Exact Sampling of Determinantal Point Processes without Eigendecomposition - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Probability Année : 2020

Exact Sampling of Determinantal Point Processes without Eigendecomposition

Résumé

Determinantal point processes (DPPs) enable the modeling of repulsion: they provide diverse sets of points. The repulsion is encoded in a kernel $K$ that can be seen as a matrix storing the similarity between points. The diversity comes from the fact that the inclusion probability of a subset is equal to the determinant of a submatrice of $K$. The exact algorithm to sample DPPs uses the spectral decomposition of $K$, a computation that becomes costly when dealing with a high number of points. Here, we present an alternative exact algorithm in the discrete setting that avoids the eigenvalues and the eigenvectors computation. Instead, it relies on Cholesky decompositions. This is a two steps strategy: first, it samples a Bernoulli point process with an appropriate distribution, then it samples the target DPP distribution through a thinning procedure. Not only is the method used here innovative, but this algorithm can be competitive with the original algorithm or even faster for some applications specified below.
Fichier principal
Vignette du fichier
Manuscript.pdf (1.27 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01710266 , version 1 (22-02-2018)
hal-01710266 , version 2 (16-05-2018)
hal-01710266 , version 3 (30-10-2018)
hal-01710266 , version 4 (24-07-2019)
hal-01710266 , version 5 (16-05-2020)
hal-01710266 , version 6 (17-02-2021)

Identifiants

Citer

Claire Launay, Bruno Galerne, Agnès Desolneux. Exact Sampling of Determinantal Point Processes without Eigendecomposition. Journal of Applied Probability, 2020, 57 (4), pp.1198-1221. ⟨10.1017/jpr.2020.56⟩. ⟨hal-01710266v5⟩
708 Consultations
918 Téléchargements

Altmetric

Partager

More