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Abstract
Determinantal point processes (DPPs) enable the mod-
elling of repulsion: they provide diverse sets of points.
This repulsion is encoded in a kernel K that we can
see as a matrix storing the similarity between points.
The usual algorithm to sample DPPs is exact but it
uses the spectral decomposition of K, a computation
that becomes costly when dealing with a high number
of points. Here, we present an alternative exact algo-
rithm that avoids the eigenvalues and the eigenvectors
computation and that is, for some applications, faster
than the original algorithm.

1 Introduction
Determinantal point processes (DPPs) are processes
that capture negative correlations. The more similar
two points are, the less likely they are to be sampled
simultaneously. Then, DPPs tend to create sets of
diverse points. They naturally arise in random matrix
theory [8]. Ever since [13], these processes have become
more and more popular in machine learning, thanks to
their ability to draw subsamples that account for the in-
ner diversity of the datasets. This property is useful for
many applications, such as summarizing documents [4],
generating diverse subsamples of datasets to improve a
stochastic gradient descent [21], selecting appropriate
batches of experiments to fasten a Bayesian optimi-
sation problem [11] or modelling a natural repulsive
phenomenon like the repartition of trees in a forest [15].
Several issues are under study, as learning DPPs, for
instance through maximum likelihood estimation [14],
or sampling these processes. Here we will focus on the
sampling question and we will only deal with discrete
and finite determinantal point processes, particularly
adapted to machine learning groundsets. A determi-
nantal process Y is defined by its matrix K and the
repulsion comes from the fact that the probabilities of
inclusion of the process are related to the determinant
of K.

The main algorithm to sample DPPs is a spectral
algorithm [9] : it uses the eigendecomposition of K to
sample Y . It is exact and in general quite fast. Yet,
the computation of the eigenvalues of K may be very
costly when dealing with large-scale data. That is why
numerous algorithms has been conceived to bypass this
issue. Some authors tried to design a sampling algo-
rithm adapted to specific DPPs. For instance, it is
possible to speed the initial algorithm up by assuming
that K has a bounded rank [12, 5]. Then these authors
use a dual representation so that almost all the com-
putations in the spectral algorithm are reduced. One
can also deal with another class of DPPs associated to
kernels K that can be decomposed in a sum of tractable
matrices [4]. In this case, the sampling is much faster
and they study the inference on these classes of DPPs.
At last, Propp and Wilson [18] use Markov chains and
the theory of coupling from the past to sample exactly
particular DPPs : uniform spanning trees. Another
type of sampling algorithms is the class of approximate
methods. Some authors approach the original DPP
with a low rank matrix to be able to apply the previ-
ous dual representation, either by random projections
[13, 7] or thanks to the Nystrom approximation [1].
The Markov Chain Monte Carlo methods offer also
nice approximate sampling algorithms for DPPs. It is
possible to obtain satisfying convergence guarantees
for particular DPPs (for instance, k-DPPs with fixed
cardinal [3, 16] or projection DPPs [6]), and even a
polynomial-time sampling algorithm for general DPPs
[17], thus correcting the initial work of [10].

As one can see, except the initial spectral algorithm,
no algorithm allows for the exact sampling of a generic
DPP. The main contribution of this paper is to intro-
duce such a general algorithm that does not involve
kernel eigndecomposition. The proposed algorithm is
a sequential thinning procedure that relies on two new
results: (i) the explicit formulation of the marginals
of any determinantal point process and (ii) the deriva-
tion of an adapted Bernoulli point process containing
a given DPP.

The rest of the paper is organized as follows : in
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the next section, we present the general framework of
determinantal point processes and the classic spectral
algorithm. In Section 3, we provide an explicit formula-
tion of the general marginals and pointwise conditional
probabilities of any determinantal point process, from
its kernel K. Thanks to these formulations, we develop
a “naive”, exact but slow, sequential algorithm. In
Section 4, using the sequential thinning theory, we in-
troduce a new exact sampling algorithm for DPPs and
in Section 5, our experiments show that for some appli-
cations, this algorithm is even faster than the spectral
algorithm. Finally, we discuss and conclude around
this algorithm.

