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Semi-independent resampling for particle filtering
Roland Lamberti, Yohan Petetin, François Desbouvries, Senior Member, IEEE, and François Septier

Abstract—Among Sequential Monte Carlo (SMC) methods,
Sampling Importance Resampling (SIR) algorithms are based
on Importance Sampling (IS) and on some (resampling-based)
rejuvenation algorithm which aims at fighting against weight
degeneracy. However this mechanism tends to be insufficient
when applied to informative or high-dimensional models. In this
paper we revisit the rejuvenation mechanism and propose a class
of parameterized SIR-based solutions which enable to adjust the
tradeoff between computational cost and statistical performances.

I. INTRODUCTION AND BACKGROUND

Bayesian filtering consists in estimating some variable
xt from noisy measurements y0:t = {y0, · · · , yt}. We as-
sume that {(xt, yt)}t≥0 is a Hidden Markov Chain, i.e.
that the joint density of (x0:t, y0:t) reads p(x0:t, y0:t) =
p(x0)

∏t

s=1 fs(xs|xs−1)
∏t

s=0 gs(ys|xs). The problem can be
traced back to Kalman [1] in the context of linear and
Gaussian state space models. Approximate solutions for non
linear and/or non Gaussian state space models include the
extended Kalman filter [2]–[4], the unscented Kalman filter
[5]–[8], or SMC methods (also called particle filters (PF)) [7],
[9], [10], which propagate in time a discrete approximation
p̂(xt|y0:t) =

∑N
i=1 w

i
tδxi

t
of the posterior pdf p(xt|y0:t).

A. The classical SIR algorithm

Let Θt =
∫
ϕ(xt)p(xt|y0:t)dxt be a moment of interest

of p(xt|y0:t). One iteration of an SMC algorithm can be
decomposed in three steps.

Starting at time t − 1 from {wi
t−1, x

i
t−1}

N
i=1, the first two

steps consist in sampling (S.) N particles x̃i
t from importance

densities qi and weighting (W.) them so as to take into account
the discrepancy between the target and importance densities;
then Θt is estimated as Θ̂SIS,N

t =
∑N

i=1 w̃
i
tϕ(x̃

i
t) (superscript

SIS will be justified below). Finally a third (optional) step
consists in re-sampling (R.) the weighted particles, i.e. in re-
drawing each particle with a probability equal to its weight and
assigning to the resampled particles the same weight 1

N
. This

yields the class of SIR algorithms [11] [9] [10] [7] described
by Algorithm 1.

Let us comment this algorithm. If resampling is totally
absent, each time iteration reduces to the first two steps, i.e.
is based on IS only. However such a sequential IS (SIS)
algorithm is well known to fail in practice since after a few
iterations most weights get close to zero. The third step (which
can be performed whatever t or depending on some criterion
such as the number of effective particles [12] [13] [14] [15])
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Algorithm 1 The classical SIR algorithm

Data: q(xt|xt−1), yt, {wi
t−1, x

i
t−1}

N
i=1

for 1 ≤ i ≤ N do

S. x̃i
t ∼ q(xt|xi

t−1);

W. w̃i
t ∝ wi

t−1
ft(x̃

i
t|x

i
t−1)gt(yt|x̃

i
t)

q(x̃i
t|x

i
t−1

)
,
∑N

i=1 w̃
i
t = 1;

end for

Θ̂SIS,N
t =

∑N
i=1 w̃

i
tϕ(x̃

i
t);

if R. then

for 1 ≤ i ≤ N do

li ∼ Pr(L = l) = w̃l
t, 1 ≤ l ≤ N ;

end for

Set {wi
t, x

i
t}

N
i=1 = { 1

N
, x̃li

t }
N
i=1.

else

Set {wi
t, x

i
t}

N
i=1 = {w̃i

t, x̃
i
t}

N
i=1.

end if

discards particles with low weights (such particles are likely to
be never resampled) and is considered as a traditional rescue
against weight degeneracy. On the other hand, this (R.) step
introduces local extra variance [13, section 4.2.1], [16, p. 213],
which in turn affects the variance of Θ̂SIS,N

t at subsequent
iterations. It has thus been proposed to control this extra
variance term via alternative resampling schemes (see e.g.
[17] [18] [19] · · · ). Yet despite many proposed refinements
this generic SIR mechanism remains inefficient in informative
models featuring very sharp likelihood functions (i.e., when
gt(yt|xt) is very small for most values of xt), and in particular
in high-dimensional state-space models [20], [21].

