VARIABLE SELECTION AND ESTIMATION IN MULTIVARIATE FUNCTIONAL LINEAR REGRESSION VIA THE LASSO - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

VARIABLE SELECTION AND ESTIMATION IN MULTIVARIATE FUNCTIONAL LINEAR REGRESSION VIA THE LASSO

Résumé

In more and more applications, a quantity of interest may depend on several covariates, with at least one of them infinite-dimensional (e.g. a curve). To select the relevant covariates in this context, we propose an adaptation of the Lasso method. Two estimation methods are defined. The first one consists in the minimisation of a criterion inspired by classical Lasso inference under group sparsity (Yuan and Lin, 2006; Lounici et al., 2011) on the whole multivariate functional space H. The second one minimises the same criterion but on a finite-dimensional subspace of H which dimension is chosen by a penalized leasts-squares method base on the work of Barron et al. (1999). Sparsity- oracle inequalities are proven in case of fixed or random design in our infinite-dimensional context. To calculate the solutions of both criteria, we propose a coordinate-wise descent algorithm, inspired by the glmnet algorithm (Friedman et al., 2007). A numerical study on simulated and experimental datasets illustrates the behavior of the estimators.
Fichier principal
Vignette du fichier
lassov7.pdf (779.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01725351 , version 1 (07-03-2018)
hal-01725351 , version 2 (27-03-2019)
hal-01725351 , version 3 (05-09-2019)
hal-01725351 , version 4 (07-09-2021)
hal-01725351 , version 5 (01-04-2022)
hal-01725351 , version 6 (27-05-2023)

Identifiants

Citer

Angelina Roche. VARIABLE SELECTION AND ESTIMATION IN MULTIVARIATE FUNCTIONAL LINEAR REGRESSION VIA THE LASSO. 2021. ⟨hal-01725351v4⟩
580 Consultations
1417 Téléchargements

Altmetric

Partager

More