2 DPPs and their Usual Sam-
pling Method

In all the paper, we will use the following notations.
Let’s consider a discrete finite set Y = {1, . . . , N}.
We will denote by MA×B, ∀A,B ⊂ Y, the matrix
(M(i, j))(i,j)∈A×B and the short notation MA = MA×A.
Suppose that K is a Hermitian positive semi-definite
matrix of size N ×N , indexed by the elements of Y , so
that any of its eigenvalues is in [0, 1]. A subset Y ⊂ Y
is said to follow a DPP distribution of kernel K if,
∀A ⊂ Y, P (A ⊂ Y ) = det(KA).

The spectral algorithm 1 is standard to draw a DPP.
It relies on the eigendecompostition of its kernel K. It
was first introduced by [9] and is also presented in a
more detailed way in [20, 13, 15]. It consists in first
randomly selecting a set of active eigenvectors and then
drawing sequentially the associated points.

This algorithm is exact and relatively fast. Neverthe-
less, when the size of Y grows, the matrix K does too
and computing its eigendecomposition becomes heavy.
We will see in the numerical results that this first step
represents in general more than 90% of the running
time of the spectral algorithm. We show below that any
DPP can be exactly sampled by a concurrent algorithm
that does not require the eigendecomposition of K.

3 Sequential Sampling Algo-
rithm

3.1 Explicit General Marginal of a
DPP

To develop our first “naive” sequential sampling al-
gorithm, we need to explicit the marginals and the
conditional probabilities of any DPP. We show below
that they can easily be formulated from the associ-
ated kernel matrix K. ∀A ⊂ Y, we denote IA the

Algorithm 1 The spectral sampling algorithm

1. Eigendecomposition (λj , vj) of the matrix K.
2. Selection of active frequencies: Draw a Bernoulli

process X ∈ {0, 1}N with parameter (λj)j .
Denote by n the number of active frequencies,
{X = 1} = {j1, . . . , jn}. Define the matrix V =(
vj1 vj2 · · · vjn

)
∈ RN×n and denote by Vk ∈ Rn

the k-th line of V , for k ∈ Y.
3. Return the sequence Y = {y1, y2, . . . , yn} sequen-

tially drawn as shown:
For l = 1 to n

• Sample a point yl ∈ Y from the discrete
distribution,

plk = 1
n− l + 1

(
‖Vk‖2 −

l−1∑
m=1
|〈Vk, em〉|2

)
,∀k ∈ Y.

• If l < n, define el = wl

‖wl‖ ∈ Rn where
wl = Vyl

−
∑l−1
m=1〈Vyl

, em〉em.

N × Nmatrix with 1 on its diagonal coefficients in-
dexed by the elements of A, and 0 anywhere else. We
also denote A the complementary set of A in Y.

Proposition 3.1 (Distribution of a DPP). For A ⊂ Y,
P(Y = A) = (−1)|A| det(IA −K).

Proof. We have that P(A ⊂ Y ) =
∑
B⊃A

P(Y = B).

Thanks to the Möbius inversion formula, for all A ⊂ Y,

P(Y = A) =
∑
B⊃A

(−1)|B\A|P(B ⊂ Y )

= (−1)|A|
∑
B⊃A

(−1)|B| det(KB)

= (−1)|A|
∑
B⊃A

det((−K)B)

= (−1)|A| det(IA −K),

where for the last step we used Theorem 2.1 of [13].

We have by definition P(A ⊂ Y ) = det(KA) for all A,
and as a consequence P(B ∩ Y = ∅) = det((I −K)B)
for all B. Moreover, when dealing with a L-ensemble L
rather than with the kernel K, which is possible as soon
as I −K is invertible, one can formulate the explicit
marginals of the DPP [13]. The next proposition gives
for any DPP the expression of the general marginal
P(A ⊂ Y,B ∩ Y = ∅), for A,B disjoint subsets of Y,
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using K. In what follows, HB denotes the symmetric
positive semi-definite matrix

HB = K +KY×B((I −K)B)−1KB×Y .