B. The independent SIR algorithm

Recently it has thus been proposed to revisit the SIR algo-
rithm [22] [23] [24] and more precisely to come back to the
rejuvenation mechanism (R.). The counterpart of this (R.) step
is that it duplicates particles with high weights, which results
in support degeneracy. Moreover given {wi

t−1, x
i
t−1}

N
i=1 the

samples {xj
t} produced by Algorithm 1 are marginally dis-

tributed from some compound pdf q̃Nt which takes into account
the effects of the three elementary (S.), (W.) and (R.) steps,
but are obviousy dependent [22] (a single particle can be re-
sampled more than once); by contrast, given {wi

t−1, x
i
t−1}

N
i=1

the independent SIR Algorithm [22] [24] produces N i.i.d.
draws from q̃Nt . Note that Algorithm 2 below only decribes
the rejuvenation step of the independent SIR algorithm, and
replaces the "if R. then" part of Algorithm 1.

C. Scope of the paper

Algorithm 2 has displayed good results in severe situations
[22] and can be combined with a post-resampling, second-
stage reweigthing scheme due to its auxiliary particle filtering

http://arxiv.org/abs/1710.05407v1
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Algorithm 2 Indep. SIR algorithm (resampling step only)

Data: q(xt|xt−1), yt, {wi
t−1, x

i
t−1}

N
i=1;

for 1 ≤ j ≤ N do

x̃1,j
t ← x̃j

t , w̃1,j
t ← w̃j

t .
end for

for 1 ≤ i ≤ N do

R. li ∼ Pr(L = l) = w̃i,l
t , 1 ≤ l ≤ N ;

Rejuvenation of the support for iteration i+ 1
if (i < N) then

for 1 ≤ j ≤ N do

x̃t
i+1,j ∼ q(xt|x

j
t−1);

wi+1,j
t = wj

t−1

ft(x̃
i+1,j
t |xj

t−1
)gt(yt|x̃

i+1,j
t )

q(x̃i+1,j
t |xj

t−1
)

,

end for

w̃i+1,:
t ∝ wi+1,:

t ,
∑N

j=1 w̃
i+1,j
t = 1;

end if

end for

Set {wi
t, x

i
t}

N
i=1 = { 1

N
, x̃i,li

t }
N
i=1.

interpretation [23] [24]. However its rejuvenation mechanism
involves the sampling of N2 particles {x̃t

i,j}Ni,j=1 (plus N
resampling steps), by contrast with the classical SIR algorithm
which only samples N intermediate particles {x̃j

t}
N
j=1 (and

is also followed by N resampling steps). One can wonder
whether this extra cost is indeed necessary, so the aim of this
paper is to design an algorithm which is both efficient (in terms
of computational cost) and effective (in terms of statistical
results). The rest of this paper is organized as follows. Our
algorithm is described in section II. Simulations are displayed
in section III, and the paper ends with a conclusion.

II. SEMI-INDEPENDENT RESAMPLING

A. An intermediate resampling scheme

The classical and independent SIR resampling mechanisms
can be reconciled in a common framework. In both schemes,
one progressively builds N weighted sets x̃1,:

t , · · · , x̃N,:
t (the

N supports) and redraws one sample xi
t out of each of them

(see figure 1). The difference lies in the way x̃i,:
t is built from

x̃i−1,:
t : in the classical SIR mechanism, x̃i,:

t is a copy of x̃i−1,:
t

(so the resampling step amounts to redrawing N samples from
the common support x̃1,:

t , see Algorithm 1); in the independent
SIR mechanism, a whole new support x̃i,:

t is drawn at each
iteration i. In other words, from a computational point of view
both schemes resample N particles from some intermediate
set {x̃i,j

t }
N
i,j=1, but building that set requires N preliminary

independent sampling steps in the classical case, while it
requires N2 independent sampling steps in the independent
case.

