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Abstract

In this article, we prove that for any probability distribution p on
N one can construct a stationary version of the infinite-bin model —an
interacting particle system introduced by Foss and Konstantopoulos— with
move distribution p. Using this result, we obtain a new formula for the
speed of the front of infinite-bin models, as a series of positive terms. This
implies that the growth rate C(p) of the longest path in a Barak-Erd8s
graph of parameter p is analytic on (0, 1].

1 Introduction and main results

In this article, we study an interating particle system on Z called the infinite-
bin model. Using a stationary construction of this model, we are able to show
analyticity results for a directed acyclic version of Erd6s-Rényi random graphs
called Barak-Erdés graphs. We first introduce the latter before describing the
former.

1.1 Barak-Erddés graphs

Given an integer n > 1 and a parameter 0 < p < 1, the Barak-Erdés graph G, ,,
is the graph with vertex set {1,...,n} obtained by adding an edge directed from
i to j with probability p for every pair (i, j) with 1 <4 < j < n, independently
for each pair. This model was introduced by Barak and Erdds [2] and has since
then been widely considered. The most studied feature of these graphs G, j, has
been the length of their longest path L, (p), with applications including food
chains [5, 15], the speed of parallel processes [10, 11], last passage percolation [g]
and the stability of queues [7]. Some extensions of the model were considered
in [6, 12].

Newman [14] proved that there exists a function C : [0, 1] — [0, 1] such that
forany 0 <p <1,
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= C(p) in probability. (1.1)

Moreover he showed that the function C' is continuous, differentiable at 0 and
that C’(0) = e (see Figure 1 for a plot of C(p)).

Foss and Konstantopoulos [7] obtained upper and lower bounds on the func-
tion C' which are tight in a neighborhood of 1. In [13], we proved that C is an
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Figure 1: Plot of a simulation of C(p).

analytic function on (3,1] and showed that the power series expansion of C(p)
centered at 1 has integer coefficients. Moreover, we proved that

72(1 4 o(1))
2(log p)?

In particular, this implied that C has no second derivative at p = 0. We raised
the question whether there exists a phase transition for some 0 < pg < 1, where
the function C stops being analytic. In this paper we provide a negative answer
to this question.

C(p)zvup:pe(l— )asp—>0.

Theorem 1.1. The function p — C(p) is analytic on (0,1].

The proof of this result uses a coupling, introduced by Foss and Konstan-
topoulos in [7], between Barak-Erdés graphs and an interacting particle system
called the infinite-bin model. The infinite-bin model has been the main tool
to study Barak-Erdés graphs in both [7] and [13]. Theorem 1.1 follows from a
finer analysis of this particle system. In particular we obtain new formula for
the speed of the front of this process. As a result we obtain a formula for C(p)
as the sum of a series of positive terms.

1.2 The infinite-bin model

The infinite-bin model is an interacting particle system on Z that can be de-
scribed as follows. Consider a set of bins indexed by Z, each bin containing a
finite number of balls. There is a well-defined notion of front, which is a non-
empty bin such that all the bins to its right are empty and the bins to its left
are non-empty. Given an i.i.d. sequence (§,,n > 1) of positive integers, the
infinite-bin model evolves as follows : at every time n, a new ball is added to
the right of the &,th rightmost ball.

Alternatively, the infinite-bin model can be thought of as a discrete-time
branching particle system, in which the kth rightmost particle reproduces at
time n with probability u(k). More precisely, if we consider a continuous-time
version of the model in which each new ball appears after an exponential random
time of parameter 1, in terms of the branching process each particle reproduces



independently and the kth rightmost particle creates a new child to its right at
rate p(k).

This process was introduced by Foss and Konstantopoulos [7], in order to
study Barak-Erdés graphs, and further studied in [9, 4, 13]. Note that in the
original description [7], the sequence (&,,) is only supposed to be stationary and
ergodic, not necessarily i.i.d. Most of the results we state in this article could
be extended to ergodic settings with mild assumptions, but we stick to the i.i.d.
setting to keep the proofs simple.