Theorem 3.1 (General Marginal of a DPP). Let
A,B ⊂ Y be disjoint. If P(B ∩ Y = ∅) = det((I −
K)B) = 0, then P(A ⊂ Y,B ∩ Y = ∅) = 0. Otherwise,
the matrix (I −K)B is invertible and

P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B) det(HB
A ).

Proof. Let A,B ⊂ Y disjoint such that P(B∩Y = ∅) 6=
0. Using the previous proposition,

P(A ⊂ Y,B ∩ Y = ∅) =
∑

A⊂C⊂B

P(Y = C)

=
∑

A⊂C⊂B

(−1)|C| det(IC −K).

For any C such that A ⊂ C ⊂ B, one has B ⊂ C.
Hence, by reordering the matrix coefficients, and using
the Schur’s determinant formula,

det(IC −K) = det
(

(IC −K)B (IC −K)B×B
(IC −K)B×B (IC −K)B

)

= det
(

(I −K)B −KB×B
−KB×B (IC −K)B

)
= det((I −K)B) det((IC −HB)B).

Thus, P(A ⊂ Y,B ∩ Y = ∅)

= det((I −K)B)
∑

A⊂C⊂B

(−1)|C| det((IC −HB)B).

According to [13], for all A ⊂ B,∑
A⊂C⊂B

det(−HB
C ) = det((IA −H

B)B).

Then, Möbius inversion formula ensures that, ∀A ⊂ B,∑
A⊂C⊂B

(−1)|C\A| det((IC −HB)B) = det(−HB
A )

= (−1)|A| det(HB
A ).

Hence, P(A ⊂ Y,B∩Y = ∅) = det((I−K)B) det(HB
A ).

Thanks to this formula, we can explicitely formulate
the pointwise conditional probabilities of any DPP.

Corollary 3.1 (Pointwise conditional probabilities of
a DPP). Let A,B ⊂ Y be two disjoint sets such that
P(A ⊂ Y, B ∩ Y = ∅) 6= 0, and let k /∈ A ∪B. Then,

P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) =
det(HB

A∪{k})
det(HB

A )
= HB(k, k)−HB

{k}×A(HB
A )−1HB

A×{k}.

(1)

This is a straightforward application of the previous
expression and the Schur determinant formula. Now,
we have all the necessary expressions for the sequential
sampling of a DPP.

3.2 Sequential Sampling Algorithm of
a DPP

This sequential sampling algorithm simply consists
in using Formula (1) and updating at each step the
pointwise conditional probability, knowing the previous
selected points. It is presented in Algorithm 2.

Algorithm 2 Sequential sampling of a DPP with ker-
nel K
• Initialization: A← ∅, B ← ∅.
• For k = 1 to N :

1. Compute HB
A∪{k}

= KA∪{k} +KA∪{k}×B((I −K)B)−1KB×A∪{k}.
2. Compute the probability pk given by

pk = P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅)
= HB(k, k)−HB

{k}×A(HB
A )−1HB

A×{k}.

3. With probability pk, k is included, A ← A ∪ {k},
otherwise B ← B ∪ {k}.

• Return A.

The main operations of Algorithm 2 solve linear
systems (I − K)−1

B . Fortunately, here we can use
the Cholesky factorization, which alleviates the com-
putational cost. Suppose that LB is the Cholesky
factorization of (I − K)B, that is, LB is a lower
triangular matrix such that (I − K)B = LB(LB)∗
(where (LB)∗ is the conjugate transpose of LB). Then,
denoting JB = (LB)−1KB×A∪{k}, one simply has
HB
A∪{k} = KA∪{k} + (JB)∗JB .
Besides, at each iteration, the Cholesky decomposi-

tion LB∪{k} of (I−K)B∪{k} can be computed from LB

using standard Cholesky update operations, involving
the resolution of only one linear system of size |B|.

In comparison with the spectral sampling algorithm
of [9], one requires computations for each site of Y,

3



and not just one for each sampled point of Y . We will
see indeed that it is not really competitive. However,
in what follows, we show that we can significantly
decrease the number of steps and the running time of
Algorithm 2: we propose to simulate a point process
X containing Y , the desired DPP, and then make a
sequential selection of the points of X to obtain Y .
This procedure can be called a sequential thinning.

