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Abstract This article presents a novel discretization of the
Laplace–Beltrami operator on digital surfaces.We adapt an
existing convolution technique proposed by Belkin et al. [5]
for triangular meshes to topological border of subsets of
Zn. The core of the method relies on first-order estimation
of measures associated with our discrete elements (such as
length, area etc.). We show strong consistency (i.e. pointwise
convergence) of the operator and compare it against various
other discretizations.
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1 Introduction

Computer graphics, and particularly the field of geometry
processing, revolves around studying discrete embedded
surfaces (in many cases 2D surfaces in 3D). The
Laplace–Beltrami operator (the Laplacian on a manifold) is
a fundamental tool in geometry as it holds many properties
of the surface. Eigenfunctions of the operator form a natural
basis for square integrable functions on the manifold, in the
same manner as Fourrier harmonics for functions on a circle.
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Fig. 1 A digital surface of dimension two embedded in R3.

It is used for example as a basis for Functional Maps [48] or
mesh compression [42]. Other applications are for example
surface fairing, mesh smoothing, remeshing or feature
extractions (see [42]). The operator is also related to
diffusion and the heat equation on a surface and connected
to a large field of classical mathematics linking geometry of
manifold to properties of the heat flow (see for example
[56]).

Many characterizations of discrete surfaces exist such
as triangular, quadrangular meshes (or more generally sim-
plicial complexes), points clouds, etc. Our model of surface
comes from the Digital Geometry theory [35], where the
discrete structure is the topological boundary of a subset of
points in Zd+1 called a digital surface (an example of this ob-
ject is pictured in Fig. 1). Such surfaces can be constructed
from mathematical modeling or from boundaries of parti-
tions in volumetric images. Indeed, digital objects naturally
arise in many material sciences or medical imaging applica-
tions as tomographic volumetric acquisition devices usually
generate regularly spaced data (e.g [29,22]).
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Our goal here is to present a discretization of the Laplace–
Beltrami operator on digital surfaces which satisfies strong
consistency (i.e. pointwise convergence) with respect to the
Laplace–Beltrami operator on the underlying manifold when
the digital surface is the boundary of the digitization of a con-
tinuous object. As we demonstrate in our experiments, pre-
vious works fail to efficiently estimate the Laplace–Beltrami
operator on these specific surfaces. The main obstacle is the
fact that normal vectors to these surfaces do not converge to
the normal vectors of the underlying manifold, whatever the
sampling rate.

We adapt the operator of Belkin et al. [5] to our spe-
cific data. The method uses an accurate estimation of areas
associated with digital surface elements. This estimation is
achieved through a multigrid convergent digital normal esti-
mator of Coeurjolly et al. [11]. This paper is a direct follow-
up on [6] where we experimentally investigate applications
such as heat diffusion or shape approximation through the
eigenvectors decomposition. We show strong consistency of
the discrete operator, and compare it experimentally with var-
ious other discretizations adapted on digital surfaces.

Discretization schemes overview. The Laplacian being a sec-
ond order differential operator, a discrete calculus framework
is required to define this operator on embedded combinato-
rial structures such as meshes or digital surfaces. The first
elements of discrete calculus may be traced back to Regge
calculus [55] for quantum physics, where discrete domains
are modeled with adjacent tetrahedra and metrics are only
determined by edge lengths. The discrete Laplacian has also
been present in spectral analysis of graphs since the 1950s.
Then, with the development of geometric acquisition devices
and modeling techniques, interest grew toward a calculus
working on meshes and more generally simplicial complexes.
Early works include the widely studied cotangent formula
[58,59,17,50,23,43,46,49] for various applications, which
may be derived directly from standard finite element method
(e.g. see [42]).

Discrete exterior calculus was then developed in the com-
putational mathematics and geometry processing community,
with a particular focus on triangulated meshes. The “German
school” of discrete calculus developed an exact 2D calcu-
lus which generalizes the cotangent Laplacian, and is based
on (conforming and non-conforming) finite elements [51],
thus obtaining expected theoretical results such as Stokes’
theorem and Hodge decomposition. Its applications range
widely: exact integration allows accurate remeshing via L2

projection, shape morphing by prescribing first-order data
on the surface, etc. This theory provides a sound base for
actual computation, with one important limitation: the neces-
sity to only use triangles (and, furthermore, triangles with
good aspect ratios, for positive Laplacian).

A more versatile expression of discrete exterior calcu-
lus comes with Hirani’s thesis [33] and the monograph of
Desbrun, Hirani, Leok and Marsden [16]. Their primal-dual
construction does not impose the use of triangular meshes.
The discretization is not an approximation of the smooth
calculus, but rather a discrete analog:

We do not prove that these definitions converge to the smooth
counterparts. The definitions are chosen so as to make some
important theorems like the generalized Stokes’ theorem true
by definition, to preserve naturality with respect to pullbacks,
and to ensure that operators are local.

[33,16]

Metrics play a role in musical operators (flat and sharp
which convert vector field to k-forms and conversely) and
Hodge stars. Note that discrete exterior calculus coincides
with the cotangent scheme on triangular meshes when the
Voronoi dual is used.

In parallel, another discrete calculus emerges in the im-
age, graph, electric circuits and network analysis communi-
ties, summed up in Grady and Polimeni’s book [24]. Met-
rics are also incorporated, although without the relation with
the ambient space. This feature was desired since people
frequently wish to analyze data without any knowledge of
an embedding. Authors then show how classical filtering
procedures and (discrete versions of) energy models (e.g.
Mumford-Shah, Total Variation) fit well within this frame-
work.

A much-alike discrete calculus on “chainlets” appears in
geometric measure theory, for the mathematical analysis of
general compact shapes like fractals [25,26]. The exterior
derivative, a Hodge star and Laplace–Beltrami are defined
there for very general spaces. However computational as-
pects are unclear. We can also mention a complex analysis
approach to discrete calculus for 2D digital surfaces [44,45]
with applications to digital surface parametrization and tex-
ture mapping [8].

Operators for point clouds can be found in [4] and more
recently in [54]. A discretization on polygonal surfaces was
proposed by Alexa and Wardetzky [2]. As digital surfaces
being specific quadrangulated polygonal surface, such ap-
proach perfectly fits with our data. However, we show in
the experiments such polygonal Laplace–Beltrami operator
gives inconsistent results. Indeed, digital surface quads are
axis-aligned quads and do not capture the metric of the un-
derlying continuous object properly. Note that Alexa and
Wardetzky polygonal operator matches with the cotangent
one on triangular meshes. Other operators on polyhedral sur-
faces can be found in [31,64,32] (see discussion below).

Convergence and consistency of the operator. We clarify no-
tions of convergences for operators. Suppose that you want to
solve the equation Au = f where A : X →Y is a bounded lin-
ear operator between two Banach spaces and f ∈ Y is given.
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Suppose also that you have an approximate Aε of A and fε

of f and that uε is the solution of Aε uε = fε . (e.g. we can
consider ε as the grid step for example). We say that the
approximation scheme is convergent if

lim
ε→0
||uε −u||X = 0.

We say that the approximation scheme is consistent if

lim
ε→0
||Aε v−Av||Y = 0,

for each v ∈ X [34].
We focus here on consistency results of approximations

of the Laplace–Beltrami. The choice of space X and Y deter-
mines various properties regarding solution of the equation.
Let M be a compact manifold embedded in Rd+1 with its
topological border ∂M of class C2. In order to apply the
Laplace–Beltrami operator, we require, in this paper, X to be
C2(∂M), the space of twice differentiable functions acting
on ∂M. We also require Y to be C0(∂M), the set of smooth
functions acting on ∂M. An important consequence which
arises from classical analysis is the extreme value theorem
(see [57] for example). This theorem states that if K is a
compact set, and u : K→ R is a continuous function (in the
topological sense), then u is bounded and reaches its maxi-
mum and minumum in K. Therefore, as ∂M is compact and
each function of C2(∂M) is continuous, our input functions
are bounded. Their gradients, which are continuous, are also
bounded. We chose the infinity Lebesgue norm L∞ for the
consistence (note that as our functions are bounded, the space
is complete with this norm, thus a Banach space). By setting
A = ∆ and Aε = ∆ε , we say that an operator is strongly con-
sistent (or pointwise convergent) whenever

lim
ε→0
||∆ε v−∆v||L∞ =lim

ε→0
sup

x∈∂M
|(∆ε v)(x)− (∆v)(x)|= 0,

for all v ∈C2(∂M). An operator called the Mesh Laplacian
satisfying this property was proposed by Belkin et al. [5] for
interpolating triangular meshes and later extended to point
clouds [4]. Carl gave a discretization on Semi-Discrete sur-
faces and proves (among many things) the strong consis-
tency of his operator [7]. Another approach was proposed
by Hildebrandt and Polthier [31] and is valid on polyhedral
surfaces. This seems to be the closest setting to our digital
surfaces. Although, in our case, the projection function be-
tween the discrete surface and the underlying manifold is
generally not bijective (see Section 5), while this is manda-
tory in their work. The strong consistency is often required
when it comes to approximate curvatures, or Willmore ener-
gies [65]. For such problems, Hildebrandt et al. [30] derive
a strongly consistent curvature estimators.