In this paper we propose a resampling scheme which creates
an intermediate set {x̃i,j

t }
N
i,j=1 with more diversity than in the

classical case, but at a reduced sampling cost as compared to
the independent case. Starting from x̃i−1,j

t , x̃i,j
t can now either

be a copy (to save cost) or a new sample (to enhance diversity).
The algorithm is as follows. Fix the number k (with 0 ≤ k ≤
N ) of samples which will be redrawn at each iteration. At step
i, uniformly draw a subset mi,1:k = (mi,1, · · · ,mi,k) of size




x̃1,1
t

...
x̃1,N
t




︸ ︷︷ ︸
x̃
1,:
t

→




x̃2,1
t

...
x̃2,N
t




︸ ︷︷ ︸
x̃
2,:
t

→ · · · →




x̃N,1
t

...
x̃N,N
t




︸ ︷︷ ︸
x̃
N,:
t

↓ ↓ ↓
x1
t x2

t xN
t

Fig. 1: The classical, independent and semi-independent resampling
mechanisms. Each scheme draws N supports x̃

i,:
t and redraws one

sample xi
t out of each support. The difference lies in the way x̃

i,:
t is

built from x̃
i−1,:
t : x̃

i,j
t is a copy of x̃

i−1,j
t in the classical case; is

a new particle in the independent case; and can be either copied of
redrawn in the intermediate, semi-independent case.

k out of (1, · · · , N) (mi,l are the indices of the particles which
will be redrawn). Next x̃i,j

t ∼ q(xt|x
j
t−1) if j ∈ mi,1:k, and

x̃i,j
t = x̃i−1,j

t if j /∈ mi,1:k. Finally observe that the classical
(resp. independent) SIR algorithm corresponds to the particular
case k = 0 (resp. k = N ). The algorithm is summarized in
Algorithm 3 below.

Algorithm 3 Semi-ind. SIR algorithm (resampling step only)

Data: q(xt|xt−1), yt, {wi
t−1, x

i
t−1}

N
i=1

for 1 ≤ j ≤ N do

x̃1,j
t ← x̃j

t , w̃1,j
t ← w̃j

t .
end for

for 1 ≤ i ≤ N do

R. li∼Pr(L= l) = w̃i,l
t , 1 ≤ l ≤ N ;

Partial rejuvenation of the support for iteration i+ 1
if (i < N) then

x̃i+1,:
t ← x̃i,:

t , wi+1,:
t ← wi,:

t ;
for 1 ≤ j ≤ k do

mj ∼ Pr(M = n|n ∈ 1:N\{m1:j−1}) = 1
N−j+1 ;

x̃i+1,mj

t ∼ q(xt|xmj

t−1);

wi+1,mj

t = wmj

t−1
ft(x̃

i+1,mj

t |xmj

t−1)gt(yt|x̃
i+1,mj

t )

q(x̃i+1,mj

t |xmj

t−1
)

;

end for

w̃i+1,:
t ∝ wi+1,:

t ,
∑N

j=1 w̃
i+1,j
t = 1;

end if

end for

Set {wi
t, x

i
t}

N
i=1 = { 1

N
, x̃i,li

t }
N
i=1.

B. Performances vs. computational cost

We now evaluate the performance of this procedure by
comparing the variances of the estimates computed after
the resampling step because they affect the variances of
the estimates at subsequent iterations [18]. So let Θ̂.,N

t =
1
N

∑N

i=1 ϕ(x
.,i
t ), where the generic notation x.,i

t represents the
points produced either by Algorithm 1, 2 or 3 (so we consider
Θ̂SIR,N

t , Θ̂I−SIR,N
t and Θ̂SR,N,k

t , where SR stands for semi-
resampling). We have the following proposition (the proof is
given in the Appendix).
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Proposition 1: Given the previous set of particles
{xi

0:t−1}
N
i=1, for all k, 0 ≤ k ≤ N , we have:

E(Θ̂SR,N,k
t ) = E(Θ̂I−SIR,N

t ) = E(Θ̂SIR,N
t ), (1a)

var(Θ̂I−SIR,N
t ) ≤ var(Θ̂SR,N,k

t ) ≤ var(Θ̂SIR,N
t ), (1b)

var(Θ̂SR,N,k
t ) ≤ var(Θ̂SR,N,k−1

t ). (1c)

So as the number k of intermediate redrawings increases from
0 to N , the conditional variance of the semi-independent
resampling estimator Θ̂SR,N,k

t decreases from the upper bound
of inequality (1b) (if k = 0, Θ̂SR,N,0

t reduces to Θ̂SIR,N
t ) to

its lower bound (if k = N , ΘSR,N,N
t reduces to Θ̂I−SIR,N

t ).
However remember from section II-A that N + (N − 1)× k
samples are needed for building Θ̂SR,N,k

t ; so parameter k of
the SR scheme enables to fix a compromise between variance
reduction and computational budget.