4 Sequential Thinning Algo-
rithm

4.1 General framework of sequential
thinning

We attempt at describing a general sufficient condition
for which a target point process Y - it will be a deter-
minantal point process in our case - can be obtained
as a sequential thinning of a point process X. This is
a discrete adaptation of the thinning procedure on the
continuous line of [19]. To do this, we will consider a
coupling (X,Z) such that Z ⊂ X is a random selection
of the points of X and has the same distribution as Y .
From this point onwards, we identify the set X with the
vector of size N with 1 in the place of the elements of X
and 0 elsewhere, and we use the notation X1:k to denote
the vector (X1, . . . , Xk). We want to define the ran-
dom vector (X1, Z1, X2, Z2, . . . , XN , ZN ) ∈ R2N with
the following conditional distributions for Xk and Zk:

P(Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)
= P(Xk = 1|X1:k−1 = x1:k−1)

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k = x1:k)

= 1{xk=1}
P(Yk = 1|Y1:k−1 = z1:k−1)
P(Xk = 1|X1:k−1 = x1:k−1) .

(2)

Proposition 4.1 (Sequential thinning). Assume that
X,Y, Z are discrete point processes on Y that satisfy
for all k ∈ {1, . . . , N}, and all z, x ∈ {0, 1}N ,

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0
implies

P(Yk = 1|Y1:k−1 = z1:k−1)
≤ P(Xk = 1|X1:k−1 = x1:k−1).

(3)
Then, it is possible to choose (X,Z) in such a way that
(2) is satisfied. In that case, we moreover have that
Z is a thinning of X (Z ⊂ X), and Z has the same
distribution as Y .

Proof. Let us first discuss the definition of the cou-
pling (X,Z). Thanks to the conditions (3), the ra-

tios defining the conditional probabilities of Equa-
tion (2) are ensured to be between 0 and 1 (if the
conditional events have non zero probabilities). Hence
the conditional probabilities permits to construct
sequentially the distribution of the random vector
(X1, Z1, X2, Z2, . . . , XN , ZN ) of length 2N , and thus
the coupling is well-defined. Besides, clearly, one has
Z ⊂ X.

Let us now show that Z has the same distribution
as Y . By complementarity of the events {Zk = 0}
and {Zk = 1}, it is enough to show that for all
k ∈ {1, . . . , N}, and z1, . . . , zk−1 such that P(Z1:k−1 =
z1:k−1) > 0,

P(Zk = 1|Z1:k−1 = z1:k−1)
= P(Yk = 1|Y1:k−1 = z1:k−1).

(4)

Let k ∈ {1, . . . , N}, (z1:k−1, x1:k−1) ∈ {0, 1}2(k−1),
such that P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0.
Since Z ⊂ X, {Zk = 1} = {Zk = 1, Xk = 1}. Suppose
first that P(Xk = 1|X1 = x1, . . . , Xk−1 = xk−1) 6= 0.

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)
=P(Zk = 1, Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

=P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1, Xk = 1)
×P(Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

= P(Yk = 1|Y1:k−1 = z1:k−1), by Equations (2).

If P(Xk = 1|X1:k−1 = x1:k−1) = 0, then
P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) = 0
and thanks to (3), P(Yk = 1|Y1:k = z1:k) = 0. Hence
the identity,

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)
= P(Yk = 1|Y1:k−1 = z1:k−1)

is always valid. Since the values x1, . . . , xk−1 do not
influence this conditional probability, one can con-
clude that given (Z1, . . . , Zk−1), Zk is independent of
X1, . . . , Xk−1, and thus (4) is true.

The characterization of the thinning defined here
allows both extreme cases: there can be no pre-selection
of points by X, meaning that X = Y and that the
DPP Y is sampled by the usual sequential sampling
algorithm, or there can be no thinning at all, meaning
that the final process Y can be equal to the dominating
process X. Regarding sampling acceleration, a good
dominating process X must be sampled fastly and with
a cardinal as close as possible to |Y |.

