VARIABLE SELECTION AND ESTIMATION IN MULTIVARIATE FUNCTIONAL LINEAR REGRESSION VIA THE LASSO - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

VARIABLE SELECTION AND ESTIMATION IN MULTIVARIATE FUNCTIONAL LINEAR REGRESSION VIA THE LASSO

Résumé

In more and more applications, a quantity of interest may depend on several covariates, with at least one of them infinite-dimensional (e.g. a curve). To select relevant covariate in this context, we propose an adaptation of the Lasso method. The criterion is based on classical Lasso inference under group sparsity (Yuan and Lin, 2006; Lounici et al., 2011). We give properties of the solution in our infinite-dimensional context. A sparsity-oracle inequality is shown and we propose a coordinate-wise descent algorithm, inspired by the glmnet algorithm (Friedman et al., 2007). A numerical study on simulated and experimental datasets illustrates the behavior of the method.
Fichier principal
Vignette du fichier
lassov3.pdf (581.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01725351 , version 1 (07-03-2018)
hal-01725351 , version 2 (27-03-2019)
hal-01725351 , version 3 (05-09-2019)
hal-01725351 , version 4 (07-09-2021)
hal-01725351 , version 5 (01-04-2022)
hal-01725351 , version 6 (27-05-2023)

Identifiants

Citer

Angelina Roche. VARIABLE SELECTION AND ESTIMATION IN MULTIVARIATE FUNCTIONAL LINEAR REGRESSION VIA THE LASSO. 2019. ⟨hal-01725351v2⟩
580 Consultations
1417 Téléchargements

Altmetric

Partager

More