C. A parallelized version

Finally Algorithm 3 can be transformed into a parallelized
version, the non-sequential SR (NSSR) algorithm. At iteration
i, instead of duplicating the N−k surviving particles from the
previous support x̃i−1,:

t (see Fig. 1), we propose to duplicate
the N − k surviving particles directly from the initial set x̃1,:

t

of particles. The N − 1 new supports can thus be produced in
parallel, contrary to Algorithm 3 which by nature is sequential.
Of course, this procedure alters the diversity of the final set
of particles, as is illustrated by the following proposition.

Proposition 2: Let Θ̂NSSR,k
t be the estimate built from the

non-sequential semi-independent resampling procedure. Then
given the previous set of particles {xi

0:t−1}
N
i=1, for all k, 0 ≤

k ≤ N , we have:

E(Θ̂NSSR,N,k
t ) = E(Θ̂I−SIR,N

t ) = E(Θ̂SIR,N
t ), (2a)

var(Θ̂I−SIR,N
t ) ≤ var(Θ̂NSSR,N,k

t ) ≤ var(Θ̂SIR,N
t ), (2b)

var(Θ̂NSSR,N,k
t ) ≤ var(Θ̂NSSR,N,k−1

t ), (2c)

var(Θ̂SR,N,k
t ) ≤ var(Θ̂NSSR,N,k

t ). (2d)

So we see that var(Θ̂NSSR,N,k
t ) still decreases with k, but is

always larger than var(Θ̂SR,N,k
t ). As with Proposition 1, the

variance inequalities still rely on Jensen’s inequality, and the
proof is omitted.

III. SIMULATIONS

We consider a tracking problem based on range-bearing
measurements. The hidden state-vector contains the position
and velocity of the target in cartesian coordinates, xt =
[cx,t, ċx,t, cy,t, ċy,t]

T . We set ft(xt|xt−1) = N (xt;Fxt−1;Q),

gt(yt|xt) = N (yt;
[√

c2x,t + c2y,t; arctan
cy,t
cx,t

]T
;R), with

R = diag(σ2
ρ, σ

2
θ), F = I2⊗

[
1 1
0 1

]
, Q = 10× I2⊗

[
1
3

1
2

1
2 1

]

where ⊗ is the Kronecker product. We set q(xt|xt−1) =
ft(xt|xt−1) and we compare the RMSEs averaged over 1000
MC runs.

A. Variance of SR procedures

We first analyze the behaviour of our algorithms as a
function of k. We set N = 100, σρ = 0.1 and σθ = π

1800 ;
all MC runs use the same measurements. Fig. 2 displays
the RMSE of Θ̂SR,N,k

t , Θ̂NSSR,N,k
t , Θ̂I−SIR,N

t deduced from
our resampling schemes and Θ̂SIS,N

t (a resampling step is
computed at each time step but the estimate is taken before this
step). Of course, the performances of estimates based on the
SR procedure improve when k incrases. Even for small values
of k, the improvement is significant. It is also interesting to
note that Θ̂SR,N,k

t (resp. Θ̂NSSR,N
t ) has the same performance

as Θ̂I−SIR,N
t when k ≥ N/2 (resp. k ≥ 4N/5).

k (number of renewed particles in semi-independent resampling)

R
M
S
E

0 10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

Bootstrap Sequential Importance Resampling (SIR)
PF with NSSR
PF with SR
PF with i.i.d. resampling

Fig. 2: RMSE as a function of k, tracking model.