4.2 Sequential thinning algorithm for
DPPs

In this section, we use the sequential thinning approach,
where Y is a DPP of kernel K on the groundset Y,
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and X is a Bernoulli point process (BPP). BPPs are
the fastest and easiest point processes to sample. X
is a Bernoulli process if the components of the vector
(X1, . . . , XN ) are independent. Its distribution is de-
termined by the probability of occurrence of each point
k, that we denote by qk = P(Xk = 1). Thanks to the
independence property the condition (3) simplifies to

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0 implies
P(Yk = 1|Y1:k−1 = z1:k−1) ≤ qk.

The second inequality does not depend on x, hence it
must be valid as soon as there exists a vector x such
that P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0, that is,
as soon as P(Z1:k−1 = z1:k−1) > 0. Since we want Z
to have the same distribution as Y , we finally obtain
the conditions

∀y ∈ {0, 1}N , P(Y1:k−1 = y1:k−1) > 0 implies
P(Yk = 1|Y1:k−1 = y1:k−1) ≤ qk.

Ideally, we want the qk to be as small as possible to
ensure that the cardinal of X is as small as possible.
So we look for the optimal values q∗k, that is,

q∗k = max
(y1:k−1) ∈ {0, 1}k−1 s.t.
P(Y1:k−1 = y1:k−1) > 0

P(Yk = 1|Y1:k−1 = y1:k−1).

A priori, computing q∗k would raise combinatorial issues.
However, thanks to the repulsive nature of DPPs, these
conditional probabilities decrease for inclusion.

Proposition 4.2. Let A,B ⊂ Y be two disjoint sets
such that P(A ⊂ Y, B ∩ Y = ∅) 6= 0, and let k 6= l ∈
A ∪B. If P(A ∪ {l} ⊂ Y, B ∩ Y = ∅) > 0, then

P({k} ⊂ Y |A ∪ {l} ⊂ Y, B ∩ Y = ∅)
≤ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).

If P(A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) > 0, then

P({k} ⊂ Y |A ⊂ Y, (B ∪ {l}) ∩ Y = ∅)
≥ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅),

Consequently, for all k ∈ Y, if y1:k−1 ≤ z1:k−1 (where
≤ stands for the inclusion partial order) are two states
for Y1:k−1, then

P(Yk = 1|Y1:k−1 = y1:k−1) ≥ P(Yk = 1|Y1:k−1 = z1:k−1).

In particular, ∀k ∈ {1, . . . , N}, if P(Y1:k−1 =
01:k−1) > 0 then

q∗k = P(Yk = 1|Y1:k−1 = 01:k−1)
=K(k, k) +Kk×{1:k−1}((I −K){1:k−1})−1K{1:k−1}×k.

Proof. Recall that by Proposition 3.1, P ({k} ⊂ Y |A ⊂
Y, B ∩ Y = ∅) = HB(k, k) −HB

{k}×A(HB
A )−1HB

A×{k}.
Let l /∈ A∪B ∪{k}. Consider LB the Cholesky decom-
position of the matrix HB obtained with the following
ordering the coefficients: A, l, the remaining coeffi-
cients of Y \ (A ∪ {l}). Then, the restriction LBA is
the Cholesky decomposition (of the reordered) HB

A and
thus

HB
{k}×A(HB

A )−1HB
A×{k}= HB

{k}×A(LBA(LBA)∗)−1HB
A×{k}

= ‖(LBA)−1HB
A×{k}‖

2
2.

Similarly,

HB
{k}×A∪{l}(HB

A∪{l})−1HB
A∪{l}×{k}

= ‖(LBA∪{l})−1HB
A∪{l}×{k}‖

2
2.

Now remark that solving the triangular system with b =
(LBA∪{l})−1HB

A∪{l}×{k} amounts solving the triangular
system with (LBA)−1HB

A×{k} and an additional line at
the bottom. Hence, one has ‖b‖2

2 ≥ ‖(LBA)−1HB
A×{k}‖

2
2.

Consequently, provided that P(A ∪ {l} ⊂ Y, B ∩ Y =
∅) > 0,

P({k} ⊂ Y |A ∪ {l} ⊂ Y, B ∩ Y = ∅)
≤ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).

The second inequality is obtained by complementarity
in applying the above inequality to the DPP Y with
B ∪ {l} ⊂ Y and A ∩ Y = ∅.