We introduce some notation to define infinite-bin models more precisely. A
configuration of balls X is defined to be any collection (X(k),k € Z) € Z%
(where X (k) represents the number of balls in the bin of index k) such that
there exists F'(X) € Z satisfying the following two conditions :

1. every bin with an index smaller or equal to F'(X) is non-empty ;
2. every bin with an index strictly larger than F(X) is empty.

The index F(X) of the rightmost non-empty bin is called the position of the
front of the configuration X. We denote by S the set of configurations. Note
that one could allow bins containing infinitely many balls or even empty bins
to the left of the front, provided the total number of balls in a configuration is
infinite, and the results we state below would extend in straightforward way to
this setting. However we will not consider these cases in this article, again for
the sake of simplifying the proofs.

Let £ > 1 be an integer, we define a move of type k as a map ®; from the
set of configurations to itself. For any X € S and k € N, we set

N(X,k) =) X(j) and B(X,k)=sup{n € N: N(X,n) >k},
Jj>k

which are respectively the number of balls in or to the right of bin number k
and the index of the bin containing the kth rightmost ball. We define

D X €S (X(J)+ 1ympxh)+1},J €Z) €S.

In other words, @, (X) is the configuration obtained from X by adding one ball
to the bin to the right of the bin containing the kth rightmost ball.

Let p be a probability distribution on N and X, be an initial configuration,
which may be deterministic or random. We construct (X,,),>0 the infinite-bin
model with move distribution p (or IBM (1) for short) as the following stochastic
recursive sequence in S:

Vn € N7 Xn+l = (Efn,+1(X")’

where (§,)n>1 is an iid. sequence of random variables of law p. Foss and
Konstantopoulos [7] proved that when p has finite expectation there exists a
constant v, € [0,1] independent of the initial configuration Xy such that

F(Xn)

. _ |
nhﬁrrolO =l as. and in L. (1.2)
In [13], we proved that this result holds without any assumption on the mea-

sure p. The constant v, is called the speed of the IBM(p).



In the case where the move distribution is p,, the geometric distribution of
parameter p € [0, 1], Foss and Konstantopoulos [7] showed that the speed of the
infinite-bin model corresponds to the growth rate of the length of the longest
path in Barak-Frdés graphs with parameter p, i.e.

Vpe[0,1], v, =C(p). (1.3)

In this article, we express the speed v, as the sum of a series with positive
terms for a general move distribution u. This series representation of v, is based
on the appearance of special patterns in the sequence (&,,n > 1). Therefore
we introduce some notation about words before stating the series formula. We
denote by A* = U,>oN" the set of finite words with positive integer letters,
where by convention ) is the only element of N°, representing the empty word.
Given a word o € A*, we denote by || the length of « (i.e. its number of letters)
and for any 1 < k < |a|, we denote by «(k) the kth letter of «. Furthermore,
if « € A*\ {0}, we set ma to be the word of length |a| — 1 obtained from a by
erasing the last letter.

Recall that the map ®; denotes a single move of type k. We extend the
notation by defining the map ®,, for every a = (a(1),...,a(n)) € A* by

VX €8S, @a(X) = ((I)a(n) o (ba(n—l) 0--:0 (I)a(l)) (X) (].4)

In other words, ®,(X) is the configuration obtained from X by successively
applying the moves of type a(1),a(2),...,a(n). Using this notation, we define
for every X € S the set of X-good words as

Px = {a € A\{0} : F(®,(X)) > F(Pra(X))},

i.e. the set of finite sequences of moves such that, starting from X, the final
move makes the front advance to the right by one unit, by adding a ball in a
previously empty bin.

We define the set of good words to be the words that are X-good for every
starting configuration X, as well as the set of bad words to be the words that
are X-good for no initial configuration X, i.e.

G:=()Px and B:=[)P%. (1.5)

Xes Xes

Finally, we define the set of minimal good words (respectively minimal bad
words) as the good (resp. bad) words that have no good (resp. bad) strict
suffix:

Gm={aeG:Vk<|al,ar €G} and B, ={ae€B:Vk<|al,a) & B},
(1.6)
where oy, denotes the suffix of a consisting of its last k letters'.
The main result of the article regarding the infinite-bin model is the following
formula for the speed of its front.

