End-to-End Automatic Speech Translation of Audiobooks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

End-to-End Automatic Speech Translation of Audiobooks

Résumé

We investigate end-to-end speech-to-text translation on a corpus of audiobooks specifically augmented for this task. Previous works investigated the extreme case where source language transcription is not available during learning nor decoding , but we also study a midway case where source language transcription is available at training time only. In this case, a single model is trained to decode source speech into target text in a single pass. Experimental results show that it is possible to train compact and efficient end-to-end speech translation models in this setup. We also distribute the corpus and hope that our speech translation baseline on this corpus will be challenged in the future.
Fichier principal
Vignette du fichier
main.pdf (209.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01709586 , version 1 (15-02-2018)

Identifiants

  • HAL Id : hal-01709586 , version 1

Citer

Alexandre Bérard, Laurent Besacier, Ali Can Kocabiyikoglu, Olivier Pietquin. End-to-End Automatic Speech Translation of Audiobooks. ICASSP 2018 - IEEE International Conference on Acoustics, Speech and Signal Processing, Apr 2018, Calgary, Alberta, Canada. ⟨hal-01709586⟩
312 Consultations
893 Téléchargements

Partager

More