Other problems require only convergence of solutions
of boundary value problems (e.g. Poisson’s problems). In
this case, we can relax the requirements for input functions.

This setting is called the weak consistency and is related to
the weak form of the Laplace–Beltrami operator (see Wardet-
zky’s thesis for a proper definition [64]). For example, strong
consistency for the cotangent operator holds for very specific
meshes [66,67], but fails in general (counterexamples can be
found in [66,32]). Both convergence in the operator norm
and weak consistency was established first by Dziuk [19] and
later extended to polyhedral surfaces by Hildebrandt, Polthier
and Wardetzky [32]. In particular, they show an equivalence
between normal convergence, metric convergence, conver-
gence of area and convergence of the Laplace–Beltrami op-
erators in the operator norm (see Theorem 2. of [32]). They
use these results to prove weak consistency of the operator
(Theorem 4. of [32]).

Finally, the spectrum of the mesh Laplacian converges
thanks to Dey et al. [18]. As for the cotangent operator, con-
vergence of eigenvalues has been established by Wardetzky
[63], but convergence of the eigenvectors is still an open
problem.

In all the paper, we use the term strong consistency (we
may omit “strong“) which corresponds to convergence in the
L∞ space (i.e. pointwise convergence).

Measure estimations. When it comes to operator discretiza-
tions, we need a way to compute approximate measures on
the discrete surface. In a classical interpolating triangular
mesh, a good approximation of the underlying smooth struc-
ture area is simply given by triangle areas whereas for digital
surfaces naive measures (such as the quadrangular face area
for 2D surface in 3D) give poor approximations. Although
multigrid-convergent estimators of object global volume and
area/perimeter have existed for a long time [20,40], local
measure estimators (length of a 1-cell, area of a 2-cell, etc)
have seen advances only in the past ten years. Parameter-free
tangent and normal estimation along 2D digital curves were
established by Lachaud et al. [36,62], using properties of
maximal digital straight segments. Coeurjolly, Lachaud and
Levallois have defined a digital variant of integral invariants
[53,52] which induces convergent estimation of the normal
vector field along digital surfaces in arbitrary dimension as
well as the whole curvature tensor [10,11]. Cuel, Lachaud
and Thibert use a digital Voronoi Covariance Measure to
show the convergence and stability of a normal estimator
[15]. Integration of normals was used in [39] to estimate the
perimeter of digital curves or the surface area of a digital
surface. The fact that convergent normals implies convergent
measures for subsets of codimension one in digital spaces
was established by Lachaud and Thibert [38]. Consequently,
we can estimate convergent length of 1-cells in 2D and area
of 2-cells in 3D, even locally.

Outline. We provide formal definitions for various discrete
operators on triangular meshes in Section 2. We detail the
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definition of the heat kernel Laplace–Beltrami operator in
Section 3 and provide hints on the convergence proof of
Belkin et al. In Section 4 we derive formal concepts about
Gauss digitization, cubical grid and digital surface. Then in
Section 5 we give some properties of the projection map ξ

that links the digital surface to its smooth counterpart: these
are key tools when it comes to consistency of digital oper-
ators. We adapt in Section 6 our discrete Laplace operator
from the one of Belkin et al. presented in Section 3. We prove
the strong consistency in Section 7, using theorems from [3]
and [38]. The main contributions of this paper are Theorem 5
and its associated proof. Finally, we show empirical consis-
tency results and a comparison between the literature and
our operator in Section 8.

2 Discretizations of the Laplace–Beltrami operator and
their properties

We summarize various discretizations of the
Laplace–Beltrami operator on triangular meshes. As stated
in the introduction, let M be a compact manifold of
dimension d + 1 with a smooth boundary. The linear
operator ∆ : C2(∂M)→C0(∂M) defined by

∆u = div(gradu)

is called the Laplace–Beltrami operator (the sign of the oper-
ator is arbitrary, and one can find in the literature the alterna-
tive definition ”−div(gradu)” for ∆u). It is a bounded linear
operator acting between Banach spaces.

Let Γ be a combinatorial structure (a triangular mesh for
instance), V (Γ ) its set of vertices and F(Γ ) its faces. Let
u : ∂M→ R be a twice differentiable function on ∂M. We
suppose that V (Γ ) is a sampling of M (i.e. V (Γ ) ⊂ ∂M).
In other words, the images of the function u are perfectly
defined for all w ∈V (Γ ).

The first simple discretization, coming from elementary
calculus, is the graph Laplacian or combinatorial Laplacian
acting on Γ [69]:

(LCOMBI u)(w) :=−deg(w)u(w)+ ∑
p∈link0(w)

u(p) , (1)

for all w ∈V (Γ ) where link0(w) is the set of points in V (Γ )

adjacent to w and deg(w) is the degree of w in Γ . LCOMBI
is widely used in graph theory and machine learning for its
nice properties [27].

Then, a similar approach, yet more complicated comes
from the Discrete Exterior Calculus framework [33,16].
Given an arbitrary embedded dual structure of Γ , the
operator is written as a weighted double finite difference:

(LDEC u)(w) :=
1
|?w| ∑

p∈link0(w)

|? ewp|
|ewp|

(u(p)−u(w)), (2)

where ? is the Hodge-duality star operator acting on discrete
forms (see [33]) and | · | the measure of a k-cell. As illus-
trated in Fig. 2, |? ewp| would be the length of the segment
orthogonal to ewp (ewp being the 1-cell corresponding to the
edge between vertices w and p). If we set all measures to
one, LDEC coincides with LCOMBI .

By fixing the dual of Γ to be the Voronoi diagram of its
vertices and by computing the measures as Euclidean lengths
and areas of this dual complex, the DEC operator coincides
exactly with the famous cotan Laplacian [58,59,17,50,23,
43,46,49]:

(LCOT u)(w) :=
1

2Aw
∑

p∈link0(w)

(
cot(αwp)

+ cot(βwp)
)
(u(p)−u(w)) , (3)

where Aw is one third of the area of all incident triangles to
the vertex w, αwp and βwp are the angles opposing the corre-
sponding edge ewp (see Fig. 2). The matrix representation of
LCOT , namely LCOT is given by

LCOT := D−1Q,

with Di,i := 1
3 ∑t∈St(vi) |t|, where St(i) is the set of incident

triangles to a vertex vi and |t| is the area of a triangle and

Qi, j :=
1
2
(cot(αi j)+ cot(βi j)), Qi,i :=−∑

j
Qi, j.

As mentioned in the introduction, both LCOT and LDEC are
not strongly consistent in general [67,68,32]. Yet, because
of the convergence of their weak form, they suffice for many
geometry processing applications such as geodesic compu-
tation [14], spectral processing [60], etc. Apart from conver-
gence behavior, these operators are fast to compute, and the
resulting linear operator (i.e. the matrix) is sparse.

Hildebrandt and Polthier in [31] proposed a strongly con-
sistent discretization of the operator. The idea is to test the
cotan operator against a family of ”r-local” functions:

ϕr,vi :=
ϕ̃r,vi

||ϕ̃r,vi ||
, ϕ̃r,vi(v j) := max{1−

||vi− v j||R3

r
,0},

for some r ∈R∗+. Then the matrix representation of the oper-
ator LR−LOC is

LR−LOC := ΦLCOT , (4)

with Φi, j := ϕvi(v j). The operator can be viewed as a convo-
lution between r-local functions and LCOT .

Finally, we briefly talk about the discretization of Alexa
and Wardetzky [2]. Their operator, named LQUAD here, is
defined on polyhedral surfaces. The trick is to properly de-
fine the adjoint operator d∗ on such structure by computing
inner products on 0-forms and 1-forms (see the paper for
the details). The operator coincides with LCOT on triangular
meshes and can be seen as a generalization of it (even though
it is not its initial purpose).
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Fig. 2 Illustration of LDEC (top), and LCOT (down) on triangular
meshes. For LCOT the area of integration Aw is one third the area of
all triangles incident on vertex w in green. For LDEC , we represent the
Voronoi dual structure in orange. The dual of the edge ewp is in blue.

