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Abstract
In this article, we prove that for any probability distribution µ on N

one can construct a two-sided stationary version of the infinite-bin model
–an interacting particle system introduced by Foss and Konstantopoulos–
with move distribution µ. Using this result, we obtain a new formula
for the speed of the front of infinite-bin models, as a series of positive
terms. This implies that the growth rate C(p) of the longest path in a
Barak-Erdős graph of parameter p is analytic on (0, 1].

1 Introduction and main results
This article introduces a new approach to the study of infinite-bin models, a
family of interacting particle systems introduced by Foss and Konstantopoulos
[10] which yields new results not only for this particle system but also for Barak-
Erdős graphs [2], which are a natural class of random directed acyclic graphs.

Roughly speaking, the infinite-bin model is a random discrete-time dynamics
on configurations of balls in an infinite row of bins, where a new ball is added
inside some bin at each step of time according to some random rule, where the
randomness is governed by a probability distribution µ on N. Each configuration
has a well-defined notion of front (a non-empty bin such that all the bins to its
right are empty) and one of the most interesting observables in this model is the
speed at which the front moves to the right. In this article we construct for every
probability distribution µ on N a two-sided stationary version of the infinite-bin
model (time is indexed by Z rather than Z+) and we use this construction to
express the speed of the front as a series of positive terms.

The Barak-Erdős graph with edge probability p is a directed acyclic version
of the classical Erdős-Rényi random graph with edge probability p [9]. Foss and
Konstantopoulos [10] introduced a coupling between the Barak-Erdős graph
with edge probability p and the infinite-bin model where µ is the geometric
distribution of parameter p, whereby the growth rate C(p) of the length of the
longest directed path in the Barak-Erdős graph with edge probability p equals
the speed of the front of the infinite-bin model associated with the geometric
distribution of parameter p. Using the above-mentioned series formula for the
speed of infinite-bin models, we manage to prove that the function C(p) is
analytic for 0 < p ≤ 1.

In the rest of the introduction, we first describe Barak-Erdős graphs and we
state the analyticity result for C(p). Then we formally introduce the infinite-bin
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model, we state the results about the existence of a two-sided stationary version
and a formula for the speed of the front and finally we discuss the connection
with other probabilistic models.

1.1 Barak-Erdős graphs
Given an integer n ≥ 1 and a parameter 0 ≤ p ≤ 1, the Barak-Erdős graph Gn,p
is the graph with vertex set {1, . . . , n} obtained by adding an edge directed from
i to j with probability p for every pair (i, j) with 1 ≤ i < j ≤ n, independently
for each pair. This model was introduced by Barak and Erdős [2] and has since
then been widely considered. The most studied feature of these graphs Gn,p has
been the length of their longest path Ln(p), with applications including food
chains [6, 19], the speed of parallel processes [13, 14], last passage percolation [11]
and the stability of queues [10]. Some extensions of the model were considered
in [8, 15].

Newman [18] proved that there exists a function C : [0, 1]→ [0, 1] such that
for any 0 ≤ p ≤ 1,

lim
n→∞

Ln(p)
n

= C(p) in probability. (1.1)

Moreover he showed that the function C is continuous, differentiable at 0 and
that C ′(0) = e (see Figure 1 for a plot of C(p)).
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Figure 1: Plot of a simulation of C(p).

Using the coupling with infinite-bin models mentioned above, Foss and Kon-
stantopoulos [10] obtained upper and lower bounds for the function C which are
tight in a neighborhood of 1. In [17], we proved that C is an analytic function
on ( 1

2 , 1] and showed that the power series expansion of C(p) centered at 1 has
integer coefficients. Moreover, we proved that

C(p) = pe

(
1− π2(1 + o(1))

2(log p)2

)
as p→ 0.

In particular, this implied that C has no second derivative at p = 0. We raised
the question whether there exists a phase transition for some 0 < p0 < 1, where
the function C stops being analytic. In this paper we provide a negative answer
to this question.
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Theorem 1.1. The function p 7→ C(p) is analytic on (0, 1].

The proof of this theorem is based on a series formula for C(p) which follows
from a coupling between Barak-Erdős graphs and a specific subclass of infinite-
bin models. The next subsection is devoted to general infinite-bin models.

1.2 The infinite-bin model
The infinite-bin model is an interacting particle system on Z that can be de-
scribed as follows. Consider a set of bins indexed by Z, each bin containing a
finite number of balls. There is a well-defined notion of front, which is a non-
empty bin such that all the bins to its right are empty and the bins to its left
are non-empty. Given an i.i.d. sequence (ξn, n ≥ 1) of positive integers, the
infinite-bin model evolves as follows: at every time n, a new ball is added to the
bin immediately to the right of the bin containing the ξnth rightmost ball. We
denote by µ the distribution on N of the random variable ξ1.

