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VARIABLE SELECTION AND ESTIMATION IN MULTIVARIATE
FUNCTIONAL LINEAR REGRESSION VIA THE LASSO

ANGELINA ROCHE

Abstract. In more and more applications, a quantity of interest may depend on several
covariates, with at least one of them infinite-dimensional (e.g. a curve). To select relevant
covariate in this context, we propose an adaptation of the Lasso method. The criterion
is based on classical Lasso inference under group sparsity (Yuan and Lin, 2006; Lounici
et al., 2011). We give properties of the solution in our infinite-dimensional context. A
sparsity-oracle inequality is shown and we propose a coordinate-wise descent algorithm,
inspired by the glmnet algorithm (Friedman et al., 2007). A numerical study on simulated
and experimental datasets illustrates the behavior of the method.

Keywords: Functional data analysis. Multivariate functional linear model. Variable se-
lection. Lasso. High-dimensional data analysis.

1. Introduction

In more and more applications, the observations are measured over fine grids (e.g. time
grids). The approach of Functional Data Analysis (Ramsay and Silverman, 2005; Ferraty
and Vieu, 2006; Ferraty and Romain, 2011) consists in modeling the data as a set of
random functions. It has proven to be very fruitful in many applications, for instance
in spectrometrics (see e.g. Pham et al., 2010), in the study of electroencephalograms (Di
et al., 2009), biomechanics (Sørensen et al., 2012) and econometrics (Laurini, 2014).

In some context, and more and more often, the data is a vector of curves. This is the
case in Aneiros-Pérez et al. (2004) where the aim is to predict ozone concentration of the
day after from ozone concentration curve, NO concentration curve, NO2 concentration
curve, wind speed curve and wind direction. Another example comes from nuclear safety
problems where we study the risk of failure of a nuclear reactor vessel in case of loss
of coolant accident as a function of the evolution of temperature, pressure and heat
transfer parameter in the vessel (Roche, 2018). The aim of the article is to study the link
between a real response Y and a vector of covariates X = (X1, ..., Xp) with observations
{(Yi,Xi), i = 1, ..., n} where Xi = (X1

i , ..., X
p
i ) is a vector of covariates which can be of

different nature (curves or vectors).
We suppose that, for all j = 1, ..., p, i = 1, ..., n, Xj

i ∈ Hj where (Hj, ‖·‖j , 〈·, ·〉j) is a

separable Hilbert space. Our covariate {Xi}1≤i≤n then lies in the space H = H1× ...×Hp,
which is also a separable Hilbert space with its natural scalar product

〈f ,g〉 =

p∑
j=1

〈fj, gj〉j for all f = (f1, ..., fp),g = (g1, ..., gp) ∈ H

and usual norm ‖f‖ =
√
〈f , f〉.
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2 A. ROCHE

We suppose that our observations follows multivariate functional linear model,

Yi =

p∑
j=1

〈β∗j , X
j
i 〉j + εi = 〈β∗,Xi〉+ εi, (1)

where, β∗ = (β∗1, ...,β
∗
p) ∈ H is unknown and {εi}1≤i≤n ∼i.i.d. N (0, σ2).

Note that our model does not require the Hj’s to be functional spaces, we can have
Hj = R or Hj = Rd, for some j ∈ {1, ..., p}. However, our case of interest is, of course,
when the dimension of Hj is infinite, for at least one j ∈ {1, ..., p}.

The functional linear model, which corresponds to the case p = 1 in Equation (1), has
been extensively studied. It has been defined by Cardot et al. (1999) who have proposed
an estimator based on principal components analysis. Spline estimators have also been
proposed by Ramsay and Dalzell (1991); Cardot et al. (2003); Crambes et al. (2009)
as well as estimators based on the decomposition of the slope function β in the Fourier
domain (Ramsay and Silverman, 2005; Li and Hsing, 2007; Comte and Johannes, 2010) or
in a general basis (Cardot and Johannes, 2010; Comte and Johannes, 2012). In a similar
context, we can also mention the work of Koltchinskii and Minsker (2014) on Lasso. In
this article, it is supposed that the function β is well represented as a sum of small number
of well-separated spikes. In the case p = 2, H1 a function space and H2 = Rd, Model (1)
is called partial functional linear regression model and has been studied e.g. by Shin
(2009); Shin and Lee (2012) who have proposed principal component regression and ridge
regression approaches for the estimation of the two model coefficients.

Little work has been done on the multivariate functional linear model which corresponds
to the case p ≥ 2 and the Hj’s are all function spaces for all j = 1, . . . , p. Up to
our knowledge, the model has been first mentioned in the work of Cardot et al. (2007)
under the name of multiple functional linear model. An estimator of β is defined with an
iterative backfitting algorithm and applied to the ozone prediction dataset initially studied
by Aneiros-Pérez et al. (2004). Variable selection is performed by testing all the possible
models and selecting the one minimising the prediction error over a test sample. Let us also
mention the work of Chiou et al. (2016) who consider a multivariate linear regression model
with functional output. They define a consistent and asymptotically normal estimator
based on the multivariate functional principal components initially proposed by Chiou
et al. (2014).

A lot of research has been done on variable selection in the classical multivariate regres-
sion model. One of the most common method, the Lasso (Tibshirani, 1996; Chen et al.,
1998), consists in the minimisation of a leasts-squares criterion with an `1 penalisation.
The statistical properties of the Lasso estimator are now well understood. Sparsity oracle
inequalities have been obtained for predictive losses in particular in standard multivari-
ate or nonparametric regression models (see e.g. Bunea et al., 2007; Bickel et al., 2009;
Koltchinskii, 2009; Bertin et al., 2011).

There are now a lot of work about variations and improvement of the `1-penalisation.
We can cite e.g. the adaptive Lasso (Zou, 2006; van de Geer et al., 2011), the fused Lasso
(Tibshirani et al., 2005) and the elastic net (Zou and Hastie, 2005). Among them, the
Group-Lasso (Yuan and Lin, 2006) allows to handle the case where the set of covariables
may be partitionned into a number of groups. Bach (2008); Nardi and Rinaldo (2008)
have then proved estimation and model selection consistency, prediction and estimation
bounds for the Group-Lasso estimator. Huang and Zhang (2010) show that, under some
conditions called strong group sparsity, the Group-Lasso penalty is more efficient than the
Lasso penalty. Lounici et al. (2011) have proven oracle-inequalities for the prediction and
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`2 estimation error which are optimal in the minimax sense. Their theoretical results also
demonstrate that the Group-Lasso may improve the Lasso in prediction and estimation.
van de Geer (2014) have proven sharp oracle inequalities for general weakly decomposable
regularisation penalties including Group-Lasso penalties. This approach has revealed
fruitful in many contexts such as times series (Chan et al., 2014), generalized linear
models (Blazère et al., 2014) in particular Poisson regression (Ivanoff et al., 2016) or
logistic regression (Meier et al., 2008; Kwemou, 2016), the study of panel data (Li et al.,
2016), prediction of breast or prostate cancers (Fan et al., 2016; Zhao et al., 2016).

In functional data analysis, Kong et al. (2016) have proposed a Lasso type shrinkage
penalty function allowing to select the adequate Karhunen-Loève coefficients of the func-
tional variable simultaneously with the coefficients of the vector variable in the partial
functional linear model (case p = 2, H1 = L2(T ), H2 = Rd of Model (1)). Group-Lasso
and adaptive Group-Lasso procedures have been proposed by Aneiros and Vieu (2014,
2016) in order to select the important discrete observations (impact points) on a regres-
sion model where the covariates are the discretized values (X(t1), ..., X(tp)) of a random
function X.

