Laplace–Beltrami Operator on Digital Surfaces - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2019

Laplace–Beltrami Operator on Digital Surfaces

Résumé

This article presents a novel discretization of the Laplace–Beltrami operator on digital surfaces.We adapt an existing convolution technique proposed by Belkin et al. [5] for triangular meshes to topological border of subsets of Z n. The core of the method relies on first-order estimation of measures associated with our discrete elements (such as length, area etc.). We show strong consistency (i.e. pointwise convergence) of the operator and compare it against various other discretizations.
Fichier principal
Vignette du fichier
template.pdf (9.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01717849 , version 1 (26-02-2018)
hal-01717849 , version 2 (10-03-2018)
hal-01717849 , version 3 (28-07-2018)

Identifiants

Citer

Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, Tristan Roussillon. Laplace–Beltrami Operator on Digital Surfaces. Journal of Mathematical Imaging and Vision, 2019, 61 (3), pp.359-379. ⟨10.1007/s10851-018-0839-4⟩. ⟨hal-01717849v3⟩
645 Consultations
1266 Téléchargements

Altmetric

Partager

More