Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data - Archive ouverte HAL
Poster De Conférence Année : 2017

Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data

Résumé

We introduce a hierarchical model which allows to estimate both a group-representative piecewise-geodesic trajectory in the Riemannian space of shape and inter-individual variability. Following the approach of Schiratti et al. (NIPS, 2015), we estimate a representative piecewise-geodesic trajectory of the global progression and together with spacial and temporal inter-individual variabilities. We first introduce our model in its most generic formulation and then make it explicit for RECIST (Therasse et al., JNCI, 2000) score monitoring, i.e. for one-dimension manifolds and piecewise-logistically distributed data.
Fichier principal
Vignette du fichier
nips_2017_poster_A4_v1.pdf (747.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01646617 , version 1 (23-11-2017)
hal-01646617 , version 2 (12-12-2017)

Identifiants

  • HAL Id : hal-01646617 , version 2

Citer

Juliette Chevallier, Stéphane Oudard, Stéphanie Allassonnière. Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data. Neural Information Processing Systems 2017, Dec 2017, Long Beach, CA, United States. . ⟨hal-01646617v2⟩
641 Consultations
82 Téléchargements

Partager

More