This process was introduced by Foss and Konstantopoulos [10] in order to
study Barak-Erdős graphs and further studied in [12, 5, 17]. Note that in the
original description [10], the sequence (ξn) is only supposed to be stationary and
ergodic, not necessarily i.i.d. Constructing the stationary version of an infinite-
bin model could be done in ergodic settings as well under mild assumptions, but
we choose to stick to the i.i.d. setting to keep the proofs simple.

We introduce some notation to define infinite-bin models more precisely. A
configuration of balls X is defined to be any collection (X(k), k ∈ Z) ∈ ZZ

+
(where X(k) represents the number of balls in the bin of index k) such that
there exists F (X) ∈ Z satisfying the following two conditions:

1. every bin with an index smaller or equal to F (X) is non-empty ;

2. every bin with an index strictly larger than F (X) is empty.

The index F (X) of the rightmost non-empty bin is called the position of the
front of the configuration X. We denote by S the set of configurations. Note
that one could allow bins containing infinitely many balls or even empty bins
to the left of the front, provided the total number of balls in a configuration
is infinite, and the process would remain well-defined. However, the space S is
stable under the dynamics of the infinite-bin model, and we will only consider
infinite-bin models as Markov processes on S, again for the sake of simplifying
the proofs.

Let k ≥ 1 be an integer, we define a move of type k as a map Φk from the
set of configurations to itself. For any X ∈ S and k ∈ N, we set

N(X, k) =
∑
j≥k

X(j) and B(X, k) = sup{n ∈ N : N(X,n) ≥ k},

which are respectively the number of balls in or to the right of bin number k
and the index of the bin containing the kth rightmost ball. We define

Φk : X ∈ S 7→ (X(j) + 1{j=B(X,k)+1}, j ∈ Z) ∈ S.

In other words, Φk(X) is the configuration obtained from X by adding one ball
to the bin immediately to the right of the bin containing the kth rightmost ball.
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Let µ be a probability distribution on N and X0 be an initial configuration,
which may be deterministic or random. We construct (Xn)n≥0 the infinite-bin
model with move distribution µ (or IBM(µ) for short) as the following stochastic
recursive sequence in S:

∀n ≥ 0, Xn+1 = Φξn+1(Xn),

where (ξn)n≥1 is an i.i.d. sequence of random variables of law µ. Foss and
Konstantopoulos [10] proved that when µ has finite expectation there exists a
constant vµ ∈ [0, 1] independent of the initial configuration X0 such that

lim
n→∞

F (Xn)
n

= vµ a.s. and in L1. (1.2)

In [17], we proved that this result holds without any assumption on the mea-
sure µ. The constant vµ is called the speed of the IBM(µ).

In this article, we express the speed vµ as the sum of a series with positive
terms for a general move distribution µ. This series representation of vµ is based
on the appearance of special patterns in the sequence (ξn, n ≥ 1). To write it
down more precisely, we introduce some notation on finite patterns.

We denote by
W =

⋃
n≥0

Nn

the set of all finite sequences of positive integers. Sequences in W will simply
be called words and an element of a word will be called a letter. By convention
∅ is the only element of N0, called the empty word. Given a word α ∈ W, we
denote by |α| the length of α (i.e. its number of letters), and for 1 ≤ k ≤ |α|,
by αk its kth letter. Furthermore, if I is an interval (possibly infinite) of Z and
α = (αi)i∈I is a sequence of positive integers indexed by I, for any n1 ≤ n2 ∈ I
we denote by αn2

n1
the word (αn1 , αn1+1, . . . , αn2) of length n2−n1 + 1. Finally,

for two words α and β, the word α · β is defined to be the concatenation of α
and β, i.e. if α = (α1, . . . , αn) ∈ Nn and β = (β1, . . . , βp) ∈ Np, we set

α · β = (α1, . . . , αn, β1, . . . , β1) ∈ Nn+p.

Recall that the map Φk denotes a single move of type k. We extend the
notation by defining the map Φα for every α = (α1, . . . , αn) ∈ W by

∀X ∈ S, Φα(X) =
(
Φαn ◦ Φαn−1 ◦ · · · ◦ Φα1

)
(X). (1.3)

In other words, Φα(X) is the configuration obtained from X by successively
applying the moves of type α1, α2, . . . , αn. Using this notation, we define for
every X ∈ S the set of X-good words as

PX =
{
α ∈ W\{∅} : F (Φα(X)) > F (Φ

α
|α|−1
1

(X))
}
,

i.e. the set of finite sequences of moves such that, starting from X, the final
move makes the front advance to the right by one unit, by adding a ball in a
previously empty bin.

We define the set of good words to be the words that are X-good for every
starting configuration X, as well as the set of bad words to be the words that
are X-good for no initial configuration X, i.e.