Contribution of the paper. We consider the following estimator, which can be seen
as a generalisation of the Lasso procedure to the space H, drawing inspiration from the
Group-Lasso criterion

β̂ ∈ arg minβ=(β1,...,βp)∈H

{
1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j

}
, (2)

where λ1, ..., λp and K are positive parameters, to be specified later.
In Section 2, we give some properties of the solution of the minimisation problem (2),

and compare it with the properties of the Lasso in finite dimension. We prove in Sec-
tion 3.3 a sparsity oracle inequality. In Section 4, a computational algorithm, inspired
by the glmnet algorithm (Friedman et al., 2010), is defined. The minimisation is done
directly in the space H, without projecting the data. We consider several methods to
select the smoothing parameters λj. To remove the bias, an approach based on Tikhonov
regularisation (ridge regression) on the support of the Lasso is proposed as well as a sto-
chastic gradient descent algorithm to compute it (also without projecting the data). The
estimation and support recovery properties of the estimator are studied in Section 5 on
simulated dataset and applied to the prediction of energy use of appliances.

Notations. Throughout the paper, we denote, for all J ⊆ {1, ..., p} the sets

HJ :=
∏
j∈J

Hj

and ΠJ : H→ HJ the orthogonal projection onto HJ . We also define

Γ̂ : β ∈ H 7→ 1

n

n∑
i=1

〈β,Xi〉Xi,

the empirical covariance operator associated to the data and its restricted versions

Γ̂J,J ′ : β = (βj, j ∈ J) ∈ HJ 7→

(
1

n

n∑
i=1

∑
j∈J

〈βj, Xj
i 〉jX

j′

i

)
j′∈J ′

∈ HJ ′ ,

defined for all J, J ′ ⊆ {1, ..., p}. For simplicity, we also denote Γ̂J := Γ̂J,J , Γ̂•,J :=

Γ̂{1,...,p},J , Γ̂J,j := Γ̂J,{j}.
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For β = (β1, ...,βp) ∈ H, we denote by J(β) := {j, βj 6= 0} the support of β and
|J(β)| its cardinality.

2. Properties of the Lasso estimator

We begin by a first proposition on the properties of the solution of minimisation prob-
lem (2).

Proposition 1. Let β̂
(1)

and β̂
(2)

two solutions of the minimisation problem (2).

(a) The orthogonal projections of β̂
(1)

and β̂
(2)

on the image of Γ̂ are equal.

(b) There exists δ̂ = (δ̂1, . . . , δ̂p) ∈ H such that
∥∥∥δ̂j∥∥∥

j
≤ 2λj for all j = 1, . . . , p,

2

n

n∑
i=1

(
Yi − 〈β̂

(1)
,Xi〉

)
Xi =

2

n

n∑
i=1

(
Yi − 〈β̂

(2)
,Xi〉

)
Xi = δ̂.

Let Ĵ =

{
j,
∥∥∥δ̂j∥∥∥

j
= 2λj

}
, then, for all j /∈ Ĵ , β̂

(1)
j = β̂

(2)
j = 0.

• If Ker(Γ̂Ĵ) = {0}, the minimisation problem (2) admits a unique solution.

• If Ker(Γ̂Ĵ) 6= {0}, the set of solutions of the minimisation problem (2) is a
non degenerate affine space.

In particular, since the rank of Γ̂Ĵ is at most n, if dim(HĴ) > n, the solution is not
unique.

Point (b) of Proposition 1 above states that the solution of minimisation problem (2)
may not be unique, in particular when dim(Hj) = +∞ for a j such that β∗j 6= 0, which is
the main interest of the paper. However, from point (b), we know that the support of all
solutions are included in the same set. From point (a), we also know that the solutions

are equal in a subset of H which is often high-dimensional (for instance rk(Γ̂) = n if the
X i’s are linearly independent). The proof is deferred to Section A.

If dim(H) < +∞, we can write classically model (1) as follows

Y = Xβ + ε,

with Y = (Y1, ..., Yn)t, X = (Xj
i )1≤i≤n,1≤j≤dim(H), and ε = (ε1, ..., εn)t. Then, the operator

Γ̂ is the linear application associated to the matrix n−1X tX and we have the classical
following properties of the Lasso (see e.g. Giraud 2015, Exercise 4.5.1).

• The image by X of two solutions of the Lasso coincides.

• If the matrix X t
Ĵ
XĴ is nonsingular, where XĴ = (Xj

i )1≤i≤n,j∈Ĵ and Ĵ is the set of
Proposition 1, the solution is unique.

3. Restricted eigenvalues assumption and sparsity oracle inequality
when dim(H) = +∞

3.1. The restricted eigenvalues assumption does not hold if dim(H) = +∞.
Sparsity oracle inequalities are usually obtained under conditions on the design matrix.
One of the most common is the restricted eigenvalues property (Bickel et al., 2009; Lounici
et al., 2011). Translated to our context, this assumption may be written as follows.
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(ARE(s)): There exists a positive number κ = κ(s) such that

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H\{0},
∑
j /∈J

λj ‖δj‖j ≤ 7
∑
j∈J

λj ‖δj‖j

 ≥ κ,

with ‖f‖n :=
√

1
n

∑n
i=1〈f,Xi〉2 the empirical norm on H naturally associated with our

problem.
As explained in Bickel et al. (2009, Section 3), this assumption can be seen as a ”positive

definiteness” condition on the Gram matrix restricted to sparse vectors. In the finite
dimensional context, van de Geer and Bühlmann (2009) have proved that this condition
covers a large class of design matrices.

The next lemma proves that this assumption can not hold in our context.

Lemma 1. Suppose that dim(H) = +∞, then, for all s ∈ {1, ..., p}, for all c0 > 0

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H\{0},
∑
j /∈J

λj ‖δj‖j ≤ c0

∑
j∈J

λj ‖δj‖j

 = 0.

3.2. Finite-dimensional subspaces and restriction of the restricted eigenvalues
assumption. The infinite-dimensional nature of the data is the main obstacle here. To
circumvent the dimensionality problem, we restrict the assumption to finite-dimensional
spaces. We need first to define a sequence of subspaces of H ”stable” (in a certain sense)
by the map J .

Definition 1. Let, for all j = 1, ..., p, (e
(j)
k )1≤k≤dim(Hj) be an orthonormal basis of Hj.

Let σ : ` ∈ N\{0} 7→ (σ1(`), σ2(`)) ∈ N2 a bijective function, we define, for all ` ≥ 1,

ϕ(`) = (0, ..., 0, e
(σ2(`))
σ1(`) , 0, ..., 0) and, for all m ≥ 1, H(m) := span

{
ϕ(1), ...,ϕ(m)

}
.

It can easily be seen that (ϕ(k))1≤k≤dim(H) is an orthonormal basis of H and that, for
all β ∈ H, for all m ≥ 1,

J(β(m)) ⊆ J(β(m+1)) ⊆ J(β)

where, for all m ≥ 1, β(m) is the orthonormal projection onto H(m).
We set

κ(m)
n := inf

β∈H(m)\{0}

‖β‖n
‖β‖

.