B. RMSE in the informative case at equal cost

We now compare our estimates with existing improvements
of the PF in informative models. In particular, the PF with
MCMC resample move is a popular solution to introduce
sample variety after resampling [25]. Roughly speaking, the N
particles which follow the (R.) step of Algorithm 1 are moved
via an MCMC algorithm with k iterations (here an independent
Metropolis-Hasting algorithm). Thus, our SR procedure has
the same computational cost in terms of sampling steps as the
SIR PF with MCMC moves. We also compare our estimates
with those based on the classical SIR and I-SIR algorithms but
with a given budget of total sampling (sampling + resampling)
operations. We thus set N = 100 particles and k = N/2
for the computation of Θ̂SR,N,k

t and the estimate based on
the resample move PF, N = 72 for that of Θ̂I−SIR,N

t and
N + (N−1)k

2 = 2575 particles for that of Θ̂SIS,N
t . The

global sampling cost for all these algorithms is approximately
(2N + Nk). We also compute Θ̂NSSR,N,k

t with N = 100
and k = 4N/5; its computation does not have the same
computational cost but can be parallelized. The results are
displayed in Fig. 3.

When the observations are very informative (σρ and σθ

are small), the classical solution tends to degenerate (it starts
working when (σρ, σθ) = (0.15, π

1200 )), while our solutions
are robust and present better performances. As the variance
of the measurement noise increases, the different estimates
tend to behave similarly; the classical SIR algorithm performs
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slightly better, which is not surprising since in this case it
no longer suffers from the degeneracy phenomenon and the
number of final samples used is far superior to the other
solutions. We also observe that the resample move which uses
differently the k extra samples does not perform well when
compared to the SR procedure in very informative models,
and is outperformed by our solutions when the observations
are not informative. Finally, our SR algorithm with k = N

2
outperforms the (totally) independent resampling one when
the budget is fixed.

Standard deviations (σρ,σθ) of the measured range and bearing

R
M
S
E

(0,0) (0.05, π
3600 ) (0.1, π

1800 ) (0.15, π
1200 ) (0.2, π

900 ) (0.25, π
720 ) (0.3, π

600 )

2.8

3

3.2

3.4

3.6

3.8

4

SIR with resample-move
PF with i.i.d. resampling, N = 72 final particles

PF with NSSR, k = 4N
5

PF with SR, k = N
2

Bootstrap SIR with N + (N−1)k
2

final particles

Fig. 3: Tracking model, σρ ∈ [0.01, 0.3] and σθ ∈ [ π
18000

, π
600

].

IV. CONCLUSION

In this paper we revisited the resampling step of PF
algorithms, and proposed a resampling scheme where each
new final particle is resampled from a support which is
partially rejuvenated with k new particles. This yields a class
of parameterized solutions which encompasses the classical
multinomial resampling technique (k = 0) and the indepen-
dent resampling one (k = N ), enabling to tune the balance
between variance and computational cost. Simulations showed
that choosing k = N/2 leads to similar performances to
the fully independent resampling procedure. Moreover, in
very informative models our algorithm is not affected by
the degeneration phenomenon, contrary to the classical SIR
algorithm.

APPENDIX

PROOF OF PROPOSITION 1

Let us consider a PF with resampling at time t. First,
(1a) holds because the SIR, I-SIR and SR procedures all
produce resampled particles which, given {xi

0:t−1}
N
i=1, are

(marginally) sampled from the same distribution q̃N ; and (1b)
is straightforward from (1c) and the fact that SR reduces to
SIR (resp. I-SIR) when k = 0 (resp. k = N ). Let us address
(1c). Since Θ̂SR,N,k

t = 1
N

∑N

i=1 ϕ(x
SR,i
t ), given {xi

0:t−1}
N
i=1

N2vark(Θ̂
SR,N,k
t )=

N∑

i=1

var(ϕ(xi
t))+2

N∑

i1,i2=1
i1<i2

covk(ϕ(x
i1
t ),ϕ(xi2

t ));

here index k in a (co)variance emphasizes the fact that it
depends on k. The first term of the r.h.s. is independent

of k (and coincides with var(Θ̂I−SIR,N
t )), so the differ-

ence between different values of k stems from the covari-
ance terms. Next covk(ϕ(x

i1
t ), ϕ(xi2

t )) = Ek[ϕ(x
i1
t )ϕ(xi2

t )]−
E[ϕ(xi1

t )]E[ϕ(xi2
t )], and again, the second term of the r.h.s. is

independent of k. Finally for i1 < i2,

Ek[ϕ(x
i1
t )ϕ(xi2

t )] = E[E[ϕ(xi1
t )ϕ(xi2

t )|x̃t
i1:i2,:]]

