(i).o’ (i) >0 () or (0() >0 () 0" (1)< (5))- (6.25)

We compute E(K; (o, 0”)) for (4, j) in different cases.
1. iand j are in I N I'. Let us call them a and b. Their exists j and j' € [1 : p| such that a = ic; and
b= icj,. Then
Kéhb(aa OJ) = ]l(Cj <cjr.c] >c;.,) or (¢j>c;r ¢ <c;,,)' (6.26)

Thus, the total contribution of the pairs in this case is

Z ]l(c]'<cj/,c;>c;/) or (Cj>cj/,c;<c;/)' (6.27)
{5.9"yCL:p]

2. ¢ and j both appear in one top-k list (say /) and exactly one of ¢ or j, say ¢ appear in the other
top-k list. Let us call P, the set of (4, j) such that i < j and (4, 7) is in this case. We have

Z KiJ(o’,U’) — Z KZJ(O'O')

(i,5)EP2 ielnr’,
JEIUINN\UINI")

= Z KiJ(O’,O’/)"‘ Z Ki,j(070/)

ielnl’, ielnl’,
jenI’ JEI'\I

Let us compute the first sum. We order uy, ..., u, such that u; < ... < u,. Letl € [1 : r]. We
have #{i € I, o(i) > o(iy,) = w} =k —wand #{i € I\ I, () > 0(iy,)} = — 1 thus
#ielINnl', o(i)>o(iy)=k—u —r+L.

Y Kijlo,0)) = > #{icInl, oi) > o(iy)}
=1

ielnl’,
1_
= (14157 - xm

FISAVA

Likewise, we have

Z K; (o, 0") :r< 1_T> Zul (6.28)

ieInl’,
JEI'\I

Finally, the total contribution of the pairs in this case is

T

r(2k+1—71) =) (uj +uf). (6.29)
j=1

3. i, but not j, appears in one top k list (say I), and j, but not 4, appears in the other top k list (I”).

Then K j(o,0’) = 1 and the total contribution of these pairs is r2.
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4. ¢ and j do not appear in the same top k list (say I). It is the only case where K j(o,0’) is a non
constant random variable. First, we show that in this case, E(K; j(c,0’)) = 1/2. Assume for
example that I do not contain ¢ and j. Fix o’ € Ep. Let (i j) be the transposition which exchange

7 and j. We have

{o € Er,0(i) <o(j)} = (i j){o € Er,0(i) > 0(j)}

(6.30)

Thus, there are as many oinE; such that o(i) < o(j) as there are o € Ey such that o(i) > o(j).

That proves that E(K; j(0,0")) = 1/2.

Then, the total distribution of the pairs in thus case is

To prove Equation (5.29), it suffices to see that

diavg(1,1') = E (Z ]la(i)#o'(i))
i=1
p
= Z]lcg'#% +E Z ]la(i)7£0’(i)
j=1

iA£IUT

T T
FE| D Loy | FE | 2 Loty
j=1 J=1 ’

k—1

p
n —
= Z]lcﬁ’éc;‘ +mfk +2T
j=1

We want to prove (5.26)). Let us write
o Ac:=30 lej —

o Au(0”) =25 [uj — o' (i)

o Au(o) = Xy lolil,) — o)

o R(0,0') = Sy loi) — o' (0)].

ds.avg(1,1') = E(A:) + E(Ay(0) + E(Ay (0)) + E(R(0,0")).
We have to compute all the expected values.

1. E(4,) = A..

2. B(Au(0")) = 351 E(luj — o' (i,)]). If o' € By, then o' (i) € [k +1: 7] so:

: ) n+k+1
Bl — 0 (ia,))) = E(0 (i — 1) = "= — uy.

Finally,
/ L n+k+1 k‘ +1 :
E(Au(0?)) = Z uj.
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3. B(Ay(0)) = rothtl Sy .

4. E(R(0,0")) = 3, 2rup E(Jo (@) — 0’ (4)[). o (i) and o' (i) are independent uniform random vari-
ableson [k + 1 : n].

E(lo(i) - o'(d)]) = JP(lo (i) = o' ()] = j)

Then

So,

2 3" 2" 7%

That concludes Equation (5.26). t
Proof of Proposition [§]

Proof. We define

aj(a, o)y == [{i€el:n], o(i) €T},0'(i) €Ty, o(i) # o' (i)}
b},l(av o)y = |{ie[l:n], o(i) €Ty, 0'(i) ey, j#I1}

Now, assume that 0,0’ ~ U(S,) and 0,07 ~ U(S5,).