By definition, the sequence (κ
(m)
n )m≥1 is nonincreasing. We set also

Mn := max
m≥1

{
κ(m)
n > 0

}
= max

m≥1

{
H(m) ∩Ker(Γ̂) = {0}

}
,

and the last inequality comes from the fact that ‖ · ‖n =
∥∥∥Γ̂1/2

·
∥∥∥. We remark that κ

(m)
n is

the smallest eigenvalue of the matrix Γ̂
1/2

|m where Γ̂|m :=
(
〈Γ̂ϕ(k), ϕ(k′)〉

)
1≤k,k′≤m

and we

can see easily that

κ(m)
n ≤

√
µ̂m,

where (µ̂k)k≥1 are the eigenvalues of Γ̂ sorted in decreasing order, with equality in the

case where (ϕ̂(k))k≥1 are the associated eigenfunctions. Since Γ̂ is an operator of rank at

most n (its image is included in Vect{Xj
i , i = 1, ..., n} by definition), we have necessarily

Mn ≤ n.
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3.3. Sparsity oracle inequality. We now prove the following result

Theorem 1. Let q > 0. Choose

λj = rn

(
1

n

n∑
i=1

‖Xj
i ‖2

j

)1/2

with rn = Aσ

√
q ln(p)

n
(A ≥ 4

√
2),

we have, with probability greater than 1− p1−q, for all η̃ > 0,∥∥∥β̂ − β∗∥∥∥2

n
≤ (1 + η̃) min

1≤m≤Mn

min
β∈H(m),|J(β)|≤s

2 ‖β − β∗‖2
n +

C(η̃)

(κ
(m)
n )2

∑
j∈J(β)

λ2
j +Rn,m

 ,

(3)
with C(η̃) = 16(η̃−1 + 1) and

Rn,m := 4
∑
j∈J(β)

λj

(∥∥∥β̂(⊥m)
∥∥∥+

1

κ
(m)
n

∥∥∥β̂(⊥m)
∥∥∥
n

)
.

With the convention 1/0 = +∞, we can replace the constraint 1 ≤ k ≤ Mn in Equa-
tion (3) by k ≥ 1.

In the case dim(H) < +∞, Theorem 1 is identical to Lounici et al. (2011, Theorem
3.2). Let us remark that Theorem 1 does not require the vector β∗ to be sparse. Let us
see what happens if |J(β∗)| ≤ s. Theorem 1 implies that, with probability greater than
1− p1−q ∥∥∥β̂ − β∗∥∥∥2

n
≤ min

m≥1

∥∥∥β(∗,⊥m)
∥∥∥2

n
+

96

(κ
(m)
n )2

∑
j∈J(β∗)

λ2
j +Rn,m

 , (4)

where, for all m, β(∗,⊥m) is the orthogonal projection of β∗ onto H(⊥m). The upper-bound
in Equation (4) is then the best compromise between two terms:

• an approximation term
∥∥∥β(∗,⊥m)

∥∥∥2

n
+Rn,m which decreases to 0 when m→ +∞;

• a second term due to the penalisation 96

(κ
(m)
n )2

∑
j∈J(β∗) λ

2
j which increases to +∞

when m→ +∞.

The term Rn,m can be considered to be low if β̂ is sufficiently regular.

3.4. Random design case. In the case where the design X1, ...,Xn are i.i.d copies of a
centered random variable on H we prove a lower bound on Mn which holds with large
probability under the following assumptions. First denote by Γ : f ∈ H 7→ E [〈f ,X〉X]
the theoretical covariance operator and (µk)k≥1 the eigenvalues of Γ sorted in decreasing
order and (ψ(k))k≥1 the associated eigenfunctions.

(HΓ) There exists a decreasing sequence (vj)j≥1 of positive numbers and a constant
c1 > 0 such that, for all f ∈ H,

c−1
1 ‖f‖v ≤ ‖Γ1/2f‖ ≤ c1‖f‖v,

with ‖f‖2
v :=

∑
j≥1 vj〈f , ϕ(j)〉2, and

inf
k≥1

v2
k

µk
=: Rv,µ > 0.

(HMom) There exists two constants v > 0 and b > 0 such that, for all ` ≥ 1,

sup
k≥1

E
[
〈X, ψ(k)〉2`

]
µ`k

≤ `!

2
v2c`−2.
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Assumption (HΓ) has also been considered in Comte and Johannes (2012) and allows
to handle the case when the basis considered for estimation does not diagonalise the
operator Γ (note however that in that case, the assumption is verified with v2

k = µk).
Remark that it implies that Ker(Γ) = {0} which is a necessary and sufficient condition
for the identifiability of model (1).

Assumption (HMom) is necessary to apply exponential inequalities and is verified e.g.
for Gaussian or bounded processes.

Proposition 2. Suppose (HΓ) and (HMom) are verified. Let for all m ≥ 1, µ̃m the
smallest eigenvalue of the matrix

Γ|m :=
(
〈Γϕ(k), ϕ(k′)〉

)
1≤k,k′≤m

.

There exists a constant c∗ > 0 such that, for all m, 0 < ρ < 1;

P
(
κ(m)
n ≥ ρµ̃m

)
≥ 1− 2m2 exp

(
−c∗nµ2

m

)
. (5)

Hence, setting Nn := max{m ≤ n, µm ≥
√

log3(n)/n} we have

P (Mn ≥ Nn) ≥ 1− 2N2
ne
−c∗ log3(n). (6)

Equation (5) is a generalization of Brunel and Roche (2015, Lemma 4). Similar results
can be found in Comte and Johannes (2012) under different assumptions.

Similar bounds could also be derived from the theory developed in Mas and Ruymgaart

(2015) (see e.g. Brunel et al. 2016, Lemma 6) in the case where
{
ϕ(k)

}
k≥1

diagonalises Γ̂

(basis of principal components).
Equation (6) links the the lower bounds on Mn with the decreasing rate of the eigen-

values of the operator Γ. For instance, if the µk’s decreases at polynomial rate i.e. there
exists a > 1, such that µk � k−a, we have

Nn � log−3/2a(n)n1/2a,

where for two sequences (ak)k≥1 and (bk)k≥1 we denote ak � bk if there exists a constant
c > 0 such that, for all k ≥ 1, c−1ak ≤ bk ≤ cbk. For an exponential rate, i.e. if there
exists a > 0 such that µk � exp(−ka) we have

Nn � log1/a(n).

The last bound is indeed small. However, Assumption (HΓ) implies that

µ̃m ≥ c−1
1 Rv,µµm.

Hence, for m ≤ Nn, Proposition 2 tells us that, with probability greater than 1 −
2m2 exp (−c∗nµ2

m) ≥ 1− 2N2
n exp(−c∗ log3(n)),

κ(m)
n ≥ ρc−1

1 Rv,µµm ≥ ρc−1
1 Rv,µ

√
log3(n)/n.

4. Computing the Lasso estimator

4.1. Computational algorithm. We propose the following algorithm to compute the
solution of Problem (2). The idea is to update sequentially each coordinate β1, ...,βp in



8 A. ROCHE

the spirit of the glmnet algorithm (Friedman et al., 2010) by minimising the following
criterion

β
(k+1)
j ∈ arg minβj∈Hj

 1

n

n∑
i=1

(
Yi −

j−1∑
`=1

〈β(k+1)
` , X`

i 〉` − 〈βj, X
j
i 〉j −

p∑
`=j+1

〈β(k)
` , X`

i 〉`

)2

+2λj ‖βj‖j
}
.