3 Heat kernel Laplace–Beltrami operator on triangular
meshes

We detail the definition of the mesh Laplacian from [5]. Al-
though the fact that the Laplacian solves the heat equation is
not new and has been studied for quite a while in differential
geometry [56], probability theory and quantum mechanics
(as it is an ”Euclidean” version of the Schrödinger equation),
the discretization comes from the work of Belkin et al. [5]
who defined it on triangular meshes. Studies have also been
made in [14] in the context of geodesic distance approxima-
tion.

Let g : ∂M× (0,T )→ R be a time-dependent function
which solves the partial differential equation called the heat
equation:

∆g(x, t) =
∂

∂ t
g(x, t), (5)

with initial condition u= g(·,0) : ∂M→R which is the initial
temperature distribution. An exact solution is:∫

y∈∂M
p(t,x,y)u(y)dy, (6)

where p ∈C∞(R+×∂M×∂M) is the heat kernel [56].
There is a wide range of studies on the behavior of p

when t tends to zero (called small-time asymptotic of diffu-
sion process). Early work includes the famous Varadhan for-
mula [61] on closed manifolds with or without borders later

extended by Molchanov [47] on a wider class of shapes:

p(t,x,y) ∼
t→0

e−
d(x,y)2

4t

(4πt)
d
2

where d(·, ·) corresponds to the intrinsic geodesic distance.
This approximation is not robust in practice and very sensi-
tive to both geodesic distance approximation and numerical
errors [14]. Fortunately we know from Belkin et al. [3] that
in small-time asymptotic, the geodesic distance can be ap-
proximated by the Euclidean distance:

p(t,x,y) ∼
t→0

p̃(t,x,y) :=
e−
||x−y||2

4t

(4πt)
d
2
,

which leads to the following approximated solution of the
heat equation:

g(x, t) =
∫

y∈∂M
p̃(t,x,y)u(y)dy. (7)

By injecting Eq.(7) in the heat equation Eq.(5) we obtain:

∆g(x, t) =
∂

∂ t

∫
y∈∂M

p̃(t,x,y)u(y)dy. (8)

Using a finite difference on t, and the basic property that the
integral of the heat kernel must be 1:

∆g(x, t) = lim
t→0

1
t

(∫
y∈∂M

p̃(t,x,y)u(y)dy−u(x)
)

(9a)

= lim
t→0

1
t

∫
y∈∂M

p̃(t,x,y)(u(y)−u(x))dy. (9b)

The previous equation can be seen as a convolution between
differences of u and a time dependent Gaussian. Note that the
derivation holds for any approximations of the heat kernel p.
Following these derivations, the mesh Laplace operator [5]
on Γ (an interpolation of a 2D surface in 3D) is:

(LMESH u)(w) :=
1

4πt2 ∑
f∈F(Γ )

A f

3 ∑
p∈V ( f )

e−
||p−w||2

4t (u(p)−u(w)),

(10)

where A f is the area associated with the face f . In [5] au-
thors show that LMESH converges towards the real Laplace–
Beltrami operator ∆ as the triangulation interpolates denser
and denser the manifold ∂M. The proof involves the defini-
tion of an intermediate object called the functional Laplace
operator that we recall in Definition 1.

Definition 1 (Functional Laplace operator [5]) Given a
point x ∈ ∂M and a function u ∈ C2(∂M), the functional
Laplace operator is defined as follows:

(L ?
h u)(x) :=

1

t(4πt)
d
2

∫
y∈∂M

e−
||y−x||2

4t (u(y)−u(x))dy,

where th is a function in R∗+ tending to zero as h tends to
zero.
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Later, we will need Theorem 1 in our own convergence
proof. It shows that the functional approximation converges
toward the real Laplace operator on manifolds in small-time
asymptotic.

Theorem 1 (Functional convergence, Lemma 5. of [3])
Given a point x ∈ ∂M, a function u ∈C2(∂M) :

lim
h→0

(L ?
h u)(x) = (∆u)(x).

In [3], Belkin et al. show that for a particular family of trian-
gulations interpolating the continuous manifold, their opera-
tor LMESH tends toward L ?

h hence toward the real Laplace
operator.

4 Digital surfaces and digital curves

Definitions of digital structures can be found in [38,35].
Topological aspects are described in [28]. We consider as
before a d +1-manifold with a smooth rectifiable boundary
embedded in Rd+1. We recall the definition of the Gauss
Digitization process, which makes the link between M and
its digital approximation:

Definition 2 (Gauss digitization) Let h > 0 be the sam-
pling grid step. The Gauss Digitization of a compact shape
M ⊂ Rd+1 is defined as Dh(M) := M∩ (hZ)d+1 where d is
the dimension.

The digitization process has therefore a very simple
scheme: it considers the discrete points of the infinite
regular grid with grid step h and keeps only the ones inside
the shape (see Fig.3). We call Dh(M) (or Z when we want an
arbitrary object not derived from a Gauss digitization) a
digital set. It is a subset of Zd+1 scaled by h by definition. In
the next sections, we use two extra objects to represent the
boundary of a digital approximation: the h-boundary (Fig. 3,
middle) and its decomposition into cells of dimension d
(Fig. 3, right). Let us first define the boundary of a digital
set Z: for every point z in (hZ)d+1 (called digital points), we
denote the d + 1-dimensional axis-aligned closed cube
centered on z as Qh

z and refer to it as an h-cube (their side
length is h). We define then the h-cube embedding of a
digital set Z as Qh[Z] := ∪

z∈Z
Qh

z .

Definition 3 (h-boundary) The h-boundary of M, denoted
by ∂hM, is the topological boundary of the h-cube embedding
of the Gauss digitization of M:

∂hM := ∂

( ⋃
z∈Dh(M)

Qh
z

)
.

This set is represented in blue in Fig. 3.

Now we construct the cubical grid associated to a digital
set Z. We construct such set by Cartesian product of seg-
ments of dimension one as in [38]. More precisely, we as-
sign coordinates in ( h

2Z)
d+1 to each cell of the space. For

each t ∈ h
2Z, we associate the set Ih(t) such that if t ∈ hZ

then Ih(t) := [t − h
2 ; t + h

2 ] otherwise Ih(t) := {t}. Now, if
z ∈ ( h

2Z)
d+1 then Ih(z) := Ih(z1)×·· ·× Ih(zd+1), where zi is

the i-th coordinate of z. The primal cubical grid is defined as
follows:

Definition 4 (Primal cubical grid) The set
Fh := {Ih(z)}z∈( h

2Z)d+1 tiles the Euclidean space Rd+1 with
hypercubes and its faces. It is called the primal cubical grid
at step h. Elements of Fh are called cells. The set of
elements of dimension d is denoted by Fd

h .

As mentioned in the definition, a cubical grid tiles the entire
space: for example F2

h is the set of squares centered on the
digital points of the grid (in green in Fig. 3). Therefore, when
we want to select all the elements of a boundary (for example
a digital curve in red on the right of Fig. 3), we take the
intersection between the cubical grid Fd

h and the h-boundary
∂hM (or ∂Qh[Z] when we have an arbitrary set of digital
points).

5 Relationship between ∂M and ∂hM

We summarize properties described in [38]. Associated
proofs can be found in [37,38]. Topological or geometric
inference regarding ∂hM can be studied using a functional
approach of the distance function to a compact set A and the
related projection map. If A ⊂ Rd+1, the distance function
δA is the function on Rd+1 such that

δA(x) := inf{||x−a|| : a ∈ A}.

The R-offset of A, denoted by AR is the set of points
whose distance to A is less than R. The medial axis
Med(A) ⊂ Rd+1 of A is the set of points with at least two
closest points on A. The reach [21] of A, denoted by
reach(A), is

inf{δA(y) : y ∈Med(A)}.

Definition 5 (The projection map) The projection map
onto a compact set A is the map

ξA : Rd+1 \Med(A)→ A

that maps any points x of Rd+1\Med(A) to its unique closest
point on A.

We denote by ξ := ξ∂M the projection onto ∂M. First,
Theorem 2 states the Hausdorff stability between ∂hM and
∂M: the distance between those two is bounded by the grid
step h. In other words, given a point y ∈ ∂hM, there always
exists a point x ∈ ∂M within a ball of radius

√
d+1
2 h.
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Fig. 3 Illustration of the notations used in this paper. A smooth shape M, its Gauss digitization Dh(M), its h-cube embedding Qh[Dh(M)] in yellow
and its h-boundary ∂hM. The cubical grid Fh

2 is displayed in green on the right, and also in the related ”cubical border” Fh
1 ∩ ∂hM in red. The

topological border of the h-cube embedding is used to push integral from ∂M in the continuous setting to the discrete setting. Then, the cubical
grid is used to split the integral on elements of various dimensions d, thus approximating the continuous sum by a discrete one.

