Semi-independent resampling for particle filtering - Archive ouverte HAL
Article Dans Une Revue IEEE Signal Processing Letters Année : 2018

Semi-independent resampling for particle filtering

Résumé

Among sequential Monte Carlo methods, sampling importance resampling (SIR) algorithms are based on importance sampling and on some (resampling-based) rejuvenation algorithm that aims at fighting against weight degeneracy. However, this mechanism tends to be insufficient when applied to informative or high-dimensional models. In this letter, we revisit the rejuvenation mechanism and propose a class of parameterized SIR-based solutions that enable us to adjust the tradeoff between computational cost and statistical performances
Fichier principal
Vignette du fichier
1710.05407.pdf (162.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01670395 , version 1 (15-02-2024)

Identifiants

Citer

Roland Lamberti, Yohan Petetin, François Desbouvries, François Septier. Semi-independent resampling for particle filtering. IEEE Signal Processing Letters, 2018, 25 (1), pp.130 - 134. ⟨10.1109/LSP.2017.2775150⟩. ⟨hal-01670395⟩
164 Consultations
17 Téléchargements

Altmetric

Partager

More