Theorem 1.2. Fix a probability distribution u on N which is not a Dirac. For

any o € A*, we denote by w, (o) = H‘f:ll w(a(j)). We have

vy, = Z wy(a)=1- Z wy(a). (1.7)

a€Gm a€B,

1And not the first k letters, at it is usually the case in Ulam-Harris type encoding.



Note that for p = di, the Dirac mass at k, the process is deterministic and
vs,, = 1/k, but for all k > 2 the equalities (1.7) do not hold.

Remark 1.3. As a consequence of Theorem 1.2 and the Foss-Konstantopoulos
coupling, by taking i to be the geometric distribution of parameter p, we obtain
a formula for the growth rate of the length of the longest path in Barak-Erddés
graphs : for every 0 < p <1,

Clp)=Y_ pl — )i @D, (1.8)

a€Gm

Formula (1.7) for the speed of the infinite-bin model can be compared to the
one we obtained in [13]. For every X € S, we defined the map

ex:ae A" \ {@} — 1{04677)(} — 1{04‘0471673)(} S {—1,0, 1}.

We showed in [13] that whenever the series

S ex(@uwaa) (19)

acA*

converges absolutely, then its sum is equal to v,. However there was no clear
condition on p for the series (1.9) to converge. We only managed to prove its
convergence for probability distributions with light enough tails, such as geo-
metric distributions with parameter p > 1/2. By contrast, the new formula (1.7)
is more tractable, as it only has positive terms and it holds for every non-Dirac
probability distribution p. However, formula (1.9) is still well-adapted for ex-
plicit estimates, as the computation of e(«) is linear in |a|, while verifying that
a word a belongs to G has a complexity which is exponential in the largest letter
of a.

Remark 1.4 (Speed of a branching random walk with selection). As observed
in [13], the speed wj of an infinite-bin model with measure 4 uniform on
{1,...,k} is the same as the speed of a continuous-time branching random
walk with selection of the rightmost %k individuals. This particular model was
first studied by Aldous and Pitman in [1]. Denoting by G, x the set of minimal
good words using letters only between 1 and k, Formula (1.7) yields

wp =Y ﬁ (1.10)

A€EGm,k

The asymptotic behaviour of the speed of a branching random walk with selec-
tion was conjectured by Brunet and Derrida in [3]. In this case, there would
exist x > 0 such that

X

k=€ Tog(k) + 31+ o(1) logog(k))? > F 7>

Theorem 1.2 is based on the construction of a bi-infinite stationary version
of the infinite-bin model, i.e. a process for which time takes values in Z rather
than in Z. More precisely, we prove that the following result holds.



Theorem 1.5. Let (§,,n € Z) be a family of i.i.d. random variables with a non-
Dirac distribution p. Almost surely, there exists a unique process (Yn,n € Z)
on S such that

F(Yo)=0 and VneZ, Ynu1= (Vo)

Moreover, setting F,, = o (§k, k < n) for any n € Z, the configuration Y,, con-
sidered up to translation of the position of the front is F, -measurable for every
n e .

In [7], Foss and Konstantopoulos proved the existence of a bi-infinite station-
ary version of the infinite-bin model in the case when p has finite expectation.
They also showed in that case that if one samples an infinite-bin model (X,,)n>0
and a bi-infinite process (Y, )nez using the same sequence (&,)nez, then (X,)
coupling-converges to (Y;,) which entails the convergence of finite-depth scener-
ies seen from the front. Their construction was based on going back in time and
searching for certain renovation events, which determine where all the balls are
placed after the renovation event starts, regardless of what the configuration was
before the start of the event. These renovation events have positive probability
when p has finite expectation, but have probability zero otherwise.

In order to construct (Y;,)nez even when p has infinite expectation, we ob-
serve there exist almost surely finite patterns in the past of Y, which determine
the content of a finite number of bins at the front at time 0, regardless of what
the configuration was before the appearance of such a pattern.

In the remainder of the article, every probability distribution on N will be
assumed not to be a Dirac, unless otherwise stated.

Outline of the paper In the next section, we prove Theorem 1.5 as well as
a coupling-convergence result. In Section 3, we prove Theorem 1.2 by linking
the speed of the infinite-bin model to the one of the bi-infinite process. Finally,
we prove Theorem 1.1 in Section 4 by proving that the length of the smallest
good word in the past of the bi-infinite process has an exponential tail.