As a consequence, an admissible choice for the dis-
tribution of the Bernoulli process is

qk =


P(Yk = 1|Y1:k−1 = 01:k−1)

if P(Y1:k−1 = 01:k−1) > 0,
1 otherwise.

(5)

Remark that if for some index k, P(Y1:k−1 =
01:k−1) > 0 is not satisfied, then for all the subsequent
indexes l ≥ k, ql = 1, that is the Bernoulli process
becomes degenerate and contains all the points after
k. In the remaining of this section X will denote a
Bernoulli process with probabilities (qk) given by (5).

As discussed in the previous section, in addition to
being easily simulated, one would like the cardinal of
X to be close to the one of Y . The next proposition
shows that this is verified if all the eigenvalues of K
are strictly less than 1.

Proposition 4.3 (|X| is proportional to |Y |). Sup-
pose that P (Y = ∅) = det(I −K) > 0 and denote by
λmax(K) ∈ [0, 1) the maximal eigenvalue of K. Then,

E(|X|) ≤
(

1 + λmax(K)
2 (1− λmax(K))

)
E(|Y |). (6)
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Proof. By Proposition 3.1, qk = K(k, k) +
K{k}×{1:k−1}((I −K){1:k−1})−1K{1:k−1}×{k}. Since

‖((I −K){1:k−1})−1‖Mk−1(C) = 1
1−λmax(K{1:k−1})

and λmax(K{1:k−1}) ≤ λmax(K) one has,

K{k}×{1:k−1}((I −K){1:k−1})−1K{1:k−1}×{k}

≤ 1
1−λmax(K)‖K{1:k−1}×{k}‖2

2.

Summing all these inequalities gives

E(|X|) ≤ Tr(K) + 1
1−λmax(K)

N∑
k=1
‖K{1:k−1}×{k}‖2

2.

The last term is the Frobenius norm of the up-
per triangular part of K, hence in can be bounded
by 1

2‖K‖
2
F = 1

2
∑N
j=1 λj(K)2. Since λj(K)2 ≤

λj(K)λmax(K),
∑N
j=1 λj(K)2 ≤ λmax(K) Tr(K) =

λmax(K)E(|Y |).

Algorithm 3 sampling of a DPP by sequential thin-
ning of an adapted Bernoulli process

1. Compute sequentially the probabilities P(Xk =
1) = qk of the Bernoulli process X:

• Compute the Cholesky decomposition L of the
matrix I −K.

• For k = 1 to N :
– If qk−1 < 1 (with the convention q0 = 0),

qk = K(k, k) + ‖L−1
{1,...,k−1}K{1,...,k−1}×{k}‖2

2

– Else, qk = 1.

2. Draw the Bernoulli process X. Let m = |X| and
k1 < k2 < · · · < km be the points of X.

3. Apply the sequential thinning to the points of X:

• Attempt to add sequentially each point of X to Y :
Initialize A← ∅ and B ← {1, . . . , k1 − 1}
For j = 1 to m

– If j > 1, B ← B ∪ {kj−1 + 1, . . . , kj − 1}
– Compute the conditional probability pkj =

P({kj} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) (see Algo-
rithm 2 for details).

– Add kj to A with probability pkj

qkj
or to B

otherwise.
• Return A.

Algorithm 3 presents the different steps of our sequen-
tial thinning algorithm to sample a DPP of kernel K.
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Figure 1: Running times of the 3 studied algorithms
in function of the size of the groundset. The number
of sampled points is constant (20).

Step 1 of Algorithm 3 is a preprocess that must be done
only once for a given matrix K. Step 2 is trivial and
fast: see Table 1 for more details on the running times.
The critical point is to sequentially compute the condi-
tional probabilities pk = P({k} ⊂ Y |A ⊂ Y, B∩Y = ∅)
for each point of X. Recall that in Algorithm 2 we
use a Cholesky decomposition of the matrix (I −K)B
which is updated by adding a line each time a point is
added in B. Here, the inverse of the matrix (I −K)B
is only needed when visiting a point k ∈ X, so one
updates the Cholesky decomposition by block, where
the new block corresponds to all indices added to B in
one iteration.

Now, we will show experimentally that this algorithm
enables to speed up the sampling of DPPs for some
applications.