E(dH(O',O'/)) = wa om, o' T -l—Za om0’ )
7,l=1

m

— Z b (71, 72) +Z!{z (1), m2(4) 6Pj}|%

7,l=1 J=1 J

= |{i, T(m(3)) # T(m(i) }\+Z% 1)

References

[Bac14] Francois Bachoc. Asymptotic analysis of the role of spatial sampling for covariance param-
eter estimation of Gaussian processes. Journal of Multivariate Analysis, 125:1-35, 2014.

[BGLV17] F. Bachoc, F. Gamboa, J. M. Loubes, and N. Venet. A Gaussian process regression model
for distribution inputs. IEEE Transactions on Information Theory, PP(99):1-1, 2017.

24



[CGJI11]

[CL93]

[CL96]

[Dia88]

[FKS03]

[Ger31]

[Hau99]

[JVI17]

[KB10]

[KCS17]

[Kon08]

[LMO8]

[MM84]

[MRW™16]

[SFL11]

[Ste99]

Stéphan Clémencgon, Romaric Gaudel, and Jérémie Jakubowicz. Clustering Rankings in
the Fourier Domain. In Machine Learning and Knowledge Discovery in Databases, Lecture
Notes in Computer Science, pages 343—-358. Springer, Berlin, Heidelberg, September 2011.

N. Cressie and S.N Lahiri. The asymptotic distribution of REML estimators. Journal of
Multivariate Analysis, 45:217-233, 1993.

N. Cressie and S.N Lahiri. Asymptotics for REML estimation of spatial covariance param-
eters. Journal of Statistical Planning and Inference, 50:327-341, 1996.

Persi Diaconis. Group representations in probability and statistics. Lecture Notes-
Monograph Series, 11:1—192, 1988.

Ronald Fagin, Ravi Kumar, and Dakshinamurthi Sivakumar. Comparing top k lists. SIAM
Journal on discrete mathematics, 17(1):134-160, 2003.

S. Gerschgorin. Uber die abgrenzung der eigenwerte einer matrix. Izvestija Akademii Nauk
SSSR, Serija Matematika, 7(3):749-754, 1931.

David Haussler. Convolution kernels on discrete structures. Technical report, Technical
report, Department of Computer Science, University of California at Santa Cruz, 1999.

Yunlong Jiao and Jean-Philippe Vert. The Kendall and Mallows kernels for permutations.
IEEE transactions on pattern analysis and machine intelligence, 2017.

Risi Kondor and Marconi Barbosa. Ranking with kernels in Fourier space. 2010.

Anna Korba, Stephan CIA©menAgon, and Eric Sibony. A Learning Theory of Ranking
Aggregation. In Artificial Intelligence and Statistics, pages 1001-1010, 2017.

Imre Risi Kondor. Group Theoretical Methods in Machine Learning. PhD Thesis, Columbia
University, New York, NY, USA, 2008.

Guy Lebanon and Yi Mao. Non parametric modeling of partially ranked data. Journal of
Machine Learning Research, 9(Oct):2401-2429, 2008.

K. V. Mardia and R. J. Marshall. Maximum likelihood estimation of models for residual
covariance in spatial regression. Biometrika, 71:135-146, 1984.

Horia Mania, Aaditya Ramdas, Martin J. Wainwright, Michael 1. Jordan, and Benjamin
Recht. On kernel methods for covariates that are rankings. arXiv:1603.08035 [cs, stat],
March 2016. arXiv: 1603.08035.

Bharath K. Sriperumbudur, Kenji Fukumizu, and Gert RG Lanckriet. Universality, charac-
teristic kernels and RKHS embedding of measures. Journal of Machine Learning Research,
12(Jul):2389-2410, 2011.

M.L Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York,
1999.

25



	Introduction
	Covariance model for rankings
	Gaussian fields on the Symmetric group
	Numerical illustrations
	Partial Rankings
	Introduction
	Direct computations
	Fourier Transform of the kernel on partial ranking
	Notations
	Reduction of number of terms
	Reduction of each remaining term

	A new kernel on partial ranking

	Appendix
	Proofs of main Results
	Proofs of Lemmata
	Proofs of Partial rankings