2 Coupling words for the bi-infinite process

In this section we fix p to be a probability distribution on N. The proof of
Theorem 1.5 is based on the existence of so-called coupling words, introduced
by Chernysh and the second author [4] for the IBM(u). More precisely, for every
K € 7Z. we introduce the projection

e : S — NE
X — (X(FX)-K+1),...,.X(F(X)))
which associates to a configuration X its K-scenery seen from the front, i.e. the
number of balls in each of the rightmost K non-empty bins. By convention,
if K = 0, the target of IIx is the singleton composed of the empty sequence.
The coupling number €(~y) of a word v € A* is defined to be the largest integer
K > 0 such that #(Ilx o ®,(5)) = 1.
In other words, if applying successively moves of type v(1),v(2),...,v(|v|)
brings any starting configuration to configurations with the same K-scenery



seen from the front then K < €(y). For example, we have €(2322) = 1, as one
can check by distinguishing according to the two possible relative positions of
the rightmost two balls in an arbitrary initial configuration. A word ~ is called
K -coupling if €(v) > K. If v is a K-coupling word, then any word which has
v as a suffix is also a K-coupling word. Note however that a word having a
K-coupling word  as a prefix may not be K-coupling. For example, we have
€(2322) =1 and €(23225) = 0. Nevertheless, we can control the variation of €
when adding a suffix. If v € A and a € N, we denote by ~y - a the word of length
|v] + 1 obtained by adding the letter a to the end of ~.

Lemma 2.1. Let v € A and a € N. Then €(v -a) > €(v) — 1. Furthermore if
a < €(v) then €(y-a) = &(y).

Proof. Denote by M the number of balls in the single finite configuration in the
image of Ilg(,) o ®,. We distinguish two cases, whether a < M or a > M.

We first assume a < M. In that case, after executing the moves correspond-
ing to the letters of 7, the execution of a selects a ball in the Kth rightmost bin
with K < €(v), and places a ball in the bin immediately to the right of that
bin. In particular, g,y 0 ®,.4(S5) is still a singleton.

We now assume that a > M. Then, the execution of a selects a ball in the
Kth rightmost bin with K > €(v) (K may depend on the initial configuration
before the execution of ) and places a ball in the bin immediately to the right
of that bin. Note that while it might modify the content in the €(y)th rightmost
bin, it does not change the content of any of the rightmost €(v) — 1 bins. Thus
Hg(y)—1 0 ,.4(S) is a singleton.

This proves that in any case, €(y - a) > €(y) — 1. Moreover, as there is
necessarily at least one ball in each of the €(~) rightmost bins, we know that
M > &(v). Therefore, if a < €(y) < M, then €(y-a) > €(v). O

Let (§n,m € Z) be a family of independent random variables with law pu.
For any n; < np in Z, we denote by &2 the word (&n,,&n, 41, --,8n,). The
following result will be the key for constructing a stationary bi-infinite version
of the IBM and computing its speed.

Proposition 2.2. For K € N, we set
T = inf{n € N: €% is a K-coupling word}.

Then Tk 1is finite a.s.

Proof. Let a be the smallest integer in the support of u. Setting m = @ +1,
we denote by a'™ the word of length m containing only letters a. We first show
that applying ®,m to any initial configuration has the effect of making the
front advance by at least 1. This can be observed using the partial order <
on S introduced in [13, Section 2], which is such that for any X < X’ in S,
F(X) < F(X') and for any word v € A*, ®,(X) < ®,(X’). For any n € Z,
the smallest configuration in S with the front at position n is x™ (k) = 1ip<ny

and one easily checks that applying ®,m to X (™) has the effect of making the
front advance by 1. Therefore, applying ®,m to any configuration makes the
front advance by at least 1. We will need this observation towards the end of
the proof.



Note that for any K < K’, a K’-coupling word is also a K-coupling word,
hence 7 < 7g/. Therefore we can without loss of generality choose the integer
K as large as we wish in this proof. We choose K large enough such that

2p([K; 00)) < p(a)™, (2.1)

i.e. such that it is at least twice less likely to observe a letter larger than K
than to observe the pattern a™ in the sequence (&,).