(7)

However, in the Group-Lasso context, this algorithm is based on the so-called group-
wise orthonormality condition, which, translated to our context, amounts to suppose

that the operators Γ̂j are all equal to the identity. This assumption is not possible

if dim(Hj) = +∞ since Γ̂j is a finite-rank operator. Without this condition, Equa-
tion (7) does not admit a closed-form solution. We then propose the GPD (Groupwise-
Majorization-Descent) algorithm, initially proposed by Yang and Zou (2015), to compute
the solution paths of the multivariate Group-Lasso penalized learning problem, without
imposing the group-wise orthonormality condition. The GPD algorithm is also based on
the principle of coordinate-wise descent but the minimisation problem (7) is modified in

order to relax the group-wise orthonormality condition. We denote by β̂
(k)

the value of
the parameter at the end of iteration k. During iteration k + 1, we update sequentially
each coordinate. Suppose that we have changed the j − 1 first coordinates (j = 1, ..., p),

the current value of our estimator is (β̂
(k+1)
1 , ..., β̂

(k+1)
j−1 , β̂

(k)
j , ..., β̂

(k)
p ). We want to update

the j-th coefficient and, ideally, we would like to minimise the following criterion

γn(βj) :=
1

n

n∑
i=1

(
Yi −

j−1∑
`=1

〈β̂(k+1)
` , X`

i 〉` − 〈βj, X
j
i 〉j −

p∑
`=j+1

〈β̂(k)
` , X`

i 〉`

)2

+ 2λj‖βj‖2
j .

We have

γn(βj)− γn(β̂
(k)
j ) = − 2

n

n∑
i=1

(Yi − Ỹ j,k
i )〈βj − β̂(k)

j , Xj
i 〉j +

1

n

n∑
i=1

〈βj, Xj
i 〉2j

− 1

n

n∑
i=1

〈β̂(k)
j , Xj

i 〉2j + 2λj

(
‖βj‖j −

∥∥∥β̂(k)
j

∥∥∥
j

)
,

with Ỹ j,k
i =

∑j−1
`=1〈β̂

(k+1)
` , X`

i 〉` +
∑p

`=j+1〈β̂
(k)
` , X`

i 〉`, and

1

n

n∑
i=1

〈βj, Xj
i 〉2j −

1

n

n∑
i=1

〈β̂(k)
j , Xj

i 〉2j = 〈Γ̂jβj, βj〉j − 〈Γ̂jβ̂
(k)
j , β̂

(k)
j 〉j

= 〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j + 2〈Γ̂jβ̂
(k)
j , βj − β̂(k)

j 〉.
Hence

γn(βj) = γn(β̂
(k)
j )− 2〈Rj, βj − β̂(k)

j 〉j + 〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j + 2λj

(
‖βj‖j −

∥∥∥β̂(k)
j

∥∥∥
j

)
with

Rj =
1

n

n∑
i=1

(Yi − Ỹ j,k
i )Xj

i + Γ̂jβ̂
(k)
j =

1

n

n∑
i=1

(Yi − Ŷ j,k
i )Xj

i ,

where, for i = 1, ..., n, Ŷ j,k
i = Ỹ j,k

i + 〈β̂(k)
j , Xj

i 〉j =
∑j−1

`=1〈β̂
(k+1)
` , X`

i 〉` +
∑p

`=j〈β̂
(k)
` , X`

i 〉` is

the current prediction of Yi. If Γ̂j is not the identity, we can see that the minimisation
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of γn(βj) has no explicit solution. To circumvent the problem the idea is to upper-bound
the quantity

〈Γ̂j(βj − β̂(k)
j ), βj − β̂(k)

j 〉j ≤ ρ(Γ̂j)
∥∥∥βj − β̂(k)

j

∥∥∥2

j
≤ Nj

∥∥∥βj − β̂(k)
j

∥∥∥2

j
,

where Nj := 1
n

∑n
i=1

∥∥Xj
i

∥∥2

j
is an upper-bound on the spectral radius ρ(Γ̂j) of Γ̂j. Instead

of minimising γn we minimise its upper-bound

γ̃n(βj) = −2〈Rj, βj〉j +Nj

∥∥∥βj − β̂(k)
j

∥∥∥2

j
+ 2λj ‖βj‖j .

The minimisation problem of γ̃n has an explicit solution

β̂
(k+1)
j =

(
β̂

(k)
j +

Rj

Nj

)1− λj∥∥∥Njβ̂
(k)
j +Rj

∥∥∥
j


+

. (8)

After an initialisation step (β
(0)
1 , ...,β(0)

p ), the updates on the estimated coefficients are
then given by Equation (8).

Remark that the optimisation is done directly in the space H and does not require the
data to be projected. Consequently, it avoids the loss of information and the computa-
tional cost due to the projection of the data in a finite dimensional space, as well as, for
data-driven basis such as PCA or PLS, the computational cost of the calculation of the
basis itself.

4.2. Choice of smoothing parameters (λj)j=1,...,p. We follow the suggestions of The-

orem 1 and take λj = rn
(

1
n

∑n
i=1 ‖X

j
i ‖2

j

)1/2
, for all j = 1, ...p. This allows to restrain

the problem of the calibration of the p parameters λ1, ..., λp to the calibration of only one
parameter r.

Drawing inspiration from Friedman et al. (2010), we consider a pathwise coordinate
descent scheme starting from the following value of r,

rmax = max
j=1,...p


∥∥ 1
n

∑n
i=1 YiX

j
i

∥∥
j√

1
n

∑n
i=1

∥∥Xj
i

∥∥2

j

 .

From the result of Lemma 2, we can see that, taking r = rmax, the solution of the

minimisation problem (2) is β̂ = (0, ..., 0). Starting from this value of rmax, we choose a
grid decreasing from rmax to rmin = δrmax of nr values equally spaced in the log scale i.e.

R =

{
exp

(
log(rmin) + (k − 1)

log(rmax)− log(rmin)

nr − 1

)
, k = 1, ..., nr

}
= {rk, k = 1, ..., nr}.

For each k ∈ {1, ..., nr−1}, the minimisation of criterion (2) with r = rk is then performed
using the result of the minimisation of (2) with r = rk+1 as an initialisation. As pointed
out by Friedman et al. (2010), this scheme leads to a more stable and fast algorithm. In
practice, we have chosen δ = 0.001 and nr = 100. However, when r is too small, the
algorithm does not converge. We believe that it is linked with the fact that problem (2)
has no solution as soon as dim(Hj) = +∞ and λj = 0 for a j ∈ {1, ..., p}.

In the case where the noise variance is known, Theorem 1 suggests the value rn =
4
√

2σ
√
p ln(q)/n. We recall that Equation (3) is obtained with probability 1 − p1−q.

Hence, if we want a precision better than 1 − α, we take q = 1 − ln(α)/ ln(p). However,
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in practice, the parameter σ2 is usually unknown. We propose three methods to choose
the parameter r among the grid R and compare them in the simulation study.

4.2.1. V -fold cross-validation. We split the sample {(Yi,Xi), i = 1, ..., n} into V sub-

samples {(Y (v)
i ,X

(v)
i ), i ∈ Iv}, v = 1, ..., V , where Iv = b(v − 1)n/V c + 1, ..., bvn/V c,

Y
(v)
i = Yb(v−1)n/V c+i, X

(v)
i = Xb(v−1)n/V c+i and, for x ∈ R, bxc denotes the largest integer

smaller than x.
For all v ∈ V , i ∈ Iv, r ∈ R let

Ŷ
(v,r)
i = 〈β̂(−v,r),Xi〉

be the prediction made with the estimator of β∗ minimising criterion (2) using only the

data
{

(X
(v′)
i , Y

(v′)
i ), i ∈ Iv′ , v 6= v′

}
and with λj = r

(
1
n

∑n
i=1 ‖X

j
i ‖2

j

)1/2
, for all j = 1, ..., p.

We choose the value of rn minimising the mean of the cross-validated error:

r̂(CV )
n ∈ arg minr∈R

{
1

n

V∑
v=1

∑
i∈Iv

(
Ŷ

(v,r)
i − Y (v)

i

)2
}
.