Theorem 2 (Theorem 1 of [38]) Let M be a compact do-
main of Rd+1 such that the reach of ∂M is greater than
R. Then, for any digitization step 0 < h < 2R/

√
d +1, the

Hausdorff distance between sets ∂M and ∂hM is less than√
d +1h/2. More precisely:

∀x ∈ ∂M,∃y ∈ ∂hM,


||x− y|| ≤

√
d +1
2

h

and y ∈ n(x,
√

d +1
2

h),

∀y ∈ ∂hM, ||y−ξ (y)|| ≤
√

d +1
2

h.

where n(x,a) is the segment of length 2a centered on x and
aligned with the normal vector to ∂M at x.

When studying the topology of ∂hM through ξ , it has
been shown that this function is not always bijective: more
precisely, it is surjective everywhere, but non-injective on
some subset of ∂hM:

mult(∂M) := {x ∈ ∂M,s.t. ∃y1,y2 ∈ ∂hM,y1 6= y2,

ξ (y1) = ξ (y2) = x}.

Fortunately, we know that the size of multh(∂M) is
bounded by a quantity in O(h) (see Theorem 3. of [38]). We
define the digital surface integration as follows:

Definition 6 (Digital surface integration) Let Z be a digi-
tal set and h the grid step. Let f : Rd+1→R be an integrable
function and n̂ be a digital normal estimator. We define the
digital surface integral by

DIh( f ,Z, n̂) = ∑
r∈Fd

h∩∂Qh[Z]

hd f (ṙ)µ(r),

where ṙ is the centroid of the d-cell r and µ(r) = |n̂(ṙ) ·n(ṙ)|
the estimated area of a surfel r with n the trivial normal to
the d-cell r.

The continuous sum is approximated by a discrete one over
elements of dimension d. Given a cell r, we value the func-
tion on its centroid, and use an area approximation µ given
by the scalar product between an estimated normal of r and
the elementary normal orthogonal to r. This estimated area is
called the measure of a cell; it is the area of the projected cell
r onto the tangent plane induced by the estimated normal n̂
(see Fig. 4), which has been used for a long time [20,40]. Nor-
mal vectors are estimated using the estimator presented in
[11,41], which has the multigrid convergence property. Note
that summing this measure for each cell of the surface leads
to an estimation of the global area of the shape boundary,
which itself has a multigrid convergence property [38]. This

Fig. 4 Black dots represent the pointels, black segments are the linels.
The measure µ(s) (in orange) of a surfel s (in green) is the area of the
projection of s onto the tangent plane induced by the estimated normal.
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cell measure is a key ingredient of the digital formalization
of the integral leading to both theoretical and experimental
multigrid convergence.

When taking Z to be the Gauss digitization of a compact
shape with positive reach in Definition 6, theoretical conver-
gence is given by T heorem 3.

Theorem 3 (Theorem 4. of [38]) Let M be a compact do-
main whose boundary has positive reach R. For h ≤ R√

d+1
,

the digital integral is multigrid convergent toward the inte-
gral over ∂M. More precisely, for any integrable function
f : Rd+1→ R, one gets∣∣∣∣∣
∫

∂M
f (x)dx−DIh( f ,Dh(M), n̂)

∣∣∣∣∣
≤ 2d+3(d +1)

3
2 Area(∂M)

(
Lip( f )

√
d +1 h

+ || f ||∞ · ||n̂(ċ)−n(ċ)||est

)
,

where || f ||∞ := maxx∈Rd+1 | f (x)| and
Lip( f ) := maxx 6=y | f (x)− f (y)|/||x− y||2.

It involves the convergence speed of the normal estimator,
but also bounds on the input function related to its || · ||∞
norm and its Lipschitz constant. Note that in our case, the
positive reach is a consequence of the compactness of M
and the smoothness of ∂M. Steps for proving convergence
involve for example showing that the integral of a quantity
over multh(∂M) is negligible and then computing bounds on
the remaining integral using various properties of the func-
tion ξ to link ∂M and ∂hM. We now carry on with the formal
definition of our digital Laplace operator.

6 Heat kernel based Laplace–Beltrami operator on
digital surfaces

We adapt the formulation of Belkin et al. on digital surfaces.
In the continuous heat kernel formulation, the parameter t
must tend to zero. On digital surfaces, we set t as a func-
tion of the grid step h, denoted th, that tends to zero as h
tends to zero. Section 8 clarifies such function. As stated in
Theorem 2, the h-boundary ∂hM is an O(h)-Hausdorff ap-
proximation of ∂M (whereas the triangulated surface Γ is a
sampling of ∂M which is a stronger assumption). As a con-
sequence, we need to map the smooth function u defined on
∂M to ∂hM:

Definition 7 (Tube extension of u) Given a smooth func-
tion u on ∂M, we define the extension ũ of u to Rd+1 as

ũ : x 7→


u(x) if x ∈ ∂M

(u◦ξ )(x) if x ∈ Rd+1 \∂M and δ∂M(x)≤
√

d+1
2 h

0 otherwise

Fig. 5 Illustration of the tube definition of ũ on ∂M. Function ũ is equal
to u when x ∈ ∂M (the black curve on the figure), and is equal to u◦ξ

when x lies in the
√

d+1
2 h-offset of ∂M (namely (∂M)

√
d+1
2 h, that is the

interior and the boundary of the tube, represented in yellow and blue
on the figure), and has value 0 everywhere else.

where ξ is the map defined as before and δ∂M is the distance
function. An illustration of this definition can be found in
Fig. 5.

Applying the discretization scheme defined in
Definition 6 to Eq.(9b), we derive a definition for our digital
Laplace–Beltrami operator in Definition 8. Motivation for
choosing Eq.(9b) over Eq.(9a) is theoretical: the continuous
Lipschitz property of u (which is inherited from the
bounded gradient property) will be applied to |u(y)− u(x)|
in our proof.

Definition 8 (Digital Laplace–Beltrami operator) Let Z
be a digital set and h the grid step. Let f be some function
defined at least in ∂hM. The digital Laplace–Beltrami opera-
tor is:

(Lh f )(s) :=
1

th(4πth)
d
2

∑
r∈Fd

h∩∂Qh[Z]

e−
||ṙ−ṡ||2

4th [ f (ṙ)− f (ṡ)]µ(r),

where ṙ (resp. ṡ) is the centroid of the surfel r (resp. s), µ(r)
is equal to the dot product between an estimated normal and
the trivial normal orthogonal to the surfel s and th is a func-
tion of h tending to zero as h tends to zero, which will be
specified later.

7 Strong consistency of the Digital Laplace–Beltrami
operator

In the sequel, th is defined as hα , for some α > 0. The posi-
tiveness of α is given by Theorem 1 as th must tend toward
zero as h tends toward zero. We also assume that ||n̂(ċ)−
n(ċ)||est , the error on the normal vector estimation, to be in
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O(hβ ). The speed of convergence (i.e. the value of β ) de-
pends on the estimator [12]. For example the convergence
speed of the integral invariant normal estimator [11,41] is
O(h

2
3 ).
We prove the strong consistency of our operator when

considering the digital set Z to be Dh(M), the Gauss dis-
cretization of M. Let s be a surfel in Fd

h ∩ ∂hM. We show
that∣∣∣(∆u)(ξ (ṡ))− (Lhũ)(ṡ)

∣∣∣ (11)

tends toward zero as the grid step h tends toward zero. First,
let us use the triangle inequality in Eq.(11) to highlight the
important steps of the proof:∣∣∣(∆u)(ξ (ṡ))− (Lhũ)(ṡ)

∣∣∣≤∣∣∣(∆u)(ξ (ṡ))− (L ?
h u)(ξ (ṡ))

∣∣∣ (Q1)

+
∣∣∣(L ?

h u)(ξ (ṡ))− (L ?
h ũ)(ṡ)

∣∣∣ (Q2)

+
∣∣∣(L ?

h ũ)(ṡ)− (Lhũ)(ṡ)
∣∣∣ (Q3)

The main contribution of this article is stated in both
Lemma 1 and Lemma 2. Lemma 1 from Section 7.1 gives
a bound on (Q2). Lemma 2 from Section 7.2 gives a bound
on (Q3) and is a combination of Lemma 3 and Theorem 3.
The consistency of (Q1) is given by Theorem 1. The overall
consistency is given in Section 7.3 through Theorem 5. We
do not provide a convergence speed for the entire result as
the convergence speed of (Q1) is unknown (Theorem 1 just
indicates convergence).