G =
⋂
X∈S
PX and B =

⋂
X∈S
PcX . (1.4)
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Observe that with these definitions, while the complement of X-good words is
X-bad words, the complement of G is larger than B, i.e. G ∪ B ( W. In other
terms, there are three types of words: good words, bad words and words that
are neither good nor bad. For example, the words (1) and (1, 1) are good, the
words (1, 2) and (2, 1, 2) are bad and the word (2, 2) is neither good nor bad.
Finally, we define the set of minimal good words (resp. minimal bad words) as
the good (resp. bad) words that have no good (resp. bad) strict suffix:

Gm =
{
α ∈ G : ∀ 2 ≤ k ≤ |α|, α|α|k 6∈ G

}
(1.5)

Bm =
{
α ∈ B : ∀ 2 ≤ k ≤ |α|, α|α|k 6∈ B

}
. (1.6)

For example, the word (1) (resp. (1, 2)) is minimal good (resp. minimal bad)
while the word (1, 1) (resp. (2, 1, 2)) is not minimal good (resp. not minimal
bad).

A probability distribution µ on N is called non-degenerate if it is not a Dirac
mass, i.e. if its support contains at least two elements. We obtain in this article
the following formula, which holds for the speed of the front of any infinite-bin
model whose move distribution is non-degenerate.

Theorem 1.2. Fix a non-degenerate probability distribution µ on N. For any
α ∈ W, we set wµ(α) =

∏|α|
j=1 µ(αj). Then we have

vµ =
∑
α∈Gm

wµ(α) = 1−
∑
α∈Bm

wµ(α). (1.7)

Note that for µ = δk, the Dirac mass at k, the infinite-bin model is deter-
ministic and vδk = 1/k, but for all k ≥ 2 the equalities (1.7) do not hold.

For non-degenerate µ, we also remark that from (1.7), we deduce that∑
α∈Gm

wµ(α) +
∑
α∈Bm

wµ(α) = 1,

which can be interpreted as follows: given (ξ−n, n ≥ 0) a family of i.i.d. non-
degenerate integer-valued random variables, almost surely there exists n ≥ 0
such that ξ0

−n is either a good or a bad word. This is indeed a key step of the
proof and is a straightforward consequence of Proposition 2.2. In the remainder
of the article, every probability distribution on N will be assumed to be non-
degenerate, unless otherwise stated.

Formula (1.7) for the speed of the infinite-bin model can be compared to the
one we obtained in [17]. For every X ∈ S, we defined the map

εX : α ∈ W \ {∅} 7→ 1{α∈PX} − 1{
α
|α|
2 ∈PX

} ∈ {−1, 0, 1}.

We showed in [17] that whenever the series∑
α∈W

εX(α)wµ(α) (1.8)

converges absolutely, then its sum is equal to vµ. However there was no clear
condition on µ for the series (1.8) to converge. We only managed to prove
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its convergence for probability distributions with light enough tails, such as
geometric distributions with parameter p > 1/2. By contrast, the new for-
mula (1.7) is more tractable, as it only has positive terms and it holds for every
non-degenerate probability distribution µ. However, formula (1.8) is still well-
adapted for explicit estimates, as the computation of ε(α) is linear in |α|, while
verifying that a word α belongs to G has a complexity which is exponential in
the largest letter of α.

Theorem 1.2 is based on the construction of a two-sided stationary version
of the infinite-bin model, i.e. a process for which time takes values in Z rather
than in Z+. More precisely, we define

Ψr : X ∈ S 7→ (X(r + j), j ∈ Z) ∈ S,

the shift operator on S, which shifts all the balls by r units to the left. Then
the following result holds.

Theorem 1.3. Let (ξn, n ∈ Z) be a family of i.i.d. random variables with a
non-degenerate distribution µ, we set Fn = σ(ξk, k ≤ n). Almost surely, there
exists a unique process (Yn, n ∈ Z) on S such that the following three conditions
hold:

• F (Y0) = 0 ;

• ∀n ∈ Z, Yn+1 = Φξn+1(Yn) ;

• ΨF (Yn)(Yn) ∈ Fn.

Note that ΨF (Y )(Y ) is the configuration Y translated such that the front is
at position 0. We call the process (Yn) a stationary version of the infinite-bin
model as the process (ΨF (Yn)(Yn), n ∈ Z) is a stationary Markov process. In
other words, (Yn) depicts a wave of balls moving from left to right, such that
the law of the wave considered up to translation is stationary.

In [10], Foss and Konstantopoulos proved the existence of a two-sided sta-
tionary version of the infinite-bin model in the case when µ has finite expectation
(the general framework of extended renovation theory which they developed ac-
tually also encompasses some cases of light-tailed µ with infinite expectation).
They showed in that case that if one samples an infinite-bin model (Xn)n≥0
and a two-sided process (Yn)n∈Z using the same sequence (ξn)n∈Z, then (Xn)
coupling-converges to (Yn) which entails the joint convergence of the number of
balls in bins within a fixed finite distance from the front. Their construction
was based on going back in time and searching for certain renovation events,
which determine where all the balls are placed after the renovation event starts,
regardless of what the configuration was before the start of the event. These
renovation events have positive probability when µ has finite expectation, but
have probability zero otherwise. The renovation events they considered corre-
spond to suffixes of (ξn)n∈Z which are infinite on the right and finite on the left,
such that the i-th letter is at most equal to i.

