Exact Sampling of Determinantal Point Processes without Eigendecomposition - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Exact Sampling of Determinantal Point Processes without Eigendecomposition

Résumé

Determinantal point processes (DPPs) enable the modelling of repulsion: they provide diverse sets of points. This repulsion is encoded in a kernel K that we can see as a matrix storing the similarity between points. The usual algorithm to sample DPPs is exact but it uses the spectral decomposition of K, a computation that becomes costly when dealing with a high number of points. Here, we present an alternative exact algorithm that avoids the eigenvalues and the eigenvectors computation and that is, for some applications, faster than the original algorithm.
Fichier principal
Vignette du fichier
Exact_sampling_of_DPP_without_eigendecomposition.pdf (579.59 Ko) Télécharger le fichier
gaussian_mixture_20_BPP.jpg (25.4 Ko) Télécharger le fichier
gaussian_mixture_20_DPP_BPP35.jpg (25.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01710266 , version 1 (22-02-2018)
hal-01710266 , version 2 (16-05-2018)
hal-01710266 , version 3 (30-10-2018)
hal-01710266 , version 4 (24-07-2019)
hal-01710266 , version 5 (16-05-2020)
hal-01710266 , version 6 (17-02-2021)

Identifiants

Citer

Claire Launay, Bruno Galerne, Agnès Desolneux. Exact Sampling of Determinantal Point Processes without Eigendecomposition. 2018. ⟨hal-01710266v2⟩
708 Consultations
918 Téléchargements

Altmetric

Partager

More