7.1 Bound on (Q2)

Lemma 1 Let s ∈ Fd
h ∩∂hM, a function u ∈C2(∂M) and its

extension ũ from Definition 7. For th = hα , 0 < α ≤ 2
2+d

and h ≤ hmax with hmax the minimum between Diam(∂M),
K3(d,α,Diam(∂M)) (see Eq.(15) for an explicit value) and
R/
√

d +1, we have

|(L ?
h u)(ξ (ṡ))− (L ?

h ũ)(ṡ)|

≤ Area(∂M) ||∇u||∞
[
K1(d)h1−α(1+ d

2 )+K2(d)h2−α
3+d

2

]
with

K1(d) :=
√

d +1

2d−1eπ
d
2

and K2(d) :=
3(d +1)

2d+ 5
2
√

eπ
d
2
.

Proof Using Definition 1, we have:∣∣∣(L ?
h u)(ξ (ṡ))− (L ?

h ũ)(ṡ)
∣∣∣

=
1

th(4πth)
d
2

∣∣∣∣∣
∫

y∈∂M
e−
||y−ξ (ṡ)||2

4th [u(y)−u(ξ (ṡ))]

−
∫

y∈∂M
e−
||y−ṡ||2

4th [ũ(y)− ũ(ṡ)]

∣∣∣∣∣.
Since [u(y) − u(ξ (ṡ))] = [ũ(y) − ũ(ṡ)], we factorize by
[u(y)−u(ξ (ṡ))] to get:

|(L ?
h u)(ξ (ṡ))− (L ?

h ũ)(ṡ)|

=
1

th(4πth)
d
2

∣∣∣∣∣
∫

y∈∂M

(
e−
||y−ṡ||2

4th − e−
||y−ξ (ṡ)||2

4th

)
[u(y)−u(ξ (ṡ))]dy

∣∣∣∣∣ .
(13)

As the infinity norm of the gradient of u is bounded (from
the extreme value theorem), we know that u is Lipschitz con-
tinuous with constant equals to ||∇u||∞. Therefore Eq.(13)
becomes:

|(L ?
h u)(ξ (ṡ))− (L ?

h ũ)(ṡ)|

=
1

th(4πth)
d
2

∣∣∣∣∣
∫

y∈∂M

(
e−
||y−ṡ||2

4th − e−
||y−ξ (ṡ)||2

4th

)
[u(y)−u(ξ (ṡ))]dy

∣∣∣∣∣
≤ 1

th(4πth)
d
2

∫
y∈∂M

∣∣∣∣∣e− ||y−ṡ||2
4th − e−

||y−ξ (ṡ)||2
4th

∣∣∣∣∣ · |u(y)−u(ξ (ṡ))|dy

≤ ||∇u||∞
th(4πth)

d
2

∫
y∈∂M

∣∣∣∣∣e− ||y−ṡ||2
4th − e−

||y−ξ (ṡ)||2
4th

∣∣∣∣∣ · ||y−ξ (ṡ)||dy

(14)

We set b := e−
||y−ṡ||2

4th −e−
||y−ξ (ṡ)||2

4th and bound |b|. As b can be
either negative or positive, we first derive a negative minor
bound and a positive upper bound on it and conclude using
Lemma 3 in the appendix.

Let us first find the upper bound. We use the squared
triangle inequality in (ṡ,ξ (ṡ),y) (see Fig. 6):

||y− ṡ||2 ≥ ||y−ξ (ṡ)||2−||ṡ−ξ (ṡ)||2−2 ||y− ṡ|| ||ṡ−ξ (ṡ)||.

Using the fact that ||y− ṡ|| ≤ ||y− ξ (ṡ)||+ ||ṡ− ξ (ṡ)|| we
have:

||y− ṡ||2

≥ ||y−ξ (ṡ)||2−||ṡ−ξ (ṡ)||2−2(||y−ξ (ṡ)||+ ||ṡ−ξ (ṡ)||) ||ṡ−ξ (ṡ)||
= ||y−ξ (ṡ)||2−3||ṡ−ξ (ṡ)||2−2 ||y−ξ (ṡ)|| ||ṡ−ξ (ṡ)||.

Then we apply the Hausdorff property of ∂hM with respect
to ∂M to the term ||ṡ−ξ (ṡ)|| (Theorem 2):

||y− ṡ||2 ≥ ||y−ξ (ṡ)||2− 3(d +1)
4

h2− ||y−ξ (ṡ)||
√

d +1h.
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Next we divide by 4th, apply the function e−x to the inequal-
ity

e−
||y−ṡ||2

4th ≤ e−
||y−ξ (ṡ)||2

4th e
3(d+1)

16th
h2+

||y−ξ (ṡ)||
√

d+1
4th

h

and subtract e−
||y−ξ (ṡ)||2

4th on each side:

b≤ e−
||y−ξ (ṡ)||2

4th

(
e

3(d+1)
16th

h2+
||y−ξ (ṡ)||

√
d+1

4th
h−1

)
.

For 0≤ x ≤ 2.51286 the inequality ex/2−1≤ x is true (see
Lemma 5 in the appendix). We apply it to the last equation:

b≤ e−
||y−ξ (ṡ)||2

4th

[
3(d +1)

8th
h2 +

||y−ξ (ṡ)||
√

d +1
2th

h
]
=: c.

The bound c is valid when 0≤ x≤ 2.51286. Replacing x
by 3(d+1)

8 h2−α + ||y−ξ (ṡ)||
√

d+1
2 h1−α and supposing that h ≤

Diam(∂M) (which is reasonable in our context) we have:

3(d +1)
8

h2−α +
||y−ξ (ṡ)||

√
d +1

2
h1−α ≤ 2.51286

⇐= 3(d +1)
8

h2−α +
Diam(∂M)

√
d +1

2
h1−α ≤ 2.51286

⇐= h2−α

(
3(d +1)

8
+

√
d +1
2

)
≤ 2.51286

⇐= h≤ exp
[

3.00086− log(3(d +1)+4
√

d +1)
2−α

)

]
:= K3(d,α).

(15)

The next step is to find a negative minor bound on b. We
use a triangle inequality in (ṡ,ξ (ṡ),y) (see Fig. 6) and again
the Hausdorff property of ∂hM:

||y− ṡ||2 ≤ ||y−ξ (ṡ)||2 + ||ṡ−ξ (ṡ)||2 +2 ||y−ξ (ṡ)|| ||ṡ−ξ (ṡ)||

≤ ||y−ξ (ṡ)||2 + d +1
4

h2 + ||y−ξ (ṡ)||
√

d +1h.

Using the same derivation as for the upper bound we have

b≥ e−
||y−ξ (ṡ)||2

4th

(
e−

d+1
16th

h2− ||y−ξ (ṡ)||
√

d+1
4th

h−1
)
=: a.

Using Lemma 3 we have |b| ≤max{|a|,c}. We now bound
the absolute value of a:

|a|= e−
||y−ξ (ṡ)||2

4th

∣∣∣∣e− d+1
16th

h2− ||y−ξ (ṡ)||
√

d+1
4th

h−1
∣∣∣∣

= e−
||y−ξ (ṡ)||2

4th

(
1− e−

d+1
16th

h2− ||y−ξ (ṡ)||
√

d+1
4th

h
)
.

For 0≤ x, 1− e−x ≤ x holds which leads to

|a| ≤ e−
||y−ξ (ṡ)||2

4th

[
d +1
16th

h2 +
||y−ξ (ṡ)||

√
d +1

4th
h
]
.

We see that max{|a|,c}= c and using Lemma 3:

|b|=
∣∣∣∣e− ||y−ṡ||2

4th − e−
||y−ξ (ṡ)||2

4th

∣∣∣∣
≤ e−

||y−ξ (ṡ)||2
4th

[
3(d +1)

8th
h2 +

||y−ξ (ṡ)||
√

d +1
2th

h
]
.

(16)

Injecting Eq.(16) in Eq.(14) we have∣∣∣(L ?
h u)(ξ (ṡ))− (L ?

h ũ)(ṡ)
∣∣∣

≤ ||∇u||∞
th(4πth)

d
2
· 3(d +1)

8th
h2
∫

y∈∂M
||y−ξ (ṡ)||e−

||y−ξ (ṡ)||2
4th dy

+
||∇u||∞

th(4πth)
d
2
·
√

d +1
2th

h
∫

y∈∂M
||y−ξ (ṡ)||2e−

||y−ξ (ṡ)||2
4th dy

=
3(d +1)||∇u||∞

8(4πth)
d
2

h2
∫

y∈∂M

||y−ξ (ṡ)||
t2
h

e−
||y−ξ (ṡ)||2

4th dy

+
||∇u||∞

√
d +1

2(4πth)
d
2

h
∫

y∈∂M

||y−ξ (ṡ)||2

t2
h

e−
||y−ξ (ṡ)||2

4th dy

To bound the first integral, we use the inequality xe−x2 ≤
1/
√

2e for all x ∈ R. Putting x = ||y−ξ (ṡ)||
2
√

th
we have

||y−ξ (ṡ)||
t2
h

e−
||y−ξ (ṡ)||2

4th ≤
√

2
√

e · t
3
2

h

.