In order to construct (Yn)n∈Z even when µ has infinite expectation, we con-
sider another class of words, described in Section 2, which have positive proba-
bility even when µ has infinite expectation. Namely we observe that there exist
almost surely finite suffixes of (ξn)n∈Z≤0 which determine the content of a finite
number of bins at the front at time 0, regardless of what the configuration was
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before the appearance of that suffix. This observation makes it possible to do
perfect simulation from the stationary measure of any infinite-bin model, in the
spirit of what has been done for other processes with long memory [7, 10, 20].

One of the main reasons for the study of infinite-bin models is the connection
with Barak-Erdős graphs, which holds only when µ is a geometric distribution.
For p ∈ [0, 1], we denote by µp the geometric distribution of parameter p. Foss
and Konstantopoulos [10] introduced a coupling between the infinite-bin model
with moves distributed like µp and Barak-Erdős graph of parameter p by ob-
serving that, as one grows a Barak-Erdős graph by adding vertices one by one,
recording the length of the longest path ending at each vertex produces a pro-
cess distributed like the IBM(µp), see also [17, Section 5] for more details. The
Foss-Konstantopoulos coupling implies in particular that

∀p ∈ [0, 1], vµp = C(p). (1.9)

As a consequence of Theorem 1.2, we immediately deduce the following formula
for the growth rate C(p) of the length of the longest path in Barak-Erdős graphs
with edge probability p:

Corollary 1.4. For every 0 ≤ p ≤ 1,

C(p) =
∑
α∈Gm

p|α|(1− p)
∑|α|

j=1
(αj−1)

. (1.10)

Another special case of the infinite-bin model can be coupled with a known
stochastic process. As observed in [17], the speed wk of an infinite-bin model
with measure νk uniform on {1, . . . , k} is the same (up to a factor k) as the speed
of a continuous-time branching random walk on Z with selection of the rightmost
k individuals, with a specific reproduction law. In the case of a general branching
random walk, each individual reproduces after an exponential time, whereby it
gives birth to a random number of children placed at random locations around
the parent and the parent dies immediately after. The randomness is governed
by the reproduction law. The reproduction law corresponding to the infinite-bin
model is the one where each parent has exactly two children, one placed one
unit to its right and one placed at the same position as the parent (which serves
to replace the dead parent). The particular infinite-bin model with uniform
distribution was first studied by Aldous and Pitman in [1], who proved that
limk→∞ kwk = e. Denoting by Gm,k the set of minimal good words using letters
only between 1 and k, formula (1.7) yields

wk =
∑

α∈Gm,k

1
k|α|

. (1.11)

Remark 1.5 (Speed of a branching random walk with selection). The asymptotic
behavior of the speed of a branching random walk with selection with a general
reproduction law was conjectured in Brunet and Derrida [4]. In the special case
of the infinite-bin model with uniform distribution, this conjecture can be stated
as

kwk = e− eπ2

2(log k + 3 log log k + o(log log k))2 as k →∞. (1.12)

So far, two terms of the asymptotic behaviour of the speed of branching random
walks with selection have been obtained by Bérard and Gouéré [3] for binary
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reproduction laws and extended in [16] to more general reproduction laws. In
the special case of the infinite-bin model with uniform distribution, these results
imply that

kwk = e− eπ2

2(log k)2 (1 + o(1)) as k →∞,

see [17, Lemma 7.1]. It would be interesting to prove the Brunet-Derrida con-
jecture with the additional term in log log k in the special case of the infinite-bin
model with uniform distribution using formula (1.11), or to use the conjectured
formula (1.12) to gain information on the distribution of good words, by per-
forming an analysis of singularities.

One may extend the above connection between branching random walks and
infinite-bin models to infinite-bin models with general move distribution µ, by
seeing them as some rank-biased branching random walks, in which the kth
rightmost particle reproduces at each time step with probability µ(k), by giving
birth to a new child at distance 1 to its right. This is perhaps more strik-
ing when considering the infinite-bin model in continuous time, such that each
new ball appears after an exponential random time of parameter 1. Then the
branching random walk can be described as follows: each particle reproduces
independently by making a new child at distance 1 to its right at rate µ(k) if
the particle is the kth rightmost particle. Therefore, the rate at which parti-
cles reproduce depends on their rank, which induces a correlation between the
particles.

Outline of the paper In the next section, we prove Theorem 1.3 as well as
a coupling-convergence result. In Section 3, we prove Theorem 1.2 by linking
the speed of the classical infinite-bin model to the one of the two-sided process.
Finally, we prove Theorem 1.1 in Section 4 by showing that the length of the
smallest good word in the past of the two-sided process has an exponential tail.