We now introduce the following sequence of waiting times (backwards in
time) defined by Ty = 0 and

Thit1 :sup{n<Tk:£n2K or (n+m—1<Tgand f;”mfl :am)}7

and the random walk Sy = 0 and Sgy1 = Sk + 21{§T Sk} T 1. In other
k+1=—

words, Tk is the first time before T}, where we see either a letter larger than
K or the pattern ™ and Sy counts the difference between the number of times
the former versus the latter occurs. We observe that by assumption (2.1),
we have E(S;) < —1/3, thus (Sj) drifts towards —oo. As a result, we know
there exists an infinite sequence of times (Ry,k > 0) defined by Ry = 0 and
Rii1 = inf{n > Ry : S, < Sg,}, the time at which S, reaches its record
minimum for the (k + 1)st time.

Let b be the second largest integer in the support of u (here we use the fact
that p is not a Dirac). It is a straightforward consequence of [4, Theorem 1.1]
that there exists a (K + 1)-coupling word ~ that is written only using the letters
a and b?. We define the new waiting time

L :=inf {k € N: fg:::ll'yl = 7} ,

i.e. the first time that the word v appears immediately before a time at which
the random walk S hits a new minimum. As the appearance of the word
immediately before time Tr, has positive probability of occurring and is inde-
pendent of everything that happens after time Tg,, we observe that L < oo
a.s.

Set N := —Tg, +|v|- To conclude the proof, it is enough to show that £° 5
is a K-coupling word, which will prove that 7x < N < oo a.s. To do so, we
prove that for any Tr, —1 < n < 0, we have €(¢" ) > K + 1. It is true for
n =Tgr, —1, since 5?1?'\%71 = ~ which is a (K +1)-coupling word. For any k > 1,
define

k=

T T ifép, > K
T, +m—1 otherwise.

When reading the word £° , from left to right, the time T}, is the (R +1—k)th
time that we read either a letter larger or equal to K or the rightmost letter of
a pattern a™. We also set T} = 0. One shows by induction on 0 < k < Ry, that
for any T; | <n < T}, we have

(¢ y) > C( T?VL_l) + Sk+1— Sy

2Note that when a = 1, the word v can be chosen to be the word of length K + 1 composed
only of the letter 1.



This is a consequence of Lemma 2.1 and the fact that every letter at least K
decreases the coupling number by at most one, every pattern a'™ increases the
coupling number by at least one (by the observation made at the beginning
of the proof) and all the other patterns do not decrease the coupling number,
since this coupling number stays above K. We conclude from the fact that
Sk+1 > Sg, if 0 < k < Rp, as Ry, is a time when the random walk S hits its
minimum. O

Using the a.s. existence of finite times 7 for K € N, we deduce Theorem 1.5.

Proof of Theorem 1.5. We construct the configuration Y, as follows. For each
K € N, we set the rightmost K non-empty bins of Yy to be the single configu-
ration in I o ®eo (), which is a.s. well-defined as 75 < 0o a.s.

0

This construction is consistent for different values of K and it produces a
unique configuration Y; by sending K to infinity and requiring that F'(Yy) = 0.
The variable Ik (Yy) is measurable with respect to ngK, so Yy € Fp a.s. As a
result, for any n > 0, Y, = ®¢»(Yp) is a.s. F,-measurable.

If n < 0, we can do a similar analysis as the one made for n = 0. For any
K € N, IIg(Y,) € F,, a.s. Choosing K > —n and using Lemma 2.1, one can
deduce F(Y,,) from Hg(Y,,) and from &2, since we know that F(Yp) = 0. We
conclude that the configuration Y;, is a.s. entirely determined (up to a shift) by
the sequence (&, k < n). O

Remark 2.3. The bi-infinite infinite-bin model Y that we constructed using
(&n,m € Z) has a stationary behavior. Indeed, for any k € Z, the law of any
K-scenery seen from the front of Y; depends only on (§,,n < k), which has
same law as (£,,n < 0). Hence the law of Y%, up to a shift placing its front at
position 0, is the same as the law of Yj.