For the second one, we know that for all x ∈R, x2e−x2 ≤ 1/e.
Putting x = ||y−ξ (ṡ)||

2
√

th
we have

||y−ξ (ṡ)||2

t2
h

e−
||y−ξ (ṡ)||2

4th ≤ 4
e · th

.

Continuing:

|(L ?
h u)(ξ (ṡ))− (L ?

h ũ)(ṡ)|

≤

3
√

2(d +1)||∇u||∞
8
√

e(4π)
d
2

· h2

t
3+d

2
h

+
2 ||∇u||∞

√
d +1

e(4π)
d
2

h

t
1+ d

2
h

∫
y∈∂M

dy

=

3
√

2(d +1)||∇u||∞
8
√

e(4π)
d
2

· h2

t
3+d

2
h

+
2 ||∇u||∞

√
d +1

e(4π)
d
2

h

t
1+ d

2
h

Area(∂M).

We replace th by hα :

|(L ?
h u)(ξ (ṡ))− (L ?

h ũ)(ṡ)|

≤ Area(∂M)

[
3
√

2(d +1)||∇u||∞
8
√

e(4π)
d
2

·h2−α
3+d

2

+
2 ||∇u||∞

√
d +1

e(4π)
d
2

h1−α(1+ d
2 )

]

= Area(∂M) ||∇u||∞

[
3 · (d +1)

2d+ 5
2
√

eπ
d
2

h2−α
3+d

2 +

√
d +1

dd−1eπ
d
2

h1−α(1+ d
2 )

]
.

The convergence holds when h’s exponents are positive, that
is 2−α

3+d
2 > 0 and 1−α(1+ d

2 )> 0. Simple analysis leads
to α ≤ 2/(2+d). ut
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Fig. 6 Illustration of the projection function ξ . Surfel centroids ṡ (in
yellow) are mapped using ξ to the blue dots. The proof of Lemma 1
lies in comparing ||y− ṡ|| and ||y−ξ (ṡ)||. We use triangle inequalities
in (ṡ,ξ (ṡ),y) for the proof.

7.2 Bound on (Q3)

This section proves the following lemma:

Lemma 2 Let the normal estimator convergence speed be in
O(hβ ) and let th = hα . For h≤ h0 =R/

√
d +1, Lh is strongly

consistent with L ?
h if

0 < α < min
(

2
d +2

,
2β

d +1

)
with a convergence speed in

C h1−α( d
2 +1)+O(hβ−α

1+d
2 ),

where

C :=
48(d +1)2

π
d
2

Area(∂M)||∇u||∞.

We only explicit the constant for the first term of the conver-
gence as the second term is related to an arbitrary normal
estimator. We introduce the function gh

ṡ : Rd+1→ R defined
as

∀x ∈ Rd+1,gh
ṡ (x) :=

1

th(4πth)
d
2

e−
||x−ṡ||2

4th (ũ(x)− ũ(ṡ)). (17)

Lemma 2 consists in showing the convergence of the
digital approximation of the integral of gh

ṡ over ∂M. More
precisely, we want:

lim
h→0

∣∣∣∣∣
∫

x∈∂M
gh

ṡ (x)dx− ∑
r∈Fd

h∩∂hM

gh
ṡ (ṙ)µ(r)

∣∣∣∣∣= 0.

Using Theorem 3 we have∣∣∣∫
x∈∂M

gh
ṡ (x)dx− ∑

r∈Fd
h∩∂hM

gh
ṡ (ṙ)µ(r)

∣∣∣
≤ 2d+3(d +1)

3
2 Area(∂M)

(
Lip(gh

ṡ )
√

d +1 h+ ||gh
ṡ ||∞O(hβ )

)
.

(18)

The challenge now is to carefully bound from above Lip(gh
ṡ )

and ||gh
ṡ ||∞, which depends on h. We first show an upper

bound on Lip(ũ) using properties of ξ in Section 7.2.1. Next,
we show bounds on Lip(gh

ṡ ) and ||gh
ṡ ||∞ within the tube exten-

sion of ∂M in Section 7.2.2. Finally, by using the definition
of gh

ṡ we extend the two previous bounds to Rd+1 which
proves Lemma 2.

7.2.1 Bound on Lip(ũ)

As ũ is defined to be the composition between u ∈C2(∂M)

and the projection function ξ , we state first Theorem 4
showing a bound on the Lipschitz constant associated to ξ .

Theorem 4 (Proposition 1 of [38] and theorem 4.8 of
[21]) Let A be a compact set with positive reach. Then for
every p ∈ A and every ι ∈ [0,1[, the projection ξA is

1
1−ι

-Lipschitz in the ball centered on p with radius
ι× reach(A).

To find an upper bound on Lip(ũ) we bound the gradient
of ũ. To do so, we need ũ to be differentiable.
Unfortunately, derivatives of ũ are defined everywhere
except on the boundary of the tube extension of ∂M.
Therefore, we restrict for now the analysis within

the tube extension (i.e. the offset) T := (∂M)
√

d+1
2 h

(see Fig. 5). We write for an arbitrary function f
LipT f := maxx,y∈T ,x 6=y | f (x)− f (y)|/||x− y||2. We know
that the Lipschitz constant is bounded by the maximal
(vector) norm of the gradient:

LipT (ũ)≤max
x∈T

{∥∥(∇ũ)(x)
∥∥

∞

}
= max

x∈T

{∥∥(∇u◦ξ )(x)
∥∥

∞

}
.

Using the chain rule property of the gradient, we have:

LipT (ũ)≤max
x∈T

{∥∥(Jξ (x))T (∇u)(ξ (x))
∥∥

∞

}
, (19)

where Jξ (x) is the Jacobian of ξ at point x and (∇u)(ξ (x))
is the application of the gradient of u to the point ξ (x). For
h≤ R/

√
d +1 (with R the reach of ∂M) we know from The-

orem 4 that ξ is 2-Lipschitz in a ball of radius R/2 (here we
chose ι to be 1/2 which gives an upper bound on h, and the
2-Lipschitz property). Therefore, the transposed Jacobian is
bounded by 2 (as each of the derivatives are bounded) which
leads to:
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LipT (ũ)≤ 2 max
x∈T

{∥∥(∇u)(ξ (x))
∥∥

∞

}
(20)

Using the fact that ξ is surjective everywhere, Eq.(20) be-
comes

LipT (ũ)≤ 2 max
x∈T

{∥∥(∇u)(ξ (x))
∥∥

∞

}
= 2‖∇u‖∞. (21)

Indeed, as every points of ∂M has a pre-image in (∂M)
√

d+1
2 h

with respect to the function ξ the infinity norm reaches the
same value.

7.2.2 Bounds for LipT (gh
ṡ ) and ||gh

ṡ ||T

We use the following shorthand notation for this section

||∇ũ||T := max
x∈T

{∥∥(∇ũ)(x)
∥∥

∞

}
.

We show the following Lemma:

Lemma 3 For h≤ h0 = R/
√

d +1 we have

||gh
ṡ ||T ≤

2 · ||∇u||∞
(4π)

d
2
·h−α

1+d
2 and LipT (gh

ṡ )≤
6 · ||∇u||∞
(4π)

d
2
·h−α(1+ d

2 ).

Proof If we consider Eq.(17) and by using the Lipschitz
property of ũ we have

||gh
ṡ ||T = max

x∈T

 e−
||x−ṡ||2

4th

th(4πth)
d
2
· (ũ(x)− ũ(ṡ))


≤max

x∈T

 e−
||x−ṡ||2

4th

th(4πth)
d
2
·LipT (ũ) · ||x− ṡ||2

 .

We know that for all y ∈ R, ye−y2 ≤ 1/2. Putting y = ||x−ṡ||
2
√

th
we have

||x− ṡ||
th

e−
||x−ṡ||2

4th ≤ 1√
th
.

Using Eq.(21) and then replacing th by hα gives

||gh
ṡ ||T ≤

2 · ||∇u||∞

t
1
2

h (4πth)
d
2

=
2 · ||∇u||∞
(4π)

d
2
·h−α

1+d
2 .

Next, since LipT (gh
ṡ ) ≤ ||∇gh

ṡ ||T we first compute the
derivative of gh

ṡ and then its upper bound. We have:

∇gh
ṡ (x) =

∇ũ(x)

th(4πth)
d
2

e−
||x−ṡ||2

4th +
ũ(x)− ũ(ṡ)

th(4πth)
d
2

∇e−
||x−ṡ||2

4th .

Using elementary calculus, we know that

∇e−
||x−ṡ||2

4th =−||x− ṡ||
2th

e−
||x−ṡ||2

4th .