2 Coupling words for the two-sided process
In this section we fix µ to be a probability distribution on N. The proof of
Theorem 1.3 is based on the existence of so-called coupling words, introduced
by Chernysh and Ramassamy [5] for the IBM(µ). More precisely, for every
K ∈ Z+ we introduce the projection

ΠK : S −→ NK
X 7−→ (X (F (X)−K + 1) , . . . , X (F (X)))

which associates to a configuration X its K-scenery seen from the front, i.e. the
number of balls in each of the rightmost K non-empty bins. By convention,
if K = 0, the target of ΠK is the singleton composed of the empty sequence.
The coupling number C(γ) of a word γ ∈ W is defined to be the largest integer
K ≥ 0 such that after applying the moves in γ, the K-scenery seen from the
front is independent of the starting configuration. More precisely,

C(γ) = max {K ≥ 0 : ΠK(Φγ(X)) = ΠK(Φγ(Y )) for all X,Y ∈ S} . (2.1)

Since the set on the right-hand side of (2.1) is an interval containing 0, for
all 0 ≤ k ≤ C(γ), the image of the function Πk ◦ Φγ is a singleton, i.e. the
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k-scenery seen from the front after applying the moves in γ does not depend on
the starting configuration.

For example, we have C(2, 3, 2, 2) = 1, as one can check by distinguishing
according to the two possible relative positions of the rightmost two balls in an
arbitrary initial configuration. A word γ is called K-coupling if C(γ) ≥ K. If γ
is a K-coupling word, then any word which has γ as a suffix is also a K-coupling
word. Note however that a word having a K-coupling word γ as a prefix may
not be K-coupling. For example, we have C(2, 3, 2, 2) = 1 and C(2, 3, 2, 2, 5) = 0.
Nevertheless, we can control the variation of C when adding a suffix. If γ ∈ W
and a ∈ N, we recall that γ · a is the word of length |γ|+ 1 obtained by adding
the letter a to the end of γ.

Lemma 2.1. Let γ ∈ W and a ∈ N. Then C(γ · a) ≥ C(γ)− 1. Furthermore if
a ≤ C(γ) then C(γ · a) ≥ C(γ).

Proof. Denote by M the number of balls in the single finite configuration in the
image of ΠC(γ) ◦ Φγ . The constant M depends on the word γ, but not on the
starting configuration. We distinguish two cases, whether a ≤M or a > M .

We first assume a ≤M . In that case, after executing the moves correspond-
ing to the letters of γ, the execution of a selects a ball in the Kth rightmost bin
with K ≤ C(γ), and places a ball in the bin immediately to the right of that
bin. In particular, ΠC(γ) ◦ Φγ·a(S) is still a singleton.

We now assume that a > M . Then, the execution of a selects a ball in the
Kth rightmost bin with K > C(γ) (K may depend on the initial configuration
before the execution of γ) and places a ball in the bin immediately to the right
of that bin. Note that while it might modify the content of the C(γ)th rightmost
bin, it does not change the content of any of the rightmost C(γ)− 1 bins. Thus
ΠC(γ)−1 ◦ Φγ·a(S) is a singleton.

This proves that in any case, C(γ · a) ≥ C(γ) − 1. Moreover, as there is
necessarily at least one ball in each of the C(γ) rightmost bins, we know that
M ≥ C(γ). Therefore, if a ≤ C(γ) ≤M , then C(γ · a) ≥ C(γ).

The following result will be the key for constructing a two-sided stationary
version of the IBM and computing its speed.

Proposition 2.2. Let (ξn, n ∈ Z) be a family of independent random variables
with law µ. For K ∈ N, we set

τK = inf{n ≥ 0 : ξ0
−n is a K-coupling word}.

Then τK is finite a.s.

Proof. Let a be the smallest integer in the support of µ. Setting m = a(a−1)
2 +1,

we denote by am the word of length m containing only letters a. We first show
that applying Φam to any initial configuration has the effect of making the
front advance by at least 1. This can be observed using the partial order 4
on S introduced in [17, Section 2], which is such that for any X 4 X ′ in S,
F (X) ≤ F (X ′) and for any word γ ∈ W, Φγ(X) 4 Φγ(X ′). For any n ∈ Z,
the smallest configuration in S with the front at position n is X(n)(k) = 1{k≤n}
and one easily checks that applying Φam to X(n) has the effect of making the
front advance by 1. Therefore, applying Φam to any configuration makes the
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front advance by at least 1. We will need this observation towards the end of
the proof.

Note that for any K < K ′, a K ′-coupling word is also a K-coupling word,
hence τK ≤ τK′ . Therefore we can without loss of generality choose the integer
K as large as we wish in this proof. We introduce the following sequence of
waiting times (backward in time) defined by T0 = 0 and

Tk+1 = sup
{
n < Tk : ξn ≥ K or (n+m− 1 < Tk and ξn+m−1

n = am)
}
.