Now that we constructed the bi-infinite process Y, we observe using similar
methods as in Proposition 2.2, that any infinite-bin model X ends up behaving
like this bi-infinite process.

Proposition 2.4 (Coupling-convergence). Let (§,,n € Z) be i.i.d. random
variables with law v and fix Xo € S. We denote by (Y, )nez the bi-infinite process
defined in Theorem 1.5, and by (Xp)n>0 the infinite-bin model constructed with
Xo and the random variables (&,,mn > 1). For any K € N, for all n > 0 large
enough, we have

HK(Xn) = HK(Yn) a.s.

Note that this lemma in particular implies the convergence of the K-scenery
seen from the front for any infinite-bin model X.

Proof. Let a < b be the smallest two integers in the support of p and let K > 0
be a number large enough such that (2.1) holds. We then define the sequence
of waiting times Tj = 0 and

Tk+1:inf{n>Tk:§n2K or (n—m+1>Tg andfz_m+1:am)}.

The random walk Sy, := 2?21(21{5%2[(} — 1) drifts to —oo. In particular, for
infinitely many integers n > 1, we have sups,, Sk < Sp.

Let v be a (K + 1)-coupling word consisting only of the letters a and b.
Almost surely, there exists a time N large enough such that the first |y| letters



after IV spell the word v and the random walk S observed after time N + |v| is
always below its value at time N +|v|. Hence, by an argument similar to the one
used to prove Proposition 2.2, for all n > N + ||, we have IIx (X,,) = I (Y,),
which concludes the proof. O

3 Speed of the infinite-bin model

In this section, we use the stationary infinite-bin model Y we constructed in the
previous section to obtain formula (1.7) for the speed of the infinite-bin model.

Lemma 3.1. Let p be a non-Dirac probability distribution on N and (Yy,)nez
be a stationary bi-infinite infinite-bin model. We have v, = P(F(Y1) =1).

Proof. Since (Y,),>0 is an infinite-bin model with move distribution g, we have

n—o00 N

oy = lim SE(F(Y,) = lim > B(F(Y;) - F(Yo).

As Y is a stationary process, we have
E(F(Y)) - F(Yj—1)) = E(F(\1) - F(Y0)) = P(F(Y1) = 1),
thus v, = P(F (Y1) = 1). O

We use this expression for v, in terms of the bi-infinite process Y to prove
Theorem 1.2.

Proof of Theorem 1.2. Let (§,,n € Z) be i.i.d. random variables with law pu.
We introduce the random time

T:=inf{n>0:¢', € GUB}.

We first note that if €Y, is a 1-coupling word, then we know the value of Y;(0).
In that case, ¢!, is either a good word or a bad word, depending on whether
&1 < Yy(0) or not. We conclude that T < 73 < oo a.s. by Proposition 2.2.
Lemma 3.1 yields

v, =P(F(Y1)=1)=P( L, €G)=1-P(; €B).

Note that if £ is good, then it is necessarily a minimal good word (if it had
a good strict suffix, T would have been smaller). Similarly, ¢! . € B implies
¢!, € B,,. Moreover the support of ¢! is the entire set G, U By, as a good
(resp. bad) word cannot have a bad (resp. good) suffix. Thus

Pl e0)=PE€Gn)= Y PE,=aqa)

a€Gm
=D P =)= ) wa),
a€Gm a€Gm

hence v, = > g wpu(a). The equality v, =1—3 5 wy(a) follows from
similar computations. O

10



Remark 3.2. In order to make the formulas in Theorem 1.2 effective, one needs
a criterion to find the minimal good and bad words. Given a word a € A* it
suffices to test it against a finite set > of configurations to determine whether it
is good or bad : if « is X-good (resp. X-bad) for every X € 3, then it is good
(resp. bad). Writing
h= max 1+ a; —1,
1<i<|al

the set ¥ can be taken to be any set of 2"~1 configurations with the front at
position 0 such that for any X # X’ in ¥, the positions of the rightmost h balls
in X and X’ are not all the same.

4 Analyticity of C(p)

Using the formula we obtained for the speed v,, we are now able to prove the
analyticity of the growth rate C of the length of the longest path in Barak-Erdds
graphs.