4.2.2. Estimation of σ2. We propose the following estimator of σ2:

σ̂2 =
1

n

n∑
i=1

(
Yi − 〈β̂rmin

,Xi〉
)2

,

where rmin is the smallest r ∈ R for which the algorithm converges and β̂r the minimiser

of criterion (2) with λj = r
(

1
n

∑n
i=1 ‖X

j
i ‖2

j

)1/2
, for all j = 1, ..., p. We set

r̂(σ̂2)
n := 4

√
2σ̂
√
p ln(q)/n with q = 1− ln(5%)/ ln(p).

4.2.3. BIC criterion. We also consider the BIC criterion, as proposed by Wang et al.
(2007); Wang and Leng (2007),

r̂(BIC)
n ∈ arg minr∈R

{
log(σ̂2

r) + |J(β̂r)|
log(n)

n

}
.

The three methods will be compared numerically in Section 5.

4.3. Removing the bias in practice. It is well known that the classical Lasso estimator
is biased (see e.g. Giraud, 2015, Section 4.2.5) because the `1 penalisation favors solutions
with small `1 norm. To remove it, one of the current method, called Gauss-Lasso, consists
in fitting a least-squares estimator on the sparse regression model constructed by keeping
only the coefficients which are on the support of the Lasso estimate.

This method is not directly applicable here because least-squares estimators are not
well-defined in infinite-dimensional contexts. Indeed, to compute a least-squares estimator

on the coefficients Ĵ of the support of the Lasso estimator amounts to invert the covariance

operator Γ̂Ĵ which is generally not invertible.
To circumvent the problem, we propose a ridge regression approach on the support

of the Lasso estimate. A similar approach has been investigated by Liu and Yu (2013)
in high-dimensional regression. They have shown the unbiasedness of the combination
of Lasso and ridge regression. More precisely, we consider the following minimisation
problem

β̃ = arg minβ∈H
J(β̂)

{
1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + ρ ‖β‖2

}
(9)
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j β∗,1j β∗,2j Xj

1 t 7→ 10 cos(2πt) t 7→ 10 cos(2πt) Brownian motion on [0, 1]

2 0 0 t 7→ a + bt + c exp(t) + sin(dt) with a ∼ U([−50, 50]), b ∼ U([−30, 30]),

c ∼ ([−5, 5]) and d ∼ U([−1, 1]), a, b, c and d independent (Ferraty and
Vieu, 2000)

3 0 0 X2
2

4 0 (1,−1, 0, 3)t Z tA with Z = (Z1, ..., Z4), Zk ∼ U([−1/2, 1/2]), k = 1, ..., 4, A =
−1 0 1 2
3 −1 0 1

2 3 −1 0

1 2 3 −1


5 0 0 N (0, 1)

6 0 0 ‖X2‖L2([0,1]) − E[‖X2‖L2([0,1])]

7 0 1 ‖ log(|X1|)‖L2([0,1]) − E[‖ log(|X1|)‖L2([0,1])]

Table 1. Values of β∗,k and X

with ρ > 0 a parameter which can be selected e.g. by V -fold cross-validation. We can see
that

β̃ = (Γ̂Ĵ + ρI)−1∆̂,

with ∆̂ := 1
n

∑n
i=1 YiΠĴXi, is an exact solution of problem (9) but need the inversion of

the operator Γ̂Ĵ + ρI to be calculated in practice. In order to compute the solution of (9)
we propose a stochastic gradient descent as follows. The algorithm is initialised at the

solution β̃
(0)

= β̂ of the Lasso and at each iteration, we do

β̃
(k+1)

= β̃
(k)
− αkγ′n(β̃

(k)
), (10)

where

γ′n(β) = −2∆̂ + 2(Γ̂Ĵ + ρI)β,

is the gradient of the criterion to minimise.
In practice we choose αk = α1k

−1 with α1 tuned in order to get convergence at reason-
able speed.

5. Numerical study

5.1. Simulation study. We test the algorithm on two examples :

Y = 〈β∗,k,X〉+ ε, k = 1, 2,

where p = 7, H1 = H2 = H3 = L2([0, 1]) equipped with its usual scalar product

〈f, g〉L2([0,1]) =
∫ 1

0
f(t)g(t)dt for all f, g, H4 = R4 equipped with its scalar product (a, b) =

atb, H5 = H6 = H7 = R, ε ∼ N (0, σ2) with σ = 0.01. The size of the sample is fixed to
n = 1000. The definitions of β∗,1, β∗,2 and X are given in Table 1.
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Figure 1. Plot of the norm of β̂j, for j = 1, ..., 7 as a function of r.

Model 1 Model 2

r̂
(CV )
n r̂

(σ̂2)
n r̂

(BIC)
n r̂

(CV )
n r̂

(σ̂2)
n r̂

(BIC)
n

Support recovery (%) 0 100 0 2 100 4
Table 2. Percentage of times where the true support has been recovered
among 50 Monte-Carlo replications of the estimates.

5.2. Support recovery properties and parameter selection. In Figure 1, we plot

the norm of β̂j as a function of the parameter r. We see that, for all values of r, we have

Ĵ ⊆ J∗, and, if r is sufficiently small Ĵ = J∗. We compare in Table 2 the percentage of
time where the true model has been recovered when the parameter r is selected with the
three methods described in Section 4.2. We see that the method based on the estimation
of σ̂2 has very good support recovery performances, but both BIC and CV criterion do not
perform well. Since the CV criterion minimises an empirical version of the prediction error,
it tends to select a parameter for which the method has good predictive performances.
However, this is not necessarily associated with good support recovery properties and this
may explain the bad performances of the CV criterion in terms of support recovery.

5.3. Lasso estimator. In Figure 2, we plot the first coordinate of Lasso estimator β̂1

(right). We can compare it with the true function β∗1. We can see that the shape of both
functions are similar, but in particular their norms are completely different. Hence, the
Lasso estimator recovers the true support but gives biased estimators of the coefficients
βj, j ∈ J∗.

5.4. Final estimator. On Figure 3 we see that the Tikhonov regularization step reduces
the bias in both examples. We can compare it with the effect of Tikhonov regularization
step with the whole sample (i.e. without variable selection). It turns out that, in the
case where all the covariates are kept, the algorithm (10) converges very slowly. We plot
the results obtained after 200 iterations, which represents 44 min of computation time
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Figure 2. Plot of β∗1 (solid black line) and 50 Monte-Carlo replications

of β̂1 (blue lines).
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Figure 3. Plot of β∗1 (solid black line), the solution of the Tikhonov
regularization on the support of the Lasso estimator (dashed blue line) and
on the whole support (dotted red line).

on an iMac 3,06 GHz Intel Core 2 Duo. By comparison, the Lasso step and Tikhonov
regularization on the selected variables takes only 12 min on the same computer.

5.5. Application to the prediction of energy use of appliances. The aim is to study
appliances energy consumption – which is the main source of energy consumption – in a
low energy house situated in Stambruges (Belgium). The data consists of measurements
of appliances energy consumption (Appliances), light energy consumption (light), tem-
perature and humidity in the kitchen area (T1 and RH1), in living room area (T2 and RH2),
in the laundry room (T3 and RH3), in the office room (T4 and RH4), in the bathroom (T5
and RH5), outside the building in the north side (T6 and RH6), in ironing room (T7 and
RH7), in teenager room (T8 and RH8) and in parents room (T9 and RH9) and also the tem-
perature (T out), pressure (Press mm hg), humidity (RH out), wind speed (Windspeed),
visibility (Visibility) and dew point temperature (Tdewpoint) from Chievres weather
station, which is the nearest airport weather station. Each variable is measured every 10
minutes from 11th january, 2016, 5pm to 27th may, 2016, 6pm.
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Figure 4. Plot of the norm of β̂j, for j = 1, ..., 24 as a function of r.