Therefore we have

∇gh
ṡ (x) =

∇ũ(x)

th(4πth)
d
2

e−
||x−ṡ||2

4th − ||x− ṡ|| [ũ(x)− ũ(ṡ)]

2t2
h (4πth)

d
2

e−
||x−ṡ||2

4th .

We use the triangle inequality to continue:

∥∥∇gh
ṡ
∥∥

T
≤ ‖∇ũ‖T

th(4πth)
d
2

e−
‖x−ṡ‖2

4th

+max
x∈T

{
|ũ(x)− ũ(ṡ)|‖x− ṡ‖2

2t2
h (4πth)

d
2

e−
||x−ṡ||2

4th

}

≤ ||∇ũ||T
th(4πth)

d
2

e−
||x−ṡ||2

4th

+LipT (ũ) ·max
x∈T

{
||x− ṡ||2

2t2
h (4πth)

d
2

e−
||x−ṡ||2

4th

}
.

As first mentioned in Lemma 1, elementary calculus shows
that ∀y ∈ R, y2e−y2 ≤ 1 (with use here a weaker bound for
factorization purpose). Taking y to be ||x−ṡ||

2
√

th
we have

||x− ṡ||2

t2
h

e−
||x−ṡ||2

4th ≤ 4
th

(22)

which gives the final bound on ||∇gh
ṡ ||T :

∥∥∇gh
ṡ
∥∥

T
≤ ||∇ũ||T

th(4πth)
d
2

+LipT (ũ) ·max
x∈T

{
||x− ṡ||2

2t2
h (4πth)

d
2

e−
||x−ṡ||2

4th

}

≤ ||∇ũ||T
th(4πth)

d
2
+

2LipT (ũ)

th(4πth)
d
2

(Using Eq.(22))

≤ ||∇ũ||T
th(4πth)

d
2
+

4||∇u||∞
th(4πth)

d
2

(Using Eq.(21)).

Combining Eq.(19) and Eq.(21) we have ||∇ũ||T ≤ 2 ||∇u||∞.
Injecting this quantity into the last equation gives:

∥∥∇gh
ṡ
∥∥

T
≤ 2||∇u||∞

th(4πth)
d
2
+

4||∇u||∞
th(4πth)

d
2

=
6||∇u||∞
(4π)

d
2
·h−α(1+ d

2 ) (putting th = hα ),

which proves Lemma 3. ut
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7.2.3 Conclusion on (Q3) convergence

Injecting Lemma 3 into Eq.(18) we have:∣∣∣∣∣
∫

x∈∂M
gh

ṡ (x)dx− ∑
r∈Fd

h∩∂hM

gh
ṡ (ṙ)µ(r)

∣∣∣∣∣
≤ 2d+3(d +1)

3
2 Area(∂M)

(
Lip(gh

ṡ )
√

d +1 h+ ||gh
ṡ ||∞O(hβ )

)
≤ 2d+3(d +1)

3
2 Area(∂M)

(
6 · ||∇u||∞
(4π)

d
2
·h−α(1+ d

2 )
√

d +1 h

+
2 · ||∇u||∞
(4π)

d
2
·h−α

1+d
2 O(hβ )

)

=
48(d +1)2

π
d
2

Area(∂M) ||∇u||∞ h1−α( d
2 +1)+O(hβ−α

1+d
2 ).

This result can be extended to the whole space (i.e. replacing
T by ∞ in the norm) using the fact that Theorem 3 only
needs bounded Lipschitz and the l∞ error in T (as all proofs
rely on bounds computed within this tube because of the
Hausdorff property of ∂hM). Therefore we write:∣∣∣∣∣
∫

x∈∂M
gh

ṡ (x)dx− ∑
r∈Fd

h∩∂hM

gh
ṡ (ṙ)µ(r)

∣∣∣∣∣
≤ 48(d +1)2

π
d
2

Area(∂M) ||∇u||∞ h1−α( d
2 +1)+O(hβ−α

1+d
2 ).

which proves Lemma 2.

7.3 Overall convergence result

Theorem 5 Let s be a surfel in Fd
h ∩ ∂hM, a function

u ∈ C2(∂M) and its extension ũ from Definition 7. Let
th = hα and let the convergence speed of the normal
estimator be in O(hβ ). Let h0 be the minimum between
Diam(∂M), R/

√
d +1 and K3(d,α,Diam(∂M)) (where K3

is a constant defined in Eq.(15)). For 0 < h≤ h0 we have

lim
h→0

∣∣(∆u)(ξ (ṡ))− (Lhũ)(ṡ)
∣∣= 0

if 0 < α < min
(

2
d+2 ,

2β

d+1

)
.

Proof We remind the reader that the condition α > 0 is given
by Theorem 1 as th must tends toward zero as h tends toward
zero. Then Lemma 1 gives the following condition for the
consistency:

α <
2

d +2
,

and Lemma 2 the same condition plus

α <
2β

d +1
.

Combining these conditions on α , Theorem 1 from Belkin et
al. for the convergence of Eq.(Q1), Lemma 1 for the bound
on Eq.(Q2) and Lemma 2 for the bound on Eq.(Q3), the the-
orem holds. Hence our digital operator is strongly consistent
with the smooth Laplace–Beltrami operator on manifolds.
The upper bound h0 for h is given by Lemma 1 and Lemma 2.

ut

8 Experiments

We only investigate in this section the empirical consistency
property under the l∞ norm. Associated geometry processing
applications can be found in [6]. We consider a unit ball S3

and three different smooth functions u : ∂S3→ R, namely z,
x2 and ex (see. Fig. 8). Let θ be the azimuth angle, and φ the
polar angle. The spherical Laplacian is then:

∆∂S3u(θ ,φ) =
1

sin2
φ

∂ 2u
∂θ 2 +

1
sinφ

∂

∂φ

(
sinφ

∂u
∂φ

)
. (23)

We compute the Gauss digitization Dh(S3) of the ball for
decreasing grid steps h. We take a ball of Euclidean radius
one. For h = 0.1, the digital surface ∂hS3 has 1902 surfels,
whereas for h = 0.01 it contains 188502 surfels. Since the
elements of ∂hS3 do not interpolate the sphere, u is extended
to ũ as defined in Definition 7. We use the normal vector
estimator described in [11] to compute µ the measure of the
surfels. All tests are made using the DGtal library [1] written
in C++. We first investigate convergence speed for various α

values. Then we compare our operator with ones adapted to
digital surface.

8.1 Consistency results for various α

We evaluate the consistency property of our
Laplace–Beltrami operator. We display graphs in Fig. 8 for
various parameters th: h (in red ), h

2
3 (in blue ), h

1
3

(in green ), h
1
6 (in purple ) and h

1
12 (in orange

). Convergence speeds are summed up in Table.1. Our
operator Lh can be seen as a convolution between a
Gaussian of standard deviation σ =

√
2th and differences of

functions. As the discretization becomes finer, the standard
deviation σ of the Gaussian in the convolution decreases
and the number of points within it increases.

We observe that, as the exponent α of th increases, the l∞-
error decreases. Moreover, for both x2 and exp(x) functions,
the speed of convergence increases alongside the value of
α . Although theoretical convergence speed is achieved for
th = h

1
3 , the empirical behavior is the opposite of the one

given by Lemma 1 and Lemma 2 where as α tends toward 0
the convergence speed increases. We strongly think that this
difference between the theory and the application is related
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Fig. 7 Discrete settings used for the comparison between various Laplace–Beltrami operators. The unit ball S3 is discretized using the Gauss
digitization process. The left image is the digital surface ∂hS3 where we compute Lh and LCOMBI . The image in the center is the marching-
cubes associated with the digital surface where we compute LMESH , LR−LOC and LCOT . Finally, the right image represents the projection of the
marching-cubes on ∂S3 where L P

MESH , L P
R−LOC and L P

COT are computed.

with Theorem 1 where the theoretical convergence speed is
not explicit. Furthermore, the sphere is a very specific shape
and may also bias the result.

8.2 Comparison against other discretizations

We compare in Fig. 9 convergence speeds of various opera-
tors. We compute LCOMBI (from Eq.(1)), LQUAD and Lh di-
rectly on ∂hS3; LCOT (from Eq.(3)), LMESH (from Eq.(10))
and LR−LOC (from Eq.(4)) on the associated marching cubes
triangulation. Since the vertices of this mesh coincide with
the centroids of the surfels of ∂hS3, all these operators are
evaluated at the same points. The parameter t for LMESH
should depend on the sampling of the triangulated mesh [5].
In our case, as the mesh comes from our digital surface, we
use the parameter th from Lh in LMESH and chose th = h

1
3 .