5 Experiments

5.1 Global and Detailed Running
Times

In following experiments, we ran the algorithms on a
laptop HP Intel(R) Core(TM) i7-6600U CPU and the
software Matlab. First, let us compare the sequential
thinning algorithm 3 presented here with the two main
sampling algorithms: the classic spectral algorithm
1 and the “naive” sequential algorithm 2. Figure 1
presents the running times of the three algorithms
as a function of the total number of points of the
groundset. Here, we have chosen a common DPP
kernel, a discrete adaptation of the Ginibre kernel.
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Figure 2: Running times in logscale of the spectral and the sequential thinning algorithms as a function of the
size of the groundset |Y|, using 3 “classic” DPP kernels. From left to right: a random kernel, a Ginibre kernel,
a kernel based on the similarity between patches of an image and a projection kernel. On the first row, the
expectation of the number of points is set to 4% of the |Y| and on the second row, E(|Y |) is constant, equal to 20.

The expected cardinal E(|Y |) is constant, equal to
20. As foreseen, the sequential algorithm is far slower
than the two others. Whatever the chosen kernel and
the expected cardinal of the DPP, this algorithm is
not competitive. Note that the sequential thinning
algorithm uses this sequential method after sampling
the particular Bernoulli process. But we will see that
this first dominating step can be very efficient and lead
to a fast algorithm.

Now, we can compare the spectral and the sequen-
tial thinning algorithms. We present in Figure 2 the
running times of these algorithms as a function of the
size of |Y| in several situations. The first row shows
the running times when the expectation of the number
of sampled point E(|Y |) is equal to 4% of the size of Y :
it increases as the total number of points increases. In
this case, we can see that whatever the chosen kernel,
the spectral algorithm is faster. On the second row,
as |Y| grows, E(|Y |) is fixed to 20. Note that in this
case the sequential thinning algorithm is competitive
with the spectral algorithm. It is faster when using
a random kernel and seems equivalent when using a
Ginibre kernel or our third example of DPP kernel
gathering similarities between the patches of an image.

The projection kernel (when the eigenvalues of K
are either 0 or 1) is, as expected, a complicated case:
Figure 2 (bottom, right) shows that our algorithm is
not competitive when using this kernel. The main
reason is that the cardinal of the dominating Bernoulli
process X can be very large. In this case, the bound
(6) isn’t valid (and even tends to infinity) as λmax = 1,
and we can quickly reach the degenerated case when,

Table 1: Mean of the detailed running times of the
sequential, spectral and sequential thinning algorithms
with |Y| ∈ [100, 10000] and a Ginibre kernel

Algorithms Steps Expected cardinal
4% of |Y| 20

Sequential Matrix inversion 85.31% 85.38%
Choleski computation 13.37% 12.82%

Spectral Eigendecomposition 91.49% 98.82%
Sequential sampling 8.15% 0.783%

Sequential thinning Preprocess to define q 5.10% 18.40%
Sequential sampling 94.86% 81.55%

after some index k, all the probability ql, l ≥ k, are
equal to 1. Then the second part of the sequential
thinning algorithm -the sequential sampling part- is
done on a larger set which significantly increases the
running time of our algorithm.

Thus, when the application needs to sample a large
number of points, our algorithm is not competitive.
Yet, when the size of the groundset is high and the
number of points to sample is bounded, the sequential
sampling is very competitive. Observe Figure 3: except
when using a projection kernel, the sequential thinning
algorithm is faster under a certain expected number
of points -which depends on the kernel. For instance,
when the kernel is randomly defined and the range of
desired points to sample is below 200, it is relevant
to use this algorithm. These requirements are quite
common, for instance to summarize a text, to work
only with representing points of clusters or to denoise
an image with a patch-based method. See the next
subsection for examples of these applications.

