Gaussian field on the symmetric group: Prediction and learning - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2020

Gaussian field on the symmetric group: Prediction and learning

Résumé

In the framework of the supervised learning of a real function defined on an abstract space X, Gaussian processes are widely used. The Euclidean case for X is well known and has been widely studied. In this paper, we explore the less classical case where X is the non commutative finite group of permutations (namely the so-called symmetric group SN). We provide an application to Gaussian process based optimization of Latin Hypercube Designs. We also extend our results to the case of partial rankings.
Fichier principal
Vignette du fichier
permutations_final.pdf (546.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01731251 , version 1 (14-03-2018)
hal-01731251 , version 2 (19-07-2018)
hal-01731251 , version 3 (09-09-2018)
hal-01731251 , version 4 (19-04-2019)
hal-01731251 , version 5 (05-02-2020)

Identifiants

Citer

François Bachoc, Baptiste Broto, Fabrice Gamboa, Jean-Michel Loubes. Gaussian field on the symmetric group: Prediction and learning. Electronic Journal of Statistics , 2020, 14, pp.503-546. ⟨10.1214/19-EJS1674⟩. ⟨hal-01731251v5⟩
365 Consultations
364 Téléchargements

Altmetric

Partager

More