= E[E[ϕ(xi1
t )|x̃i1,:

t ]E[ϕ(xi2
t )|x̃i2,:

t ]]

= E[Θ̂SIS
t (x̃i1,:

t )Θ̂SIS
t (x̃i2,:

t )]

= E[E[Θ̂SIS
t (x̃i1,:

t )Θ̂SIS
t (x̃i2,:

t )|mi2
i1+1(1:k)]]

where mi2
i1+1(1 : k) represents all the indices redrawn from

iterations i1 + 1 to i2 (the third equality holds because xi
t

is resampled from support x̃i,:
t (see Fig. 1), so E(ϕ(xi

t)) =
Θ̂SIS,N

t (x̃i,:
t ) where Θ̂SIS,N

t was defined in section I-A).
The outer expectation in this last expression corresponds

to a uniformly weighted sum over all possible values of
mi2

i1+1(1:k), i.e. over (Ak
N )i2−i1 terms where Ak

N is the
number of arrangements of k among N . Given mi2

i1+1(1:k),
the general term of this sum reads

E[Θ̂SIS
t (x̃i1,:

t )Θ̂SIS
t (x̃i2,:

t )|mi2
i1+1(1:k)] =

E[E[Θ̂SIS
t (x̃i1,:

t )Θ̂SIS
t (x̃i2,:

t )|x̃
i1,1:N\m

i2
i1+1

(1:k)

t ]|mi2
i1+1(1:k)]

where x̃i1,1:N\m
i2
i1+1

(1:k) are the particles shared by sup-
ports x̃i1,: and x̃i2,:. Under this conditioning, Θ̂SIS

t (x̃i1,:
t ) and

Θ̂SIS
t (x̃i2,:

t ) are independent so the general term is

E[E[Θ̂SIS
t (x̃i1,:

t )|x̃
i1,1:N\m

i2
i1+1

(1:k)

t ]

× E[Θ̂SIS
t (x̃i2,:

t )|x̃
i1,1:N\m

i2
i1+1

(1:k)

t ]|mi2
i1+1(1:k)]

= E[E2[Θ̂SIS
t (x̃i1,:

t )|x̃i1,1:N\m
i2
i1+1

(1:k)]|mi2
i1+1(1:k)]

= h(mi2
i1+1(1:k)) = h(mi2

i1+1(1:k − 1),mi2
i1+1(k))

because given the trajectories from the previous time steps,
particles from different supports are all marginally drawn from
the same densities. Finally

Ek(ϕ(x
i1
t )ϕ(xi2

t )) =
1

(Ak
N )i2−i1

∑

m
i2
i1+1

(1:k)

h(mi2
i1+1(1:k)). (3)

It remains to compare (3) with the same expression with
k ← k − 1. We observe that (3) can be rewritten as

Ek(ϕ(x
i1
t )ϕ(xi2

t )) =
1

(Ak−1
N )i2−i1

∑

m
i2
i1+1

(1:k−1)

1

N − k + 1

∑

m
i2
i1+1

(k)

h(mi2
i1+1(1:k − 1),mi2

i1+1(k)),

where the second line coincides with the conditionnal
expectation E[h(mi2

i1+1(1:k))|m
i2
i1+1(1:k−1)]. Given

mi2
i1+1(1:k − 1), the set x̃i1,1:N\m

i2
i1+1

(1:k) is included

in x̃i1,1:N\m
i2
i1+1

(1:k−1); consequently, the Rao-Blackwell
decomposition (E(E2(X |Y )) ≤ E(E2(X |Y, Z))) ensures that

h(mi2
i1+1(1:k − 1),mi2

i1+1(k)) ≤ h(mi2
i1+1(1:k − 1))
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for all mi2
i1+1(k), and so that E[h(mi2

i1+1(1:k))|m
i2
i1+1(1:k−1)]

≤ h(mi2
i1+1(1:k − 1)), whence (1c).
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