Table 1 presents the individual weight of the main
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Figure 3: Running times of the spectral and sequential thinning algorithms in function of the expectation of the
cardinal of the process. From left to right, using a random kernel, the Ginibre kernel, a kernel based on the
similarity between patches of an image and a projection kernel. The size of the groundset is fixed to 5000 in all
examples.

steps of the three algorithms. Concerning the sequen-
tial algorithm, logically, the matrix inversion is the
heaviest part taking 85.31% of the global running time.
These proportions remain the same when the number
of datapoints grows. The principal operation of the
spectral algorithm is by far the eigendecomposition of
the matrix K, counting for at least 90% of the global
running time, when the expectation of the number of
points to sample evolves with the size of Y . Finally, the
sequential sampling is the heaviest step of the sequen-
tial thinning algorithm. We have already mentionned
that the thinning is very fast and that it produces a
point process with a cardinal as close as possible to
the final DPP. When the expected cardinal is low, the
number of selected points by the thinning process is
low too so the sequential sampling part stay bounded
(81.55% when the expected cardinal E(|Y |) is constant).
On the contrary, when E(|Y |) grows, the number of
points selected by the dominated process rises as well
so the running time of this step is growing (with a mean
of 94.86%). As seen before, the global running time
of the sequential thinning algorithm really depends on
how good the domination is.

5.2 Application
We have seen that the sequential thinning algorithm
is particularly efficient to sample a bounded number
of points from a large groundset. The search for a
subset of representative points from a large number
of data gathered in clusters is a typical application of
this framework. For instance, the initialization of a
k-means algorithm, where you are looking for a first
guess for the centroids of the clusters, needs to be fast
and accurate enough because the results depends on
it. Indeed, Kang [10] and Agarwal et al. [2] propose to
use DPPs to initialize the k-means algorithm and using
Algorithm 3 presented here could fasten this first step.
Let suppose we have 5000 points gathered in 20 clusters,
as shown in Figure 4. Then, it possible to generate a

Figure 4: On the left, sampling of a DPP thanks to the
sequential thinning algorithm (in green, the Bernoulli
process of the first step, in red, the obtained DPP
included in the Bernoulli process). On the right, an iid
uniform point process. Samplings are on a dataset of
5000 points, with an expected cardinal equal to 20.

DPP kernel penalizing low distances between points
with an expected cardinal equal to 20. Thanks to this
DPP model, we can sample initialization points in a
more repulsive way than by using an iid uniform point
process with the same parameter p = 20/5000 for all
points. This improves the accuracy of the k-means
algorithm, given by the distorsion measure which is the
mean square distance of the points to the centroid of
their final cluster. After the initialization by the DPP
of Figure 4, the final distorsion is 24.5% lower than
after a random initialization. An initialization using
DPPs enables to be closer to the real solution and here,
using our algorithm doesn’t cost too much.

6 Discussion
In this paper, we proposed a new sampling algorithm
adapted to general determinantal point processs, which
doesn’t use the spectral decomposition of the kernel
and is exact. It is an algorithm in two phases. The first
one samples a Bernoulli process whose distribution is
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adapted to that of the targeted DPP. It is a fast and
efficient step that reduces the initial number of points
of the groundset. We know that if (I−K) is invertible,
the expectation of the cardinal of the Bernoulli process
is proportional to the expectation of the cardinal of the
DPP. Moreover, even if this first sampling procedure
may become degenerate (as soon as there is k such that
P(Xk = 1) = 1, all the subsequent points are selected),
one can always change the visiting order to decrease the
expected cardinal of the Bernoulli process. In practice,
even when (I − K) isn’t invertible, the cardinal of
the Bernoulli process remains low in comparison with
the cardinal of the groundset. The second phase is a
sequential sampling from the points selected in the first
step. This algorithm is made possible thanks to the
explicit formulations of the general marginals and the
pointwise conditional probabilities of any DPP from its
kernel K. Using updated Cholesky decompositions to
compute the conditional probabilities, we fastened the
sampling, even if its running time increases significantly
with the size of its starting set of points.

In terms of running times, we have seen that for most
examples, this algorithm is competitive with the spec-
tral algorithm, and even sometimes faster, in particular
when the size of the groundset is high and the expected
cardinal of the DPP is reasonnable. This framework is
common in machine learning issues. We took an exam-
ple of application for which the use of the sequential
thinning algorithm is relevant. Indeed, DPPs offer nice
results to subsample a dataset, initialize a segmentation
algorithm or summarize an image.
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