We now choose K large enough such that

P(ξT1 ≥ K) < 1/3 (2.2)

i.e. such that it is at least twice less likely to observe a letter larger than K
than to observe m occurrences of a in a row when observing the sequence (ξn).
Indeed, one can check that

P(ξT1 ≥ K) = µ([K,∞))(1− µ(a)m+1)
µ(([K,∞)) + (µ([K,∞)) + µ(a))µ(a)m+1 ,

which can be made as small as wished as K → ∞, hence for K large enough,
assumption (2.2) can be verified.

We denote by S0 = 0 and Sk+1 = Sk + 21{ξTk+1≥K} − 1 an associated
random walk. For all k ≥ 0, Tk+1 is the first time before Tk where we see either
a letter larger than K or the pattern am and Sk counts the difference between
the number of times the former versus the latter occurs. By assumption (2.2),
we have E(S1) < −1/3, thus (Sk) drifts towards −∞. As a result, we know
there exists an infinite sequence of times (Rk, k ≥ 0) defined by R0 = 0 and
Rk+1 = inf{n > Rk : Sn < SRk}, the time at which Sn reaches its record
minimum for the (k + 1)st time.

Let b be the second largest integer in the support of µ (here we use the fact
that µ is non-degenerate). Theorem 1.1 in [5] says exactly that for any N ≥ 1
there exists a word γ′N using only letters a and b such that after applying the
moves in γ′N , the position of the rightmost N balls relatively to the front is
independent of the starting configuration. A straightforward reformulation of
that result is that for any N ≥ 1 there exists a word γN using only letters a
and b such that after applying the moves in γN , the content of the rightmost N
nonempty bins is independent of the starting configuration. Hence, there exists
a (K + 1)-coupling word γ that is written only using the letters a and b. Note
that if a = 1 (i.e. µ(1) 6= 0), the word γ can be chosen to be the word obtained
by repeating K + 1 times the letter 1. We define the new waiting time

L = inf
{
k ∈ N : ξTRk−1

TRk−|γ|
= γ

}
,

i.e. the first time that the word γ appears immediately before a time at which
the random walk S hits a new minimum. As the appearance of the word γ
immediately before time TRk has positive probability of occurring and is inde-
pendent of everything that happens after time TRk , we observe that L < ∞
a.s.

Set N = −TRL + |γ|. To conclude the proof, it is enough to show that ξ0
−N

is a K-coupling word, which will prove that τK ≤ N < ∞ a.s. To do so, we
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prove that for any TRL − 1 ≤ n < 0, we have C(ξn−N ) ≥ K + 1. It is true for
n = TRL−1, since ξTRL−1

−N = γ which is a (K+1)-coupling word. For any k ≥ 1,
define

T ′k =
{
Tk if ξTk ≥ K
Tk +m− 1 otherwise.

When reading the word ξ0
−N from left to right, the time T ′k is the (RL+1−k)th

time that we read either a letter larger or equal to K or the rightmost letter of
a pattern am. We also set T ′0 = 0. One shows by induction on 0 ≤ k < RL that
for any T ′k+1 ≤ n < T ′k, we have

C
(
ξn−N

)
≥ C

(
ξ
TRL−1
−N

)
+ Sk+1 − SRL .

This is a consequence of Lemma 2.1 and the facts that every letter at least K
decreases the coupling number by at most one, every pattern am increases the
coupling number by at least one (by the observation made at the beginning
of the proof) and all the other patterns do not decrease the coupling number,
since this coupling number stays above K. We conclude from the fact that
Sk+1 ≥ SRL if 0 ≤ k < RL, as RL is a time when the random walk S hits its
minimum.

Using the a.s. existence of finite times τK for K ∈ N, we deduce Theorem 1.3.

Proof of Theorem 1.3. We construct the configuration Y0 as follows. For each
K ∈ N, we set the rightmost K non-empty bins of Y0 to be the single configu-
ration in ΠK ◦ Φξ0

−τK
(S), which is a.s. well-defined as τK <∞ a.s.

This construction is consistent for different values of K and it produces a
unique configuration Y0 by sending K to infinity and requiring that F (Y0) = 0.
The variable ΠK(Y0) is measurable with respect to ξ0

−τK , so Y0 ∈ F0 a.s. As a
result, for any n > 0, Yn = Φξn1 (Y0) is a.s. Fn-measurable.

If n < 0, we can do a similar analysis as the one made for n = 0. For any
K ∈ N, ΠK(Yn) ∈ Fn a.s. Choosing K > −n and using Lemma 2.1, one can
deduce F (Yn) from ΠK(Yn) and from ξ0

n, since we know that F (Y0) = 0. We
conclude that the configuration Yn is a.s. entirely determined (up to a shift) by
the sequence (ξk, k ≤ n).