The data are freely available on UCI Machine Learning Repository (archive.ics.uci.
edu/ml/datasets/Appliances+energy+prediction) and have been studied by Candanedo
et al. (2017). We refer to this article for a precise description of the experiment and a
method to predict appliances energy consumption at a given time from the measurement
of the other variables.

Here, we focus on the prediction of the mean appliances energy consumption of one
day from the measure of each variable the day before (from midnight to midnight). We
then dispose of a dataset of size n = 136 with p = 24 functional covariates. Our variable
of interest is the logarithm of the mean appliance. In order to obtain better results, we
divide the covariates by their range. More precisely, the j-th curve of the i-th observation
Xj
i is transformed as follows

Xj
i (t)←

Xj
i (t)

maxi′=1,...,n;t′ X
j
i′(t
′)−mini′=1,...,n;t′ X

j
i′(t
′)
.

The choice of the transformation above allows to get covariates of the same order (we
recall that usual standardisation techniques are not possible for infinite-dimensional data
since the covariance operator of each covariate is non invertible). All the variables are
then centered.

We first plot the evolution of the norm of the coefficients as a function of r. The results
are shown in Figure 4.

The variables selected by the Lasso criterion are the appliance energy consumption
(Appliances), temperature of the laundry room (T3) and temperature of the teenage
room (T8) curves. The corresponding slopes are represented in Figure 5. We observe that
all the curves take larger values at the end of the day (after 8 pm). This indicates that
the values of the three parameters that influences the most the mean appliances energy
consumption of the day after are the one measured at the end of the day.
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Appendix A. Proofs

A.1. Preliminary results.
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Figure 5. Plot of the βj coefficients for j ∈ J(β̂) = {1, 7, 17} correspond-
ing to the coefficients associated to the appliance energy consumption curve
(Appliances), temperature of the laundry room (T3) and temperature of
the teenage room (T8).

Proof of Proposition 1. The proof relies on the following lemma.

Lemma 2. The vector β̂ = (β̂1, ..., β̂p) is a solution of the minimisation problem (2) if
and only if, for all j = 1, ..., p,

1
n

∑n
i=1(Yi − 〈β̂,Xi〉)Xj

i = λj
β̂j

‖β̂j‖
j

if β̂j 6= 0;∥∥∥ 1
n

∑n
i=1(Yi − 〈β̂,Xi〉)Xj

i

∥∥∥
j
≤ λj if β̂j = 0.

Proof of Lemma 2. We can easily verify that the function

γ : β ∈ H 7→ 1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j = γ1(β) + γ2(β)

is a proper convex function. Hence, β̂ is a minimum of γ over H if and only if 0 is a

subgradient of γ at the point β̂.
The function γ1 : β 7→ 1

n

∑n
i=1 (Yi − 〈β,Xi〉)2 is differentiable on H, with gradient,(

− 2

n

n∑
i=1

(Yi − 〈β, Xi〉)Xj
i

)
1≤j≤p

= − 2

n

n∑
i=1

(Yi − 〈β, Xi〉)Xi

and γ2 : β 7→ 2
∑p

j=1 λj ‖βj‖j is differentiable on D := {β = (β1, ...,βp) ∈ H, ∀j =

1, ..., p, βj 6= 0} with gradient (
2λj

βj
‖βj‖j

)
1≤j≤p

.

Since, for all j = 1, ..., p, the subdifferential of ‖·‖j at the point 0 is the closed unit ball

of Hj, the subdifferential of γ2 : β 7→ 2
∑p

j=1 λj ‖βj‖j at the point β ∈ Dc, is the set

∂γ2(β) =

{
δ = (δ1, ..., δp) ∈ H, δj = 2λj

βj
‖βj‖j

if βj 6= 0, ‖δj‖j ≤ 2λj if βj = 0

}
. (11)

Hence, the subdifferential of γ at the point β = (β1, ...,βp) ∈ H is the set

∂γ(β) =

{
θ ∈ H, ∃δ ∈ ∂γ2(β), θ = − 2

n

n∑
i=1

(Yi − 〈β,Xi〉)Xi + δ

}
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and we can see that

0 ∈ ∂γ(β) ⇔ ∃δ ∈ ∂γ2(β), − 2

n

n∑
i=1

(Yi − 〈β,Xi〉)Xi + δ = 0

⇔ 2

n

n∑
i=1

(Yi − 〈β,Xi〉)Xi ∈ ∂γ2(β)

⇔


1
n

∑n
i=1(Yi − 〈β,Xi〉)Xj

i = λj
βj

‖β̂j‖
j

if βj 6= 0;∥∥ 1
n

∑n
i=1(Yi − 〈β,Xi〉)Xj

i

∥∥
j
≤ λj if βj = 0,

which implies the expected result. �

Proof of Proposition 1. We keep here the same notations as in the proof of Lemma 2. Let

β̂
(1)

and β̂
(2)

two solutions of optimisation problem (2).
We first prove (a), suppose that it is false, hence there exists i0 ∈ {1, ..., n} such that

〈β̂
(1)
,Xi0〉 6= 〈β̂

(2)
,Xi0〉. Let β̃ = 1

2
β̂

(1)
+ 1

2
β̂

(2)
, since the function x 7→ x2 is strictly

convex,

γ(β̃) <
1

2
γ(β̂

(1)
) +

1

2
γ(β̂

(2)
) ≤ γ(β̃),

which is absurd.
We turn now to the proof of (b). From the proof of Lemma 2, we now that there exist

δ̂
(1)
∈ ∂γ2(β̂

(1)
) and δ̂

(2)
∈ ∂γ2(β̂

(2)
) such that

− 2

n

n∑
i=1

(Yi − 〈β̂
(k)
,Xi〉)Xi + δ̂

(k)
= 0, for k = 1, 2. (12)

From (a), we know that 〈β̂
(1)
,Xi〉 = 〈β̂

(2)
,Xi〉, for all i = 1, ..., n. Hence, Equation (12)

implies δ̂
(1)

= δ̂
(2)

. We denote by δ̂ = (δ̂1, ..., δ̂p) their common value.

Let Ĵ = {j = 1, ..., p, ‖δ̂j‖j = 2λj}, since δ̂ ∈ ∂γ2(β̂
(1)

) ∩ ∂γ2(β̂
(2)

), we have by

Equation (11), for all k = 1, 2, β̂
(k)

j = 0 if j /∈ Ĵ . Hence Equation (12) implies that, for
all k = 1, 2

− 2

n

n∑
i=1

(Yi −
∑
j∈Ĵ

〈β̂
(k)

j , Xj
i 〉j)Xi + δ̂ = 0

which in turn implies that, for all j′ ∈ Ĵ ,

− 2

n

n∑
i=1

(Yi −
∑
j∈Ĵ

〈β̂
(k)

j , Xj
i 〉j)X

j′

i + δ̂j′ = 0

or equivalently

Γ̂ĴΠĴ β̂
(k)

=
1

n

n∑
i=1

YiΠĴXi − ΠĴ δ̂.

This implies the expected results. �

Proof of Lemma 1. Let s ≥ 1 and c0 > 0 be fixed. If dim(H) = +∞, we can suppose
without loss of generality that dim(H1) = +∞. Let (ϕk)k≥1 an orthonormal basis of H1
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and δ(k) = (ϕk, 0, ..., 0). Let also J = {1}. By definition, for all k ≥ 1, |J | = 1 ≤ s and∑
j /∈J λj

∥∥∥δ(k)
j

∥∥∥
j

= 0 ≤ c0

∑
j∈J λj

∥∥∥δ(k)
j

∥∥∥
j
.

