Laplace–Beltrami Operator on Digital Surfaces - Archive ouverte HAL Access content directly
Journal Articles Journal of Mathematical Imaging and Vision Year : 2019

Laplace–Beltrami Operator on Digital Surfaces

Abstract

This article presents a novel discretization of the Laplace–Beltrami operator on digital surfaces.We adapt an existing convolution technique proposed by Belkin et al. [5] for triangular meshes to topological border of subsets of Z n. The core of the method relies on first-order estimation of measures associated with our discrete elements (such as length, area etc.). We show strong consistency (i.e. pointwise convergence) of the operator and compare it against various other discretizations.
Fichier principal
Vignette du fichier
template.pdf (9.3 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01717849 , version 1 (26-02-2018)
hal-01717849 , version 2 (10-03-2018)
hal-01717849 , version 3 (28-07-2018)

Identifiers

Cite

Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon. Laplace–Beltrami Operator on Digital Surfaces. Journal of Mathematical Imaging and Vision, 2019, 61 (3), pp.359-379. ⟨10.1007/s10851-018-0839-4⟩. ⟨hal-01717849v3⟩
570 View
780 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More