Proof of Theorem 1.1. For any p,q > 0, we write

|l .
Dip,q)i= 3 pllg2n @O, (4.1)

a€Gm

As indicated in Remark 1.3, it follows from the Foss-Konstantopoulos cou-
pling [7] between infinite-bin models and Barak-Erdés graphs that for any
0<p<,

C(p) =vu, = D(p,1 —p),

where 1, denotes the geometric distribution of parameter p.

To prove that C is analytic around some py € (0, 1], it is enough to show
that the series (4.1) converges for some pair (p/, ¢') with p’ > pg and ¢ > 1—po.
Indeed, one would then deduce that all the series of derivatives of D(p,1 — p)
converge normally around pyg.

Recall that T = inf{n > 0: £L,, € GUB}. For any probability distribution
on N, we denote by E,, the expectation associated with the IBM(x). By simple
computations similar to the proof of Theorem 1.2, for any r > 0 we have

T T
EMP(T +2) 2 Eﬂp(r +21{5£T€g}) = D(Tpa 1 _p)a

As a result, to conclude the proof, it is enough to show that T" admits some
exponential moments uniformly in p. More precisely, we will prove that for
every s € (0, 1], there exists r, > 1 such that

Vp € [5,1],E,, (r]) < oo. (4.2)

S

Then, for any 0 < pg < 1, choosing p such that

max(po, Po )<p<p0
2 T;DO/Q

and setting p’ = pr,, /> and ¢' = 1 —p, one obtains the convergence of the series
D(p',q'), which will prove Theorem 1.1.
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Recall from the proof of Theorem 1.2 that T is smaller than 71, the smallest
time such that §9T1 is a 1-coupling word. To bound E, (r™) we use a con-
struction similar to the one in the proof of Proposition 2.2. Fix s € (0,1]. We
choose an integer K > 1 large enough such that 2(1 — s)!=% < s. Then for
every p € [s, 1], we have

20 ([K, 00)) < 2(1 = 5)'F <5 < pp(1).
We now introduce the sequence defined by Ty = 0 and for any k£ > 0,
Terr=sup{n < Ty : & =1 or &, > K}.
We also set S, = —k + 22?21 1{£T72K}‘ For every p € [s, 1], by the choice of

K, S is a nearest-neighbor random walk such that E(S;) < —1/3. We denote
by (Ry,k > 0) the sequence of strictly descending ladder times of S (i.e. Ry is
the kth time when S reaches its record minimum) and by + the word consisting
in K + 1 times the letter 1. Then, setting

— S
L :=inf {k eN: gTRk(K-H)_K_l =7

we have 11 < —Tg, (k4+1) + K + 1.

As (Sk) is a random walk with negative drift smaller than —1/3, for any
k € N, the random variable Rj is stochastically dominated by the sum of k
iid. random variables U; with the law of the first hitting time of —1 by a
nearest-neighbor random walk with drift —1/3. Moreover, we observe that

2 1
E(’I"Uj) = g?" + g’f‘ ]'—_‘)(’I“Uj)z7

by decomposition with respect to the first step of the random walk. Therefore,

for any k € N, p € [s,1] and r < %, we have
k
3 — /9 — 8r2
E,, (r) < -
P 2r

Similarly, we observe that for any p € [s, 1], =T is stochastically dominated
by a geometric random variable with parameter s, as this is the minimal prob-
ability for obtaining a 1. Then —T}, is stochastically dominated by the sum
of k i.i.d. copies of a geometric random variable with parameter s. Thus, by
conditioning with respect to Ry, as long as 1 < r < ﬁ, for all p € [s, 1]

3

3—\/9—8(1_(?_5%)2

B, () < B, (B, (-~ ™)™) < 3

and k € N we have

k

sr
1-(1—s)r

Finally, as L can be stochastically dominated by a geometric random variable
with parameter s**!, which is independent of (Tr,,k > 1), it admits some
finite exponential moments. We conclude that 7 also admits some exponential
moments, uniformly in p € [s, 1]. O

We point out that, by computations similar to those above, one could show
that for any probability distribution p and K € N, there exists r > 1 such that
E,.(r«) < oc.
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