Hence we have,

min

 ‖δ‖n√∑
j∈J ‖δj‖

2
j

, |J | ≤ s, δ = (δ1, ..., δp) ∈ H\{0},
∑
j /∈J

λj ‖δj‖j ≤ c0

∑
j∈J

λj ‖δj‖j


≤ min

k≥1


∥∥∥δ(k)

∥∥∥
n√∑

j∈J

∥∥∥δ(k)
j

∥∥∥2

j

 . (13)

Recall that ∥∥δ(k)
∥∥2

n
=

1

n

n∑
i=1

〈δ(k),Xi〉2 =
1

n

n∑
i=1

〈ϕk, X1
i 〉21,

since, for all i = 1, ..., n, ∥∥X1
i

∥∥2
=
∑
k≥1

〈X1
i , ϕk〉2 < +∞,

then necessarily, limk→∞〈X1
i , ϕk〉2 = 0 and consequently, limk→∞

∥∥δ(k)
∥∥2

n
= 0. Moreover∑

j∈J

∥∥∥δ(k)
j

∥∥∥2

j
= ‖ϕk‖2

1 = 1,

which implies that the majorant in Equation (13) is null. �

Proof of Proposition 2. The proof relies on the equivalence norm results of Proposition 5.

From the definition of κ
(m)
n we know that, for all ρ, 0 < ρ < 1,

P
(
κ(m)
n ≤ ρµ̃m

)
= P

(
inf

β∈H(m)\{0}

‖β‖n
‖β‖

≤ ρµ̃m

)
= P

(
∃β ∈ H(m)\{0}, ‖β‖

2
n

‖β‖2
≤ ρ2µ̃2

m

)
= P

(
∃β ∈ H(m)\{0}, ‖β‖

2
n − ‖β‖2

Γ

‖β‖2
≤ ρ2µ̃2

m −
‖β‖2

Γ

‖β‖2

)
,

with ‖β‖2
Γ = E [‖β‖2

n] = E [〈β,X〉2] = E [〈Γβ,β〉]. Now, for β =
∑m

k=1 bkϕ
(k) ∈

H(m)\{0}, denoting b := (b1, ..., bm)t,

‖β‖2
Γ

‖β‖2
=

∑m
k,k′=1 bkbk′〈Γϕ(k),ϕ(k′)〉

tbb
=

tbΓ|mb
tbb

≥ µ̃2
m.

Then, since ρ2 − 1 < 0,

P
(
κ(m)
n ≤ ρµ̃m

)
≤ P

(
∃β ∈ H(m)\{0}, ‖β‖

2
n − ‖β‖2

Γ

‖β‖2
≤ (ρ2 − 1)µ̃2

m

)
≤ P

(
∃β ∈ H(m)\{0},

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2

∣∣∣∣ ≥ (1− ρ2)µ̃2
m

)
≤ P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2

∣∣∣∣ ≥ (1− ρ2)µ̃2
m

)
.
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From Proposition 5 we deduce

P
(
κ(m)
n ≤ ρµ̃m

)
≤ 2m2 exp

(
− n(1− ρ2)2µ̃2

m

b
∑m

k=1 µk (4
∑m

k=1 µk + (ρ2 − 1)µ̃m)

)
.

Assumption (HΓ) implies that, for all f ∈ H(m)\{0},

c−1
1

‖f‖v
‖f‖

≤ ‖Γ
1/2f‖
‖f‖

≤ c1
‖f‖v
‖f‖

,

and then √
µ̃m ≥ c−1

1 inf
f∈H(m)\{0}

‖f‖v
‖f‖

= c−1
1 vm ≥ c−1

1

√
Rv,µ
√
µm.

Moreover, since
∑m

k=1 µ̃k ≤
∑m

k=1 µk, we have :

m∑
k=1

µk ≥ µ̃m ≥ c−1
1 Rv,µµm,

which implies the expected result. �

A.2. Proof of Theorem 1.

Proof. We follow mainly the proof of Lounici et al. (2011). By definition of β̂ = (β̂1, ..., β̂p),
we have, for all k ≥ 1, for all β = (β1, ...,βp) ∈ H(k),

1

n

n∑
i=1

(
Yi − 〈β̂,Xi〉

)2

+ 2

p∑
j=1

λj

∥∥∥β̂j∥∥∥
j
≤ 1

n

n∑
i=1

(Yi − 〈β,Xi〉)2 + 2

p∑
j=1

λj ‖βj‖j . (14)

Since, for all i = 1, ..., n, Yi = 〈β∗,Xi〉+ εi, Equation (14) becomes,∥∥∥β∗ − β̂∥∥∥2

n
≤ ‖β∗ − β‖2

n +
2

n

n∑
i=1

εi〈β̂ − β,Xi〉+ 2

p∑
j=1

λj(‖βj‖j −
∥∥∥β̂j∥∥∥

j
).

We remark that

1

n

n∑
i=1

εi〈β̂ − β,Xi〉 = 〈β̂ − β, 1

n

n∑
i=1

εiXi〉 =

p∑
j=1

〈β̂j − βj,
1

n

n∑
i=1

εiX
j
i 〉j

≤
p∑
j=1

∥∥∥β̂j − βj∥∥∥
j

∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

.

Consider the event A =
⋂p
j=1Aj, with

Aj =


∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
j

≤ λj/2

 .

From Ledoux and Talagrand (1991, Equation (3.5) p. 59) on the behavior of the tail
of norms of Gaussian Banach-valued random variables, we have

P(Acj) ≤ 4 exp

− λ2
j

32E
[∥∥ 1

n

∑n
i=1 εiX

j
i

∥∥2

j

]
 = exp

(
− nr2

n

32σ2

)
,
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since λ2
j = r2

n
1
n

∑n
i=1

∥∥Xj
i

∥∥2

j
and

E

∥∥∥∥∥ 1

n

n∑
i=1

εiX
j
i

∥∥∥∥∥
2

j

 =
1

n2

n∑
i1,i2=1

E
[
εi1εi2〈X

j
i1
, X2

i2
〉j
]

=
σ2

n

1

n

n∑
i=1

∥∥Xj
i

∥∥2

j
.

This implies that

P(Ac) ≤ p exp

(
− nr2

n

32σ2

)
≤ p1−q,

as soon as rn ≥ 4
√

2σ
√
q ln(p)/n.

Now we suppose that we are on the set A.

