Two-sided infinite-bin models and analyticity for Barak-Erdös graphs - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2019

Two-sided infinite-bin models and analyticity for Barak-Erdös graphs

Résumé

In this article, we prove that for any probability distribution µ on N one can construct a two-sided stationary version of the infinite-bin model –an interacting particle system introduced by Foss and Konstantopoulos– with move distribution µ. Using this result, we obtain a new formula for the speed of the front of infinite-bin models, as a series of positive terms. This implies that the growth rate C(p) of the longest path in a Barak-Erdös graph of parameter p is analytic on (0,1].
Fichier principal
Vignette du fichier
newspeed.pdf (1.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01689651 , version 1 (22-01-2018)
hal-01689651 , version 2 (23-11-2018)

Identifiants

Citer

Bastien Mallein, Sanjay Ramassamy. Two-sided infinite-bin models and analyticity for Barak-Erdös graphs. Bernoulli, 2019, 25 (4B), pp.3479-3495. ⟨10.3150/18-BEJ1097⟩. ⟨hal-01689651v2⟩
130 Consultations
73 Téléchargements

Altmetric

Partager

More