For any k ∈ Z, the law of any K-scenery seen from the front of Yk depends
only on (ξn, n ≤ k), which has the same law as (ξn, n ≤ 0). Hence the law of
ΨF (Yk)(Yk), which is the configuration Yk shifted to place its front at position 0,
is indeed the same as the law of Y0 = ΨF (Y0)(Y0), as claimed in the paragraph
right after the statement of Theorem 1.3.

Now that we have constructed the two-sided process Y , we observe using
similar methods as in Proposition 2.2, that any infinite-bin model X ends up
behaving like this two-sided process.

Proposition 2.3 (Coupling-convergence). Let (ξn, n ∈ Z) be i.i.d. random
variables with law µ and fix X0 ∈ S. We denote by (Yn)n∈Z the two-sided process
defined in Theorem 1.3, and by (Xn)n≥0 the infinite-bin model constructed with
X0 and the random variables (ξn, n ≥ 1). For any K ∈ N, for all n ≥ 0 large
enough, we have

ΠK(Xn) = ΠK(Yn) a.s.

11



Note that this proposition in particular implies the convergence of the K-
scenery seen from the front for any infinite-bin model X.

Proof. Let a < b be the smallest two integers in the support of µ and let K > 0
be a number large enough such that (2.2) holds. We then define the sequence
of waiting times T0 = 0 and

Tk+1 = inf
{
n > Tk : ξn ≥ K or (n−m+ 1 > Tk and ξnn−m+1 = am)

}
.

The random walk Sk :=
∑k
j=1(21{ξTk≥K} − 1) drifts to −∞. In particular, for

infinitely many integers n ≥ 1, we have supk≥n Sk ≤ Sn.
Let γ be a (K + 1)-coupling word consisting only of the letters a and b.

Almost surely, there exists a time N large enough such that the first |γ| letters
after N spell the word γ and the random walk S observed after time N + |γ| is
always below its value at time N+|γ|. Hence, by an argument similar to the one
used to prove Proposition 2.2, for all n ≥ N + |γ|, we have ΠK(Xn) = ΠK(Yn),
which concludes the proof.

3 Speed of the infinite-bin model
In this section, we use the stationary infinite-bin model Y we constructed in the
previous section to obtain formula (1.7) for the speed of the infinite-bin model.

Lemma 3.1. Let µ be a non-degenerate probability law on N and (Yn)n∈Z be a
two-sided stationary infinite-bin model. We have vµ = P(F (Y1) = 1).

Proof. Since (Yn)n≥0 is an infinite-bin model with move distribution µ, by [17,
Theorem 1.1] and dominated convergence, we have

vµ = lim
n→∞

1
n

E(F (Yn)) = lim
n→∞

1
n

n∑
j=1

E(F (Yj)− F (Yj−1)).

By the stationary property of Y , we also observe that

E(F (Yj)− F (Yj−1)) = E(F (Y1)− F (Y0)) = P(F (Y1) = 1),

thus vµ = P(F (Y1) = 1).

We use this expression for vµ in terms of the two-sided process Y to prove
Theorem 1.2.

Proof of Theorem 1.2. Let (ξn, n ∈ Z) be i.i.d. random variables with law µ.
We introduce the random time

T = inf{n ≥ 0 : ξ1
−n ∈ G ∪ B}.

We first note that if ξ0
−n is a 1-coupling word, then we know the value of Y0(0).

In that case, ξ1
−n is either a good word or a bad word, depending on whether

ξ1 ≤ Y0(0) or not. We conclude that T < τ1 < ∞ a.s. by Proposition 2.2.
Lemma 3.1 yields

vµ = P(F (Y1) = 1) = P(ξ1
−T ∈ G) = 1−P(ξ1

−T ∈ B).
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Note that if ξ1
−T is good, then it is necessarily a minimal good word (if it had

a good strict suffix, T would have been smaller). Similarly, ξ1
−T ∈ B implies

ξ1
−T ∈ Bm. Moreover the support of ξ1

−T is the entire set Gm ∪ Bm, as a good
(resp. bad) word cannot have a bad (resp. good) suffix. Thus

P(ξ1
−T ∈ G) = P(ξ1

−T ∈ Gm) =
∑
α∈Gm

P(ξ1
−T = α)

=
∑
α∈Gm

P(ξ1
−|α|+2 = α) =

∑
α∈Gm

wµ(α),

hence vµ =
∑
α∈Gm wµ(α). The equality vµ = 1 −

∑
α∈Bm wµ(α) follows from

similar computations.

Remark 3.2. In order to make the formulas in Theorem 1.2 effective, one needs
a criterion to find the minimal good and bad words. Given a word α ∈ W, it
suffices to test it against a finite set Σ of configurations to determine whether it
is good or bad: if α is X-good (resp. X-bad) for every X ∈ Σ, then it is good
(resp. bad). Writing

h = max
1≤i≤|α|

1 + αi − i,

the set Σ can be taken to be any set of 2h−1 configurations with the front at
position 0 such that for any X 6= X ′ in Σ, the positions of the rightmost h balls
in X and X ′ are not all the same.

