Dynamic mitigation of EDFA power excursions with machine learning - Archive ouverte HAL
Article Dans Une Revue Optics Express Année : 2017

Dynamic mitigation of EDFA power excursions with machine learning

Résumé

Dynamic optical networking has promising potential to support the rapidly changing traffic demands in metro and long-haul networks. However, the improvement in dynamicity is hindered by wavelength-dependent power excursions in gain-controlled erbium doped fiber amplifiers (EDFA) when channels change rapidly. We introduce a general approach that leverages machine learning (ML) to characterize and mitigate the power excursions of EDFA systems with different equipment and scales. An ML engine is developed and experimentally validated to show accurate predictions of the power dynamics in cascaded EDFAs. Recommended channel provisioning based on the ML predictions achieves within 1% error of the lowest possible power excursion over 94% of the time. We also showcase significant mitigation of EDFA power excursions in super-channel provisioning when compared to the first-fit wavelength assignment algorithm
Fichier principal
Vignette du fichier
2db707862f9c6a43fcbdf15fa32abcad7441.pdf (2.86 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01701414 , version 1 (19-09-2024)

Identifiants

Citer

Yishen Huang, Craig L. Gutterman, Payman Samadi, Patricia B. Cho, Wiem Samoud, et al.. Dynamic mitigation of EDFA power excursions with machine learning. Optics Express, 2017, 25 (3), pp.2245 - 2258. ⟨10.1364/OE.25.002245⟩. ⟨hal-01701414⟩
299 Consultations
13 Téléchargements

Altmetric

Partager

More