We have, since ‖βj‖j −
∥∥∥β̂j∥∥∥

j
≤
∥∥∥βj − β̂j∥∥∥

j
and

∥∥∥β̂j − βj∥∥∥
j
−
∥∥∥β̂j∥∥∥

j
≤ ‖βj‖j,∥∥∥β̂ − β∗∥∥∥2

n
+

p∑
j=1

λj

∥∥∥β̂j − βj∥∥∥
j
≤ ‖β − β∗‖2

n + 2

p∑
j=1

λj

(∥∥∥β̂j − βj∥∥∥
j

+ ‖βj‖j −
∥∥∥β̂j∥∥∥

j

)
≤ ‖β − β∗‖2

n + 4
∑
j∈J(β)

λj min

{∥∥∥β̂j − βj∥∥∥
j
, ‖βj‖j

}
Hence, since β ∈ H(m),∥∥∥β̂ − β∗∥∥∥2

n
≤ ‖β − β∗‖2

n + 4
∑
j∈J(β)

λj

∥∥∥β̂j − βj∥∥∥
j

≤ ‖β − β∗‖2
n + 4

∑
j∈J(β)

λj

∥∥∥β̂ − β∥∥∥
≤ ‖β − β∗‖2

n + 4
∑
j∈J(β)

λj

(∥∥∥β̂(m)
− β

∥∥∥+
∥∥∥β̂(⊥m)

∥∥∥) ,
where β̂

(m)
(resp. β(m)) denotes the orthogonal projection of β̂ (resp. β) onto H(m) and

β̂
(⊥m)

(resp. β(⊥m)) denotes the orthogonal projection of β̂ (resp. β) onto
(
H(m)

)⊥
=:

H(⊥m).
If m ≤Mn, we have by definition κ

(m)
n = infβ∈H(m)\{0}

‖β‖n
‖β‖ , then∥∥∥β̂(m)

− β
∥∥∥ ≤ 1

κ
(m)
n

∥∥∥β̂(m)
− β

∥∥∥
n
≤ 1

κ
(m)
n

(∥∥∥β̂ − β∥∥∥
n

+
∥∥∥β̂(⊥m)

∥∥∥
n

)
.

This implies, denoting

Rn,m := 4
∑
j∈J(β)

λj

(∥∥∥β̂(⊥m)
∥∥∥+

1

κ
(m)
n

∥∥∥β̂(⊥m)
∥∥∥
n

)
,

and using that, for all x, y ∈ R, η > 0, 2xy ≤ ηx2 + η−1y2,∥∥∥β̂ − β∗∥∥∥2

n
≤ ‖β − β∗‖2

n + 4
∑
j∈J(β)

λj

κ
(m)
n

∥∥∥β̂ − β∥∥∥
n

+Rn,m

≤ ‖β − β∗‖2
n + 4η−1

∥∥∥β̂ − β∥∥∥2

n
+ 4

η

κ
(m)
n

∑
j∈J(β)

λ2
j +Rn,m.
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Choosing η > 4, we get :∥∥∥β̂ − β∗∥∥∥2

n
≤ 1

1− 4η−1
‖β − β∗‖2

n + 4
η

(1− 4η−1)κ
(m)
n

∑
j∈J(β)

λ2
j

+
1

1− 4η−1
Rn,m,

and we get the expected result with η̃ = 4η−1/(1− 4η−1). �

Appendix A. Technical lemmas

Proposition 3. Equivalence of tails of Banach-valued random variables (Ledoux
and Talagrand, 1991, Equation (3.5) p. 59)

Let X be a Gaussian random variable in a Banach space B. For every t > 0,

P (‖X‖ > t) ≤ 4 exp

(
− t2

8E [‖X‖2]

)
.

Proposition 4. Bernstein inequality (Birgé and Massart, 1998)
Let Z1, . . . , Zn be independent random variables satisfying the moments conditions

1

n

n∑
i=1

E
[
|Zi|`

]
≤ `!

2
v2c`−2, for all ` ≥ 2,

for some positive constants v and c. Then, for any positive ε,

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − E [Zi]

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− nε2/2

v2 + cε

)
Appendix B. Norm equivalence and corollaries

Proposition 5. Norm equivalence in finite subspaces
Let X1, ...,Xn be i.i.d copies of a random variable X in H and

H(m) = span
{
ϕ(1), ..., ϕ(m)

}
where {ϕ(k)}k≥1 is an orthonormal basis of H. Let (µj)j≥1 the eigenvalues of the covariance
operator Γ sorted in decreasing order. We suppose that there exists b > 0 such that, for
all ` ≥ 1,

sup
j≥1

E

[
〈X, ϕ(j)〉2`

µ`j

]
≤ `!b`−1. (15)

Then, for all t > 0, for all weights w = (w1, ..., wm) ∈]0,+∞[m,

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
w

∣∣∣∣ > t

)
≤ 2m2 exp

− nt2

b
∑m

j=1
µj
wj

(
4
∑m

j=1
µj
wj

+ t
)
 ,

where ‖β‖2
n = 1

n

∑n
i=1〈β,Xi〉2, ‖β‖2

Γ = E [‖β‖2
n], and ‖β‖2

w =
∑m

j=1 wj〈β, ϕj〉2.

Proof. (Proof of Proposition 5)
Let

Γ̂ : β 7→ 1

n

n∑
i=1

〈β,Xi〉Xi
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be the empirical covariance operator of X1, ...,Xn. We have, for all β ∈ H(m), ‖β‖2
n =

〈Γ̂β,β〉. Hence,

‖β‖2
n − ‖β‖2

Γ = 〈(Γ̂− Γ)β,β〉 =
m∑

j,k=1

〈β, ϕ(j)〉〈β, ϕ(k)〉〈(Γ̂− Γ)ϕ(j), ϕ(k)〉 = btΦmb,

with b :=
(
〈β, ϕ(1)〉, ..., 〈β, ϕ(m)〉

)t
et Φm =

(
〈(Γ̂− Γ)ϕ(j), ϕ(k)〉

)
1≤j,k≤m

which implies

sup
β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
w

∣∣∣∣ = ρ(W−1/2ΦmW
−1/2) ≤

√
tr(W−1ΦmΦt

mW
−1)

=

√√√√ m∑
j,k=1

〈(Γ̂− Γ)ϕ(j), ϕ(k)〉2
wjwk

,

where ρ denotes the spectral radius, and W is the diagonal matrix with diagonal entries
(w1, . . . , wm). We then have :

P

(
sup

β∈H(m)\{0}

∣∣∣∣‖β‖2
n − ‖β‖2

Γ

‖β‖2
w

∣∣∣∣ > t

)
≤ P

(
m∑

j,k=1

〈(Γ̂− Γ)ϕj, ϕk〉2

wjwk
> t2

)

≤ P

(
m⋃

j,k=1

{
〈(Γ̂− Γ)ϕ(j), ϕ(k)〉2

wjwk
> pj,kt

2

})
,

≤
m∑

j,k=1

P


∣∣∣〈(Γ̂− Γ)ϕ(j), ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt

 .

where pj,k :=
µjµk
wjwk

(
∑m

`=1 µ`/w`)
−2

(remark that
∑m

j,k=1 pj,k = 1). Now, for all j, k =

1, ...,m,

P


∣∣∣〈(Γ̂− Γ)ϕ(j), ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt


= P

∣∣∣∣∣∣ 1n
n∑
i=1

〈ϕ(j),Xi〉〈ϕ(k),Xi〉√
wjwk

− E


∣∣∣〈(Γ̂− Γ)ϕ(j), ϕ(k)〉

∣∣∣
√
wjwk

∣∣∣∣∣∣ > √pj,kt
 .

By Cauchy-Schwarz inequality, for all ` ≥ 2,

E

∣∣∣∣∣〈(Γ̂− Γ)ϕ(j), ϕ(k)〉
√
wjwk

∣∣∣∣∣
`
 ≤

√
E [〈ϕ(j),X〉2`]E [〈ϕ(k),X〉2`]

√
wjwk

≤ `!b`−1

√
µj
wj

`√µk
wk

`

=
`!

2
2b
µj
wj

µk
wk

(
b

√
µj
wj

√
µk
wk

)`−2

.

Hence, the Bernstein inequality (Lemma 4) implies that

P


∣∣∣〈(Γ̂− Γ)ϕ(j), ϕ(k)〉

∣∣∣
√
wjwk

>
√
pj,kt

 ≤ 2 exp

− npj,kt
2/2

2b
µjµk
wjwk

+ b
√

µj
wj

√
µk
wk

√
pj,kt

 ,

and the definition of pj,k implies the expected result.
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