As for the parameter r for LR−LOC we set it to be h
1
3 as ad-

vised by the authors.
For comparison, in order to mimic the setting of [5], we

have also considered the Laplacian L P
MESH , which corre-

sponds to LMESH when the vertices of the marching cubes
are projected onto the sphere. In our framework, this opera-
tor is the gold standard as we perfectly know the vertex posi-
tions. Finally, we also compute L P

COT , L P
R−LOC and L P

QUAD
on the projection of the marching cubes. The various discrete
spheres are depicted in Fig. 7.

First, as theoretically expected, LCOMBI ( ), LCOT
( ) and L P

COT ( ) are not strongly consistent on our
setting on both the marching cubes and its projection. The
polygonal Laplace of Alexa et al. on our surface (resp. pro-
jected surface) has the same behavior as LCOT (resp. L P

COT ).
As for the cotan operator, the poor approximation of the tan-
gent space through trivial normals leads to non-convergent
areas, and thus a diverging operator on the sphere. As for the

Table 1 Summary of convergence speed for various values of th and
different functions ũ. The model hγ has been fitted to the maximal error
in the Laplacian evaluation (the same data set is used in Fig. 8). The
table shows the values of the model parameter γ with respect to the input
parameter α and the function ũ. The higher the values, the speeder the
convergence.

α ũ(x,y,z) = z ũ(x,y,z) = x2 ũ(x,y,z) = ex

1 0.9846 1.0594 0.985
2
3 1.1039 0.8147 0.8630
1
3 1.0993 0.3468 0.3612
1
6 1.0621 0.1732 0.1732
1

12 1.0611 0.0861 0.0852

projection, even though the area converges, many triangles
are ill-formed (as a result of the projection) thus breaking the
consistency. Non-consistency is also observed for LMESH
( ) but with lower errors. On the opposite, L P

MESH ( )
shows pointwise convergence, as expected in [5]. Conver-
gence speeds are close between Lh and L P

MESH , although
there is a 102 gap for the u(x,y,z) = z function. LR−LOC
shows non-consistency behaviors. Indeed, our setting does
not fit in the theorem of [31]: our projection function ξ is not
bijective in general, and the surface normals of the marching
cubes are not convergent breaking the weak consistency of
LCOT (see [64]) which is required in the strong consistency
proof of LR−LOC. As for L P

R−LOC, the projected marching
cubes has the properties required by Theorem 7. of [31], but
the shape regularity ρ (which corresponds to the aspect ratio
of the triangles) diverges on the projection, thus breaking the
constant C from their theorem.
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Fig. 8 Consistency results between ∆ and Lh for the l∞ norm are shown for various functions on the unit sphere ∂S3. We use either th = h in red,
th = h

2
3 in blue, th = h

1
3 in green, th = h

1
6 in purple and th = h

1
12 in orange.
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Fig. 9 Multigrid convergence graphs for various functions on ∂S3, the unit sphere. l∞ is displayed for LCOT , L P
COT , LCOMBI , LMESH , L P

MESH ,
LR−LOC , L P

R−LOC , LQUAD, L P
QUAD and Lh. Parameters th and r are equal to h

1
3 for all five convolution operators.
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Fig. 10 An illustration of the mean curvature values (from −0.11 in
violet to 0.29 in yellow) on a Goursat shape using our discretization of
the Laplace–Beltrami operator (HL ?

h
). We used h = 0.17, th = 1.02 and

ball of radius 5 for the Integral Invariant normal estimator.

8.3 Mean curvature estimation

We motivate here our strong consistency setting by com-
puting the mean curvature through our discretization. It is
known that the mean curvature vector of the underlying sur-
face can be directly computed using the operator:

HN = ∆ I

where I is the embedding of the structure (i.e. its real coordi-
nates) and N the unit normal. We use this relation to compute
the mean curvature on a Goursat shape (see Fig. 10) of equa-
tion

0.03(x4 + y4 + z4)−2(x2 + y2 + z2)−8 = 0

and compute the l∞ error between the estimated curvature
and the real one. Two Laplace–Beltrami operators are used:
Lh and LR−LOC lead to two mean curvature estimators
called HL ?

h
and HLR−LOC respectively. We also compare our

method with integral invariant [11] (HII) and Monge Form
via Jet Fitting [9] (HJET ). For all three HJET , HII and HL ?

h
,

we set the convolution radius to h
1
3 . Results can be found in

Fig. 11. HLR−LOC does not converge because LR−LOC does
not either. The other three HJET , HII and HL ?

h
converge.

HL ?
h

is slightly better than HII whereas both are better than
HJET .

0.1 1

0.1

1

u(x,y,z) = z

h

er
ro

r(
px

)

HJET HII
HLR−LOC HL ?

h

Fig. 11 Graph of l∞ error for the mean curvature estimation. Estima-
tion using Jet Fitting is in green ( ), using integral invariant in or-
ange ( ), using LR−LOC in magenta ( ) and using Lh in purple
( ).

9 Conclusion and future works

We have adapted the discretization of the Laplace–Beltrami
operator proposed by Belkin et al. [5] to our digital surface.
We have proved strong consistency (i.e. pointwise conver-
gence or convergence in the l∞ norm) of our operator in
Theorem 5 and gave convergence speed for the functional
Laplacian approximation in Lemma 1 and Lemma 2. We
have given associated empirical tests for various values of
the exponent α of th = hα . We also compared our approach
with existing discretizations to confirm that none of them
achieves pointwise convergence.

A first immediate future work would be to compute the
convergence speed of the functional Laplace operator approx-
imation of Belkin et al. in Theorem 1. Next, we would like to
reduce the complexity of the algorithm (which is O(n2) if n is
the number of surfels as we compute a convolution between
a Gaussian function and differences of functions). A natural
way is to look at cuts of the Gaussian function. In fact it is
known that almost all the mass under a Gaussian is contained
within a few multiple of σ (the standard deviation) typically
two or three times σ . We have empirical results showing con-
sistency of the Laplace operator when we cut the Gaussian
but the theoretical proof is still an open problem. In addition
to reducing the computational cost of the convolution, cutting
the Gaussian implies a sparse matrix representation of the
Laplace operator when considered as a linear operator. Spar-
sity is an interesting property in many geometry processing
applications using linear system solvers or eigen decompo-
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sition of operators containing the Laplacian. We would also
like to investigate an adaptation of [2] to our digital surfaces,
where we could use the normal estimation to compute dis-
crete inner products on k-forms and obtain better results than
the straightforward implementation.
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Appendices
Lemma 4 Let a,b,c ∈ R, if a≤ 0 and c≥ 0, then

a≤ b≤ c =⇒ |b| ≤max{|a|,c} .

Proof We split the proof into two cases depending on
the sign of b. If b ≤ 0, then |b| ≤ |a| and therefore
|b| ≤ max{|a|,c}. If b > 0, then |b| = b ≤ |c| = c as c ≥ 0
and therefore |b| ≤ max{|a|,c} which concludes the
proof. ut

Lemma 5 Let x ∈ R,

e
x
2 −1≤ x ⇐⇒ 0≤ x≤−1

2

[
2W−1

(
− 1

2
√

e

)
+1
]
≈ 2.51286
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Fig. 12 Plot of the two principal branches of the Lambert W -function.
W0 is in orange, and W−1 in green. The two branches join at the point
(−1/e,−1).

where W−1 is the lower branch of Lambert W-function (also
called omega function or product logarithms).

Proof We use the Lambert W -function to prove this lemma.
In-depth study of this object can be found in the book of Cor-
less, Gonnet, Hare and Knuth [13]. The function is defined
as the multivalued function W that satisfies

z =W (z)eW (z)

for z ∈ C. It is equivalently the inverse function of f (w) =
wew. The graph of the Lambert W -function in the real num-
bers is drawn in Fig. 12. The function has two real branches
W0 and W−1 in the interval −1/e < x < 0 which join at
x = −1/e. This means that the equation x = wew has two
solutions in this interval (one per branch). We will use both
branches: W−1 which is decreasing in its interval, and W0
which is increasing in this interval. We also use the identity
W (xex) = x. We do a proof by equivalence of inequalities:

e
x
2 −1≤ x

⇐⇒ e
x
2 ≤ x+1

⇐⇒ − (x+1)e−
x
2 ≤−1

⇐⇒ − (
x
2
+

1
2
)e−(

x
2+

1
2 ) ≤− 1

2
√

e
. by multiplying by 1

2
√

e

Putting X =− 1
2 (x+1) we have

X ≥W−1(−
1

2
√

e
) and X ≤W0(−

1
2
√

e
)

which leads to

−(2W0(−
1

2
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e
)+1) = 0≤ x≤−(2W−1(−

1
2
√

e
)+1)≈ 2.51286

as W0(− 1
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e ) =
1
2 . ut
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