4 Analyticity of C(p)
Using the formula we obtained for the speed vµ, we are now able to prove the
analyticity of the growth rate C of the length of the longest path in Barak-Erdős
graphs.

Proof of Theorem 1.1. For any p, q ≥ 0, we write

D(p, q) =
∑
α∈Gm

p|α|q

∑|α|
j=1

(αj−1)
. (4.1)

As stated in Corollary 1.4, it follows from the coupling of Foss and Konstan-
topoulos [10] between infinite-bin models and Barak-Erdős graphs that for any
0 < p ≤ 1,

C(p) = vµp = D(p, 1− p),

where µp denotes the geometric distribution of parameter p.
To prove that C is analytic around some p0 ∈ (0, 1], it is enough to show

that the series (4.1) converges for some pair (p′, q′) with p′ > p0 and q′ > 1−p0.
Indeed, one would then deduce that all the series of derivatives of D(p, 1 − p)
converge normally around p0.

Recall that T = inf{n ≥ 0 : ξ1
−n ∈ G∪B}. For any probability distribution µ

on N, we denote by Eµ the expectation associated with the IBM(µ). By simple
computations similar to the proof of Theorem 1.2, for any r > 0 we have

Eµp(rT+2) ≥ Eµp(rT+21{ξ1
−T∈G}) = D(rp, 1− p),
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As a result, to conclude the proof, it is enough to show that T admits some
exponential moments uniformly in p. More precisely, we will prove that for
every s ∈ (0, 1], there exists rs > 1 such that

∀p ∈ [s, 1],Eµp(rTs ) <∞. (4.2)

Then, for any 0 < p0 ≤ 1, choosing p such that

max
(
p0

2 ,
p0

rp0/2

)
< p < p0

and setting p′ = prp0/2 and q′ = 1− p, one obtains the convergence of the series
D(p′, q′), which will prove Theorem 1.1.

Recall from the proof of Theorem 1.2 that T is smaller than τ1, the smallest
time such that ξ0

−τ1
is a 1-coupling word. To bound Eµp(rτ1) we use a con-

struction similar to the one in the proof of Proposition 2.2. Fix s ∈ (0, 1]. We
choose an integer K ≥ 1 large enough such that 2(1 − s)1−K ≤ s. Then for
every p ∈ [s, 1], we have

2µp([K,∞)) ≤ 2(1− s)1−K ≤ s ≤ µp(1).

We now introduce the sequence defined by T0 = 0 and for any k ≥ 0,

Tk+1 = sup{n < Tk : ξn = 1 or ξn ≥ K}.

We also set Sk = −k + 2
∑k
j=1 1{ξTj≥K}. For every p ∈ [s, 1], by the choice of

K, S is a nearest-neighbor random walk such that E(S1) ≤ −1/3. We denote
by (Rk, k ≥ 0) the sequence of strictly descending ladder times of S (i.e. Rk is
the kth time when S reaches its record minimum) and by γ the word consisting
in K + 1 times the letter 1. Then, setting

L = inf
{
k ∈ N : ξ

TRk(K+1)−1
TRk(K+1)−K−1 = γ

}
,

we have τ1 ≤ −TRL(K+1) +K + 1.
As (Sk) is a random walk with negative drift smaller than −1/3, for any

k ∈ N, the random variable Rk is stochastically dominated by the sum of k
i.i.d. random variables Uj with the law of the first hitting time of −1 by a
nearest-neighbor random walk with drift −1/3. Moreover, we observe that

E(rUj ) = 2
3r + 1

3rE(rUj )2,

by decomposition with respect to the first step of the random walk. Therefore,
for any k ∈ N, p ∈ [s, 1] and r < 3

2
√

2 , we have

Eµp

(
rRk
)
≤

(
3−
√

9− 8r2

2r

)k
.

Similarly, we observe that for any p ∈ [s, 1], −T1 is stochastically dominated
by a geometric random variable with parameter s, as this is the minimal prob-
ability for obtaining a 1. Then −Tk is stochastically dominated by the sum
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of k i.i.d. copies of a geometric random variable with parameter s. Thus, by
conditioning with respect to Rk, as long as 1 < r < 1

1− (3−2
√

2)
3 s

, for all p ∈ [s, 1]
and k ∈ N we have

Eµp(r−TRk ) ≤ Eµp

((
Eµs

(
r−T1

))Rk) ≤
3−

√
9− 8

(
sr

1−(1−s)r

)2

2 sr
1−(1−s)r


k

.

Finally, as L can be stochastically dominated by a geometric random variable
with parameter sK+1, which is independent of (TRk , k ≥ 1), it admits some
finite exponential moments. We conclude that τ1 also admits some exponential
moments, uniformly in p ∈ [s, 1].

We point out that, by computations similar to those above, one could show
that for any probability distribution µ and for any K ∈ N, there exists r > 1
such that Eµ(rτK ) <∞, hence P(τK > n) decays exponentially fast with n.
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