Analyticity of the growth rate of the longest path in Barak-Erdos graphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Analyticity of the growth rate of the longest path in Barak-Erdos graphs

Résumé

In this article, we prove that for any probability distribution µ on N one can construct a stationary version of the infinite-bin model –an interacting particle system introduced by Foss and Konstantopoulos– with move distribution µ. Using this result, we obtain a new formula for the speed of the front of infinite-bin models, as a series of positive terms. This implies that the growth rate C(p) of the longest path in a Barak-Erd˝ os graph of parameter p is analytic on (0, 1].
Fichier principal
Vignette du fichier
newspeed.pdf (1.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01689651 , version 1 (22-01-2018)
hal-01689651 , version 2 (23-11-2018)

Identifiants

  • HAL Id : hal-01689651 , version 1

Citer

Bastien Mallein, Sanjay Ramassamy. Analyticity of the growth rate of the longest path in Barak-Erdos graphs. 2018. ⟨hal-01689651v1⟩
130 Consultations